Perioperative Care of the ICU Patient: Things You Need to Know

SCOTT W. WOLF
ANESTHESIOLOGY
CRITICAL CARE MEDICINE

Objectives

- Describe the various modes of mechanical ventilation
- Review the commonly used anticoagulants and their reversal prior to the OR
- Review the management of enteral and parenteral nutrition and glycemic control
- Discuss the ethical impact of DNR’s, directives, and end-of-life care

Disclosures

I have nothing to disclose,

“I’m only here so that I don’t get fined.” - Marshawn Lynch

History of Mechanical Ventilation

...mouth to mouth inflation of the victim’s might be preferable to using a pair of bellows as “the lungs of one man may bear, without injury, as great a force as another man can exert; which by the bellows cannot always be determined...”

~John Fothergill, Treatise on Resuscitation, 1745

The ICU Patient

The Iron Lung 1931-1956
The Draeger Pulmotor, predecessor to the original ICU positive pressure ventilators

Begin at the Beginning

- A ‘mode’ of mechanical ventilation simply defines a sequence of breath types and the timing of those breaths.

Mechanical Ventilation

- The then...
 - Volume Control (VC)
 - Pressure Control (PC)
 - AC or CMV
 - SIMV
 - PSV

Basic Ventilator Lingo

- Volume
- Pressure
- Flow
- Trigger
- Limit
- Cycle

Mechanical Ventilation

- ...the Now (Ventilator Alphabet Soup)
 - AC, CMV, PC, VC, PSV, IMV, SIMV
 - VC+, PRVC, VS, APV, APRV, HFV
 - BiPAP, CPAP, PS, ATC, PEEP
 - OMG, WT...!!

Basic Ventilator Modes

- Trigger: what the machine senses to initiate a breath
 - Time: a time interval passes
 - Patient: flow, pressure
- Limit: what limits the breath
 - Pressure
 - Flow
- Cycle: what terminates the breath and cycles the breath into expiration
 - Time, pressure, volume
 - Flow
Breath characteristics

A = what initiates a breath - TRIGGER
B = what controls / limits it – LIMIT
C = What ends a breath - CYCLING

Breath types

Control/Mandatory
Machine triggered and machine cycled

Assisted
Patient triggered but machine cycled

Spontaneous
Both triggered and cycled by the patient

Vent modes

• No proven mortality benefit of one over another
• Mostly chosen for individual patient goals and to optimize synchrony
• Some might be more sensible for ARDS or “lung-protective” ventilation

Preparation for the OR

• How is the lung compliance?
• How is the oxygenation (FiO₂, PaO₂, P/F, PEEP)?
• How is the ventilation (pH, pCO₂)?
• Will they tolerate transport to the OR?
• Do they require an ICU ventilator
• Consultation with the ICU team or a Respiratory Therapist

Some Words About Nutrition and Glycemic Control

• What we know
 o Malnutrition is associated with poor clinical outcomes
 o Critically ill patients are at high “nutritional risk”

• What we do not know
 o How to screen ICU patients for malnutrition
 o Anthropometry, screening tools, body composition are very unreliable in these patients

• New Tools
 o NUTRIC score
 o CT
 o Bedside ultrasound of quadriceps muscle
Nutrition Goals

- Early enteral nutrition (EN)
 - Start within 24 hours
 - Functional GI tract
 - Gastric or Jejunal access

- Barriers:
 - Delayed placement of feeding tubes
 - Interruptions for transport or procedures
 - (typical 2 week ICU stay interruptions = 8% protein deficit)
 - Protocolized feeding strategies result in greater days of EN compared to standard clinician guided feeding

- Post pyloric feeding has not been shown to reduce nosocomial infection and prevent aspiration, although best practice recommendations favor it

Parenteral Nutrition

- Severely malnourished patients
- GI dysfunction for more than 5-7 days
- EN is contraindicated

- A combination of EN with supplementation by PN may be useful and well tolerated

*Try to avoid disruption, disconnection, or contamination of the PN for operative procedures

Gastric Residual Volumes

- Randomized studies to compare GRV of 500cc vs. 200cc have not shown a major difference in VAP, duration of MV, or ICU LOS
- Not monitoring GRVs is likely not inferior to routine measuring
- Most institutions: GRV between 300cc and 500cc every 4-6 hours as a cutoff for EN tolerance

Glycemic Control

- The optimal target blood glucose in ICU patients remains unclear
- The landmark study by Van den Berghe et al suggested that tight glycemic control (target of 81-108 mg/dL) would benefit patients and this theory was widely adopted

- A meta-analysis by Wiener et al published in JAMA in 2008 showed that tight glycemic control did not alter mortality in critically ill adults
 - Patients assigned to the intensive glycemic control group had lower glucose levels, received more insulin, and had more episodes of hypoglycemia
- The NICE-SUGAR trial published in the NEJM in 2009 suggested that tight glycemic control does not benefit critically ill patients and may actually be harmful
 - Had more statistical power and longer follow up than the studies included in the meta-analysis

Parenteral Nutrition

- For a long time we believed that parenteral nutrition (PN) was bad (infection, overfeeding, organ dysfunction, mortality)

- Recent and emerging evidence does not suggest that
 - Quality of the lipid emulsion
 - Central line care
 - Glucose management
 - Evaluation of organ dysfunction
Glycemic Control

The Bottom Line

- A blood glucose target of less than 180 mg/dL may be associated with a lower mortality than tight glycemic control and is less likely to be associated with hypoglycemic events.

Nutrition and Glucose Summary

- Remain proactive in promoting the delivery of EN to consensus targets
 - Limit fasting
 - Limit interruptions
- Continue PN when possible
- Much large scale research still needed to establish "nutritional risk", pre-op evaluation tools, intraoperative and post-operative goals, and post hospital outcomes

Keeping up with Anticoagulants

- Options for thromboprophylaxis
 - ASA
 - Antiplatelet drugs and IIb-IIIa inhibitors
 - SQH
 - IV UFH
 - LMWH
 - VKA's
 - Indirect Factor Xa inhibitors
 - Direct Factor Xa inhibitors
 - Oral direct thrombin inhibitors
 - Parenteral direct thrombin inhibitors
- The burgeoning array of anticoagulation poses new challenges for perioperative patients

Reversing Anticoagulants

- UFH: can be completely reversed with protamine
- LMWH: no reversal agents currently available, may be partially reversed with protamine
- Enoxaparin (single dose): factor Xa normal in 12h
 - (twice daily): factor Xa normal in 24h
- Fondaparinux: 36h to 48h
- VKA's: Vitamin K for mildly increased INR
- PCC for life threatening conditions or intracranial hemorrhage
- FFP
- Off-label use of recombinant factor VII

Novel Agents

- Odiparcil
 - An oral, indirect thrombin inhibitor which activates antithrombin II
- RB006
 - Direct factor IX inhibitor which inhibits the factor VIII-IX activation of factor X
 - Being developed in conjunction with its antidote, RB007
- Recombinant human soluble thrombomodulin(ART-123)
 - Binds to thrombin and activates protein C
- SR123781A
 - Inhibits both factor Xa and thrombin via antithrombin
Advance Directives and DNRs

- Advance Directives or living wills are becoming more common among patients.
- Often unclear whether they are helpful to guide end-of-life care once patients are being treated in the ICU.
- Many studies suggest that patient preferences set out in advance have little or no influence on end-of-life care in the ICU.
- Patients with advance directives are more likely to have DNR orders and not get CPR, but are just as likely to get circulatory support, mechanical ventilation, hemodialysis, or an operation.
- So why is there so much inconsistency??

Advance Directives

- The validity and applicability of advance directives are determined by whether the condition of the ICU patient matches the hypothetical conditions identified in the advance directive.
- Wording may be ambiguous or incongruent (e.g., Is this condition likely to cause "imminent death"?)
- The uncertainties about prognosis and the potential benefit of certain therapies leaves physicians to make subjective value judgements concerning the patient’s best interest.
- Unwarranted legal concerns and lack of legal knowledge.

DNR Orders on Operative Patients

- How do professional organizations view them?
- What defines the perioperative period?
- How does resuscitation differ in or out of the perioperative setting?
- What ethical considerations are made for members of the perioperative team?

DNR's on Operative Patients

- As the patient’s advocate we have an ethical and moral responsibility to the patient.
- As a leading member of the health care team we have a moral obligation to uphold a patient’s rights to..
 - Autonomy: respect the patient’s right to decide for themselves regarding DNR status in the perioperative setting.
 - Beneficence: do what is in the patient’s best interest.
 - Nonmaleficent: prevent harm to the patient.
 - Justice: all individuals deserve mutual respect.

DNRs in Operative Patients

- By some estimates 15% of patients with DNR orders will undergo a surgical procedure.
- Present a complex medical and ethical issue.
- Outdated and unclear policies leave us unsure and misguided.

DNR’s on Operative Patients

- Most professional societies among nurses, surgeons, and anesthesiologists recommend clarification of the patient’s wishes including a thorough review of the patient’s directives and then carefully documenting that discussion and disseminating it to other members of the perioperative team.
DNR's on Operative Patients

- The American Society of Anesthesiologists Ethical Guidelines for the Anesthesia Care of Patient with Do Not Resuscitate Orders or Other Directives that Limit Treatment affirms that patients have a right to self-determination.
- It states that automatic suspensions of DNR in the OR does NOT address this right.
- It states that existing directives should be reviewed before procedures, clarified and modified accordingly, and shared with the entire team.

Summary

- Close consultation with a respiratory therapist and an ICU physician should occur prior to taking mechanically ventilated patients to OR.
- Anesthesiologists should consider glycemic control and minimize interruptions in nutritional delivery.
- Elective surgery should be timed according to a patient’s anticoagulation and emergency surgery may require prompt reversal of anticoagulants used in the ICU.
- Thoughtful consideration of a patient’s advanced directives and DNR status should occur and may involve a multi-disciplinary discussion with patients, their proxies, medical ethicists, and the perioperative team.

DNR’s on Operative Patients

- Summarizing the position statements from the majority of professional organizations:
 - They do NOT support the common practice of routine rescinding of a DNR order for the perioperative period.
 - They do support a discussion with a patient and/or their proxy regarding how they wish the DNR to be handled.
 - A period of “required reconsideration”.

Recommendations on DNR’s

- DNR’s should not be automatically suspended.
- “Required reconsideration” should occur.
- The patient or surrogate determines the plan for resuscitation.
- The perioperative setting should be clearly defined.
- The discussion should be clearly documented and communicated.
- A process should be included for team members who conscientiously object.
- Additional discussion should occur post-operatively to direct care as the patient recovers.