Update on Pediatric Anesthesia
CRASH 2016
Larry Schwartz, MD
Associate Professor, Director of Education
Department of Anesthesiology
Children’s Hospital Colorado, University of Colorado
March 1, 2016

"If you always do what you always did, you will always get what you always got."

Participants will be able to...

• Describe possible implications of the neurodevelopmental effects of anesthesia on young infants and children.

• Understand advances in pediatric pain management and regional anesthesia.

• Discuss growing use of dexmedetomidine in pediatric patients

Disclosures

• Strategies for Mitigating Anesthesia-Related neuroToxicity in Tots
• 2012 response to a 2009 FDA request
• Public-private partnership
 – International Anesthesia Research Society
 – FDA
 – Other stakeholders
• Coordinate and fund research
• SmarTTots.org
• Consensus Statement, October 2015
• Animal Studies
 – Show brain injury, behavior/learning deficits
• Human Studies
 +/- on effects, confounding factors
• No definitive answers

Healthcare Providers
• Highlight difference between animal and human research findings
• Most meds have been implicated in animal studies
• Anesthesia is necessary for surgery, etc
• Decisions regarding timing should be discussed with all team members & family
• Elective procedures
 – Risk/Benefit of surgery vs delay

Parents
• Discuss timing of procedure with PMD, surgeon, anesthesiologist.
• Weigh unknown risk of anesthesia vs potential harm of postponing surgery
• Individualized decisions
• Smarttots.org

Anesthesia and the developing brain: a way forward for clinical research
Davidson, Peds Anesth (25)2015
• 2 day meeting in Genoa, Italy
• Pediatric Anesthesia and Neurotoxicity: From the GAS study to future collaborative trials.
• May 23 – 24, 2014
• Pediatric anesthesiologists, basic science & clinical researchers, project coord., neonatologists, neuropsychologists, surgeons, peds anesth society leadership
• Summarize current/ongoing research
• Develop key questions to drive future research

What we know
• Animals studies
 – Many GAs have effects of developing brain: apoptotic cell death, impaired synaptogenesis, potential long term neurologic dysfunction.
• Effects greatest in very young animals
• Mixed evidence for association b/w anesthesia and poor neurodevelopment in animal models
• Some interventions mitigate changes observed
• Several plausible mechanisms implicated
• Mixed evidence for association between anesthesia and risk of poor ND outcome in children

What we do not know
• Which children (age of exposure, dose) are at greatest risk for poor developmental outcome
• Which neurological domains are affected
• The mechanism involved
 – Hypotension, hypoxia inflammation, illness, surgery, direct toxicity, socio-economics?
• Possible neuroprotective effects
• Which interventions would reduce the risks

3 Approaches to Research
• Determine if clinically relevant toxicity exists
• Accept toxicity exists.
 – Find thresholds and mitigating mechanisms
• Make no assumption on association
 – Identify greatest risk population
 – Can we alter risk and change anesthetic techniques
2015 Basic Science

Dosing and Timing

Mechanisms - MicroRNA

- Small, endogenous, non-coding segments
- Negatively regulate target gene expression
- Implicated in disease processes, including (most recently) neurotoxicity

miRNA-124

What to do with the animal data?

- Does the animal data translate?
- NT is multifactorial
- Very young animal with high dosing

But there is a lot of alarming data
What about non-rodents

- Conflicting data
- Retrospective studies
- Power
- Learning & behavior is multifactorial

- Need better studies
 - Prospective
 - Large
 - Multi-institutional

Mayo Anesthesia Safety in Kids (MASK) Study

Gleich, Contemporary Clin Trials, 41: 2015

- Morgan Stanley Children’s Hospital, Columbia University
- Pilot study published 2012
- Prospective study underway
 - Children exposed at 0-3 years of age
 - Compare exposed and unexposed siblings ages
 - Neuropsychological and behavioral testing at ages 6-18

Lancet, January 16, 2016

First randomized controlled trial assessing the effect of general anesthesia in infancy on neurodevelopmental outcome

GAS

- Subjects
 - < 60 weeks gestation, born >26 weeks
 - Inguinal herniorrhaphy
 - 28 hospitals: Australia, Italy, USA, UK, Canada, Netherlands, New Zealand

- Study
 - Feb 9, 2007 – Jan 31, 2013
 - Randomized to receive GA (359) or awake/spinal (363)
 - Primary outcome: Wechsler Preschool and Primary Scale of Intelligence III Full Scale Intelligence Quotient, at age 5 yrs
 - Secondary outcome: Bayley Scales of Infant and Toddler Development III, at age 2 years

GAS

- Outcome data available for 238 A/R and 298 GA
 - Median duration of GA 54 minutes
 - Cognitive composite score (mean [SD])
 - 98.6 [14.2] in the awake/regional group
 - 98.2 [14.7] in the general anesthesia group

- Found no evidence that less that 1 hour of sevofurane anesthesia in infancy increases the risk of adverse ND outcomes at 2 years of age compared with awake-regional anesthesia

- Strongest clinical evidence to date, but still not definitive.
The surgeons are taking notice

Surgical adaptation

- TOPS Trial – Timing of Primary Surgery for Cleft Palate
 - 6 months vs. 12 months
- Orthopedics
 - Club foot, digits, hips – wait?
 - Urgent trauma, infections - can’t wait, but can decrease # I&D procedures
- General Surgery
 - Hirschsprung Disease – early intervention improves outcomes
 - Non-surgical approach to abdominal wall defects

PALC survey results

- Most are getting some education
 - Journal Clubs, Grand Rounds, Conferences
- Providing parents with information
 - 91% discuss only if asked
 - 6% discuss NT routinely
 - 1 program is adding to their consent
 - 25% have a formalized mechanism to provide information
Healthcare Providers
- Highlight difference between animal and human research findings
- Most meds have been implicated in animal studies
- Anesthesia is necessary for surgery, etc
- Decisions regarding timing should be discussed with all team members & family
- Elective procedures
 - Risk/Benefit of surgery vs. delay

Parents
- Discuss timing of procedure with PMD, surgeon, anesthesiologist.
- Weigh unknown risk of anesthesia vs potential harm of postponing surgery
- Individualized decisions
- Smarttots.org

Regional Anesthesia in Children
- Benefits
 - Perioperative pain relief
 - Decrease opioids
 - Decreased general anesthesia*
 - Growing experience
 - PNB, NA
- Questions
 - Safety
 - Ultrasound
 - Awake vs. asleep

Asleep vs Awake
Peripheral nerve blocks
Ultrasound
Neuroaxial
Neurotoxicity
Avoid general anesthetics

General Anesthesia compared to Spinal anesthesia study (GAS)
- Apnea post-anesthesia in infants
 - < 60 weeks gestation, born >26 weeks
 - Inguinal herniorrhaphy
 - Randomized to receive GA (359) or awake/spinal (363)

GAS – Apnea results
- Overall incidence of apnea, 0-12hrs
 - RA 3% vs GA 4%
- Early apnea, 0-30mins
 - RA 1% vs GA 3%, OR 0.2
- Late apnea, 30min-12hours
 - RA & GA 2%

Note: GAS = General Anesthesia, RA = Regional Anesthesia.
GAS - Failure

- Failure of regional neuroaxial technique was 10%
- Bloody tap predicts failure, OR 2.46
- Heterogeneity of technique and experience limits ability to comment on preferred method

Frawley, ANES, (123) July 2015

Awake vs. GA/Sedation

- Turns out it’s not....
- 4 major large scale studies.
- No incidence of paralysis with neuroaxial anesth/anal
 – 95%CI 0(0% - 0.004%)

ESRA/ASRA Conclusion

- Performance of PRA under GA/DS is safe and should be viewed as standard of care
- Overall complication risk is 0.66% (95% CI, 0.6% - 0.7%)
 – Risk of paralysis is 0 (95% CI, 0% - 0.004%)
- Should maintain a high index of suspicion for serious complications/neurologic injury

Test dosing in kids

- PRAN
- 26,949 blocks with a test dose
 – 0.21% incidence of +TD
 – All but 1 with caudal or epidural
- Careful dose calculation > test dose

4 large scale studies

- French Language Society of Paediatric Anaesthesiologists (ADARPEF), 1996
 – 38 centers, 24409 RAs, 89% with GA
 – 0.9/1000 overall, 0 PNB, 1.5/1000 NAB
- UK Prospective National pediatric Epidural Audit, 2007
 – 10533 RAs
 – 96 complications; 5 serious, 9 major
- ADARPEF, 2010
 – 29870 blocks with GA
 – 41 complication, 0 long-term
- Pediatric Regional Anesthesia Network report, 2014
 – Internet database, 2007-2012
 – 53,564 PRAs
 – PRA under GA +/- NMB demonstrated no increase in complications
 – PRA with GA had less complication rate than awake or sedated

Reg Anesth Pain Med [40] 2015
Problems with interpretation

- GA and dose at the time
- Higher resting heart rate
- Age-dependent CV reactivity to epinephrine
- Premedication received
- Type of local anesthetic received
- Type of general anesthetic received

Committee Recommendations

- Difficulty interpreting negative TD
 - False negative TD occur
 - LA solutions given slowly and small aliquots (0.1-0.2 ml/kg)
- Any T wave or heart rate changes within 30-90 second should be considered positive IV injection. No False Positives
- Imaging modalities may help.

Either is okay

<table>
<thead>
<tr>
<th>Air LOR</th>
<th>Saline LOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerve root compression, pneumocephalus,</td>
<td>Dural puncture detection, dilute dose,</td>
</tr>
<tr>
<td>incomplete block, venous air embolism</td>
<td>decrease CBF</td>
</tr>
<tr>
<td>Associated with repeat, large bolus</td>
<td>Volume dependent</td>
</tr>
</tbody>
</table>

- No evidence one is better than the other
- Consider combination
- limit volume to 0.5 – 1 ml in neonate/infants

Compartment Syndrome

- Case reports
 - Root cause analyses reveal poor monitoring and poor positioning
- Diagnosis
 - 30mmHg
 - 4 hours to tissue loss
- Concern for masking
 - Breakthrough pain may be an early sign

Committee Advice

- No current evidence that RAs increase risk for Acute Compartment Syndrome or delay diagnosis in children
- Preop conversation with parents about risk

- “Best Practice”
 - Single shot 0.1 – 0.25% bupi, ropi
 - Continuous infusion up to 0.1%
 - Restrict volume and concentration in catheters for tibial compartment
 - Cautions with additives
 - Follow up/monitoring by APS
 - Measure compartment pressures if suspected

PRAN

- Internet Database for PRA
- Prospective data
- Established 2006
- Data 2007-2012
- 2015 Publications
 - Caudal Safety
 - Peripheral Nerve Block Safety
PRAN - Caudal

- 18,650 children received a caudal block
- Complications
 - Overall rate 1.9% (1.7-2.1%)
 - Higher association with younger patients
 - Median 11 months vs. 14 months
- Most common complications
 - Block failure (1%); Blood aspiration (0.6%); iv injection (0.1%)
 - No temporary or permanent sequelae
 - 24.6% received potentially unsafe dose (>2mg/kg)

PRAN – Peripheral Nerve Catheters

- 2074 PNCs
- 251 adverse events & complications, 12.1%
 - Catheter malfunction
 - Block failure
 - Infection
 - Vascular puncture
- No persistent neuro injury, serious infection, or LAST

Walker, BJA, July 2015

Evidence for the use of US in PRA

- Initial review 1994-2009
- Current review 2009-2014, 37 RCT and prospective observational studies.

Lam, Reg Anesth & Pain Med, 2015

Summary of findings

<table>
<thead>
<tr>
<th>PNB</th>
<th>NAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ↓ Performance time</td>
<td>• Improve needling time</td>
</tr>
<tr>
<td>• ↑ Block success</td>
<td>• Predict depth</td>
</tr>
<tr>
<td>• ↑ Block quality</td>
<td>• Improve catheter visualization</td>
</tr>
<tr>
<td>• Excellent pain relief</td>
<td>• ↑ Block quality</td>
</tr>
<tr>
<td>• Lower post-op opioid requirement</td>
<td></td>
</tr>
</tbody>
</table>

Lam, Reg Anesth & Pain Med, 2015

Schwartz, Lawrence, MD
Update on Pediatric Anesthesia
Adjuncts to local anesthetics

- 212 children, ASA 1-2, 1-3 years, 8-18 kg
- Elective inguinal hernia/hydrocele repair
- Treat with caudal injection
 - 0.25% levobupivacaine
 - 0.2% levobupivacaine
 - 0.2% levobupivacaine + Dexmedetomidine 2mg/kg

Results

- No change in block onset time
- Increase mean block duration
 - 0.25% LB → 7.23 hours
 - 0.2% LB → 5.84 hours
 - 0.2% LB + DEX → 19.6 hours

Comparison of caudal bupivacaine alone with bupivacaine plus two doses of dexmedetomidine for postoperative analgesia in pediatric patients undergoing infra-umbilical surgery: a randomized controlled double-blinded study

<table>
<thead>
<tr>
<th>Group</th>
<th>Time to block onset (min)</th>
<th>Time to complete surgery (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose 1</td>
<td>3.0 ± 1.6</td>
<td>18.5 ± 2.8</td>
</tr>
<tr>
<td>Dose 2</td>
<td>5.0 ± 2.8</td>
<td>24.0 ± 3.2</td>
</tr>
</tbody>
</table>

Dexmedetomidine as adjunct to ilioinguinal/iliohypogastric nerve blocks for pediatric inguinal hernia repair: an exploratory randomized controlled trial

1.5 – 8 year old children, ASA 1-2, double blind
21 received local anesthetic; 22 local anesthetic + DEX
Results

- Dexmedetomidine depresses the release of C-fiber transmitters
 - Effect hyperpolarization of postsynaptic dorsal neurons
- Combination of dexmedetomidine and local anesthetics produces a synergism
 - Block Aδ and C fibers
 - Decreasing local anesthetic absorption
 - Activating cholinergic neuron.

Dexmedetomidine

- α_2-adrenergic receptor agonist
- $\alpha_2: \alpha_1$ selective binding 1600:1
- 7x more selective than clonidine

Cellular Mechanism of the α_2-Adrenergic Agonists

- Alpha-2 receptor provides negative feedback to inhibit NE release
- Decrease sympathetic response
- Clinical effectiveness tied to selectivity for alpha-2
End organ effects of Dexmedetomidine

End Organ Effects - Neurologic

- Sedation via selective binding α_2 receptors in the locus ceruleus
 - Decreased noradrenergic output \rightarrow increased GABA firing
 - Natural, non-REM sleep
 - Animal studies
 - Pediatric EEG

Why the excitement

- Airway maintained
- Respiratory drive
- Cardiovascular stability
 - Heart rate, blood pressure
- "natural" sleep
- Possible organ protection
 - Ischemic/reperfusion, inflammation, CPB, sepsis
- Not implicated in neurotoxicity.
- May be neurologically protective

Areas of use

- Preoperative sedation
- Treatment of post-anesthesia shivering
- Procedural sedation
- MRI, radiology
- Anterior mediastinal mass
- Difficult airway
- Bronchoscopy
- Sedated echocardiography
- Sleep studies
- EEG
- Narcotic withdrawal
- Emergence delirium
- ICU sedation
- Cardiac anesthesia
- Regional anesthesia
- Spine surgery (evoked potentials)

Typical patient

- 6 month old infant with HLHS
 - s/p Atrial balloon septostomy DOL 0
 - s/p Norwood, Stage I repair, DOL 3
 - Sedated ECHO @ 1 month, 3 months, 4 months, CT angio @ 4 months
- Requires sedated preoperative ECHO today, in anticipation of modified bi-directional Glenn, tomorrow.

Intranasal use for transthoracic ECHO

- 115 kids, < 3 years old, acyanotic CHD
- 100 (87%) had satisfactory sedation
- Mean onset 16.7 +/- 7 minutes
- Wake up time 44.3 +/- 15 minutes
- Overall, no change in HR, BP, SpO$_2$
- 1 patient required NCO$_2$
- 4 patients with bradycardia < 90, no hypotension, no intervention

Li, Ped Anes (25), 2015
Emergence Delirium

Sleep: It is Worth the Fight

2015 Papers

- Hauber, Anesth & Analg, Nov 2015
- Yao, Ped Anes, May 2015
- Hadi, Int J Ped Otolaryng, Feb 2015

Summary

- Typical doses of dexmedetomidine (0.3–1 mcg/kg)
- Used as premed, part of the anesthetic, at the EOS
- Reduce the risk of PAED
 - Half to one third
- Reduce the severity of PAED
- Wake up time can be extended
- PACU time not significantly increased

Added benefits

- Decrease amount of opioids
- Decrease sevoflurane concentration

- 40 control, 40 DEX pts
- Mean age 6 years
- Treated at induction with Saline vs. DEX 0.5mcg/kg
- Sevoflurane to maintain BIS 45-55
DEX and Congenital Heart Disease

- Most complex patients are often the most young and require high dose, long, repetitive anesthetics
- Cardiopulmonary bypass + myocardial ischemia + hemodynamic instability + hypoxemia + anesthesia neurotoxicity risk factors = neurodevelopmental injury?

Benefits of Dexmedetomidine in CHD

- Shorter mechanical ventilation, earlier extubation
- Less opioid requirements
- Decreased stress response: cortisol, glucose
- Improved hemodynamic stability
- No significant difference in hospital or ICU LOS

Pan, Ped Anes, 2016

Potential Benefits

- Animal Studies
 - Attenuate ischemic-reperfusion injury
 - Decrease inflammatory molecules
 - Decrease neuroapoptosis, memory function

How this relates to clinical outcomes is unknown

- There is a growing body of scientific literature implicating most anesthetics in neurotoxic pathways
- The clinical impact of anesthetic toxicity is unknown
- Recommendations revolve around open and clear communication
- Pediatric Regional Anesthesia is growing strongly
- It’s safety and efficacy is now well established
- PRA may provide a avenue to avoid toxic anesthetics
- Dexmedetomidine use is growing in many arenas of pediatric anesthesia
- It’s appears to offer a growing number of clinical benefits to pediatric patients
- Preclinical research suggests it may attenuate cellular injury associated with inflammation, ischemia, and anesthesia-related neurotoxicity. However, the clinical data here is lacking.

Thank you