The Use of a Novel Anatomical Mental Rotation Test to Enhance Understanding of Repetitive Visual-Spatial Training on Learning Outcomes in a Human Anatomy Course.

Molika E. Keeler, B.A.1 | Maureen E. Stabio, Ph.D.2 | Danielle F. Royer, Ph.D.2

1Modern Human Anatomy Program, University of Colorado Anschutz Medical Campus, Aurora, CO USA
2Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO USA

Introduction

This study addresses the importance of visual-spatial abilities for medical trainees as they learn human anatomy and aims to improve understanding of how visual-spatial ability transfers to an anatomy learning context.

The specific aims of this study are:

- Create and validate a novel Anatomical-based Mental Rotation Test (AMRT) that can be utilized as a subject-specific cognitive test.
- Establish if visual-spatial ability can be improved by repetitions (13-15X) and short-term (5 minutes) training that is either anatomy figure focused or abstract-figure focused.

Methods

- **Study Population**: University of Colorado-Anschutz Medical Campus graduate students and anatomy education colleagues who completed an Informed Consent Form (N = 69).
- **AMRT Scoring**: Same scoring as MRT.
- **Visual-Spatial Testing**: The Vandenberg and Kuse Mental Rotation Test (MRT), a general spatial ability test, is used to predict an accurate success of visual-spatial training.
- **Abstract Intervention**: 125 - 15X, each < 5 minutes
- **Anatomical Intervention**: 125 - 15X, each < 5 minutes

Results

There was a significant increase (p = .005) in the lab exam scores of the control group compared to the lab exam scores of the anatomical intervention group.

- **May have been a result of the control group forming by fall-out participants.**

By interspersing, no other significant difference (p > .05) was found between exam scores and initial and final AMRT score (Fig. 4) and no correlation was found between AMRT scores and exam scores.

Conclusions

- **Results indicate that the novel AMRT developed has concurrent validity with the well-validated MRT.**

- **Neither visual-spatial training intervention had an impact on the learning outcomes in human anatomy or visual-spatial ability as indicated by exam scores and changes in AMRT scores.**

This study does not support the processed-based theory of learning transfer; there is some support for the instance-based theory since an overall increase in AMRT scores is observed.

Limitations

- **Population tested all completed at least some graduate level course-work, thus results from this study are limited to graduate level students and beyond.**
- **AMRT scores may have been impacted by amount of times participants had taken anatomy courses prior.**
- **Intervention groups tested were small due to limited testing population size.**
- **Spatial visual training was short term and only took place during one unit of the full anatomy course.**
- **The control group during the intervention formed automatically by fall-outs, this may have skewed results because control participants may have felt they did not need supplemental training because they were already at a high level of anatomy knowledge from past experiences.**

Future Directions

- **Further testing of the AMRT should be done to determine the effectiveness of this test at predicting anatomy outcomes.**
- **More visual-spatial training interventions of longer time lengths should be tested to better understand transfer of this cognitive ability to anatomical science education.**
- **Other spatial abilities that relate to human anatomy should be considered in future studies.**

Acknowledgements

Funding thanks to the students & graduates of the Modern Human Anatomy Program, Bioarchaeological Research Program, Pediarchaeological Program, and Physicians of the Department of Anatomical Sciences, all of Colorado and the West for their consistent support. Thanks to Hyatt Place Denver, Hyatt Place Denver, Denver Technical College, Denver Medical Library, Denver Children's Hospital, and Denver Area Medical Society for their consistent support.

References

Materials

- **Spatial-based theories**: Visual-spatial training is validated in a similar cogntive task because related skills are assessed through practice, enhancing cognitive ability.
- **Distance-based theories**: Visual-spatial tasks are solved by recalling previously stored information about that same task and then reproducing the task as a result of enhancing retrieved mechanisms.

Results

Correlation Between MRT and AMRT

Results indicated a significant positive correlation (r = 0.500) between MRT and AMRT scores for all participants (p < 0.05). The positive correlation was maintained across all subgroups (sex, age, past work experience, and previous visual-spatial ability).

AMRT by Prior Spatial Learning Experience

No significant differences (p > 0.05) were found between AMRT scores across sex, age, or prior work experience.

AMRT by Self-Perceived Spatial Ability

No significant differences (p > 0.05) were found between AMRT scores across sex, age, or prior work experience.

AMRT Test Scores by Intervention Groups

Aim 1: Results indicate that the novel AMRT developed has concurrent validity with the well-validated MRT.

Aim 2: Neither visual-spatial training intervention had an impact on the learning outcomes in human anatomy or visual-spatial ability as indicated by exam scores and changes in AMRT scores.

Aim 3: Neither visual-spatial training intervention had an impact on the learning outcomes in human anatomy or visual-spatial ability as indicated by exam scores and changes in AMRT scores.