Chronic Kidney Disease: The Silent Killer?

Robert N. Sladen, MBChB, FCCM
Allen Hyman Professor of Critical Care Anesthesiology
Executive Vice-Chair
Chief, Division of Critical Care
Director, CTICU and SICU
Department of Anesthesiology
Columbia University Medical Center
New York, NY

No Disclosures

What is Chronic Kidney Disease?

Chronic Kidney Disease (CKD)
- Functional or structural kidney damage
 - eGFR < 60 mL / min /1.73 m² x 3 months
- United States: > 20 m affected (7%)
 - 47% of individuals > 70 yrs
- End-stage renal disease (RRT): > 500 k
- Risk factors: diabetes; hypertension (90%)
 - Risk of dying of CV disease in older patients with CKD is greater than risk of needing RRT!

Modification of Diet in Renal Disease (MDRD)
http://www.nkdep.nih.gov

eGFR = 186 x (Scr)⁻¹.¹₅₄ x (Age)⁻₀.₂₀₃
 x 0.₇₄₂ (if female); x 1.₂₁₂ (if African-American)

For example: 64 yr-old woman,
baseline Scr 1.9 mg/dL
eGFR = 186 x (1.9)⁻¹.¹₅₄ x (64)⁻₀.₂₀₃ x (0.₇₄₂)
eGFR = 26.6 mL / min /1.₇₃m²

How severe is her CKD?

National Kidney Foundation (NKF)
Kidney Disease Outcomes QI Classification

<table>
<thead>
<tr>
<th>CKD Stage</th>
<th>eGFR (mL/min/1.73M²)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>> 90</td>
<td>Kidney damage with NL GFR</td>
</tr>
<tr>
<td>2</td>
<td>60 - 89</td>
<td>Mibly decreased GFR</td>
</tr>
<tr>
<td>3a</td>
<td>45 - 59</td>
<td>Moderately decreased GFR</td>
</tr>
<tr>
<td>3b</td>
<td>30 - 44</td>
<td>Moderately severe decrease</td>
</tr>
<tr>
<td>4</td>
<td>15 - 29</td>
<td>Severely decreased GFR</td>
</tr>
<tr>
<td>5</td>
<td>< 15 (or RRT)</td>
<td>End-stage kidney disease</td>
</tr>
</tbody>
</table>

1.12 m adults without dialysis or transplantation

Risk of CKD
CV Events
Hospitalization
Death

CKD CRASH 2-16 - January 24, 2016
Renal Risk in CABG Surgery

Yeo KK et al. Am J Cardiol 2008; 101:1269-74

Limitations of eGFR

Sladen RN. Anesth Analg 2011; 112:1277-9
- It is an estimated, not actual GFR!
- Provides reliable assessment of eGFR between 20 - 60 mL / min / 1.73 m² only
- GFR > 60 mL / min / 1.73 m² is referred to as “normal”
- Largely dependent on SCR
 - affected by depleted muscle mass
 - cannot track acute changes in GFR!

How Should We Modify Our Perioperative Management?

Top Ten Caveats

1. Anticipate cardiovascular disease

Cardiovascular Disease in CKD

- Causes 40% of all deaths in CKD
 - LVH, diffuse calcinosis, fibrosis, CAD
 - vitamin D deficiency contributes (Ca++)
 - high incidence of arrhythmias (worsen CKD)
 - increased thromboembolism, bleeding
- Silent ischemia (autonomic neuropathy)
- Risk of sudden cardiac death (20-40%)
 - increases with severity of CKD
 - reversed by renal transplant, but not by HD

Protein-Bound Uremic Toxins (PBUT)

Cardiorenal Syndrome (Organ Crosstalk)

Indoxyl sulfate, p-cresol, homocysteine, ADMA
- Highly protein bound, poorly dialyzed
- Toxic to kidneys and heart
- Induce oxidative stress, endothelial dysfunction
- Vascular smooth muscle cell proliferation
- Fibrogenic, pro-hypertrophic (LVH)
- Promote atherosclerosis, adverse CV events

Indoxyl Sulfate Metabolism

- Indoxyl sulfate (from tryptophan in diet) accumulates in CKD
- Cardiotoxic
- AST-120 (Kremezin), an oral charcoal, absorbs indole in ileum
- Improves cardiac and renal function in animal CKD
Diastolic Dysfunction in CKD
Farshid A et al. BMC Nephrol 2013; 14; 280.
- Common in CKD especially with HTN
 - LVH, diffuse calcinosis, fibrosis, CAD
 - increases with grade of CKD (85% stage 4-5)
- LV ejection fraction > 50%
 - impaired diastolic relaxation
 - evaluated by transthoracic echocardiogram
 - requires higher filling pressure, slower HR
- Increased risk of cardiac mortality

Sudden Cardiac Death (SCD)
Franczyk-Skora B et al. BMC Nephrol 2012; 13; 162.
- SV, V arrhythmias - 80-90% of patients on HD
 - cardiac fibrosis, sympathetic hyperactivity
- Exacerbated during HD and hours afterwards
 - 50% of all deaths in HD patients
- Prolonged QT - iron overload and deposition
 - Torsades de pointes, VF, asystole
 - electrolyte shifts - hypokalemia, hypomagnesemia
 - catecholamine bursts (hypovolemia, HD)
 - drugs: antidepressants, droperidol, ciprofloxacin

Torsades de Pointes
“Twisting of the Points”
Yap YG, Cam AJ. Heart 2003; 89: 1363-72
- Prolonged QT
- Low K, Mg
- Catecholamines
- Drugs
 - haloperidol
 - droperidol

SCD: Prophylaxis
Whitman IR et al. JASN 2012 23; 1929-39
- Beta blockade
- Statins
- RAAS blockade
- AICD

Do A Cardiac Workup!
- Careful history (DM, HTN, CAD, arrhythmias)
- Look for anemia (EPO, iron, folate, GIB)
- ECG (QT, conduction problems, arrhythmias)
- TTE (LVH, diastolic dysfunction, CHF)
- Perioperative beta blockade
- Cardioprotective anesthetic, emergence

Autonomic Neuropathy in CKD
Accompanies peripheral neuropathy
- Delayed gastric emptying (aspiration risk)
- Silent myocardial ischemia
- Orthostatic hypotension

Metabolic Acidosis in CKD
- Early: hyperchloremic acidosis
 - tubular HCO₃ waste
- Late: anion gap acidosis
 - sulfate, phosphate accumulation
- Acute on chronic acidosis
 - hypercarbia, shock, diarrhea, stress
Acid-Base Management
• Check preoperative HCO₃ and Cl
 - hyperchloremic vs. anion gap acidosis
• Support ventilatory compensation
 - increase minute ventilation in OR
 - consider postoperative ventilation
• Recognize relationship to potassium

Potassium Balance
\[
\Delta \text{pH} = 0.1 \Rightarrow \Delta K^+ = 0.5 \text{ mEq/L}
\]

Hyperkalemia Protocol
- Calcium chloride: 1-2 g central IV
- NaHCO₃: 50 - 100 mEq
- Hyperventilate: 0.1 pH = 0.5 K⁺
- Insulin + glucose: 5u + 25g (50 mL 50%)
- Kayexalate enema: 0.5 g/kg
- Emergency dialysis: If K⁺ > 6.0 mEq/L

Acute Hyperkalemia in CKD
• Acute acidosis
• Catabolic stress
• Major trauma, surgery, sepsis
• Drugs
 - NSAIDs, ACE inhibitors
 - K⁺ sparing diuretics
 - β-blockers
 - Cyclosporin A, tacrolimus

Depleted Fluid Reserve
Hypovolemia ↔ Hypovolemia
• Anuria
 - excess Na⁺: edema, HTN
 - excess H₂O: hyponatremia
• Nonoliguric, polyuric
 - unable to concentrate urine

Principles of Fluid Management
• Correct fluid deficits
• Restrict maintenance fluid
• Monitor appropriately
• Be careful post-operatively!
 - withdrawal of positive pressure
 - reversal of sympathetic block

Perioperative Acidosis
35 yr old diabetic, cadaveric renal transplant

<table>
<thead>
<tr>
<th></th>
<th>PaCO₂</th>
<th>pH</th>
<th>HCO₃</th>
<th>K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preop</td>
<td>32</td>
<td>7.32</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>OR</td>
<td>40</td>
<td>7.25</td>
<td>18</td>
<td>5.3</td>
</tr>
<tr>
<td>PACU</td>
<td>44</td>
<td>7.21</td>
<td>19</td>
<td>5.6</td>
</tr>
<tr>
<td>PACU</td>
<td>48</td>
<td>7.18</td>
<td>19</td>
<td>5.9</td>
</tr>
</tbody>
</table>

4. Anticipate Acute Fluid Overload and Pulmonary Edema
5. Anticipate Anemia and Bleeding
Hematologic Impact of CKD
- Chronic anemia
 - erythropoietin deficiency
 - chronic blood loss (HD, GIB)
 - iron, folate deficiency
- Uremic thrombocytopathy
 - platelet dysfunction (normal count)
 - care with regional, axial anesthesia

Erythropoietin and CKD
- CKD-induced cardiac dysfunction
 - pro-inflammatory cytokines
 - anti-erythrocytic circulating factors
- Erythropoietin therapy
 - anti-inflammatory, anti-oxidative
 - decreased LVH, fibrosis, BNP
 - excess: CVA, MI, thrombosis, ESRD, death

Uremic Thrombocytopathy
- Acquired von Willebrand's Disease
 - vWF
 - VIII
 - platelets
 - Urea
 - endothelium

Desmopressin (DDAVP)
- 8-deamino D-arginine vasopressin
 - Derivative of arginine vasopressin (AVP)
 - vasodilator, long-acting
 - 0.3 µg/kg IV over 15-20 min (hypotension)
 - Improves platelet function for 1-12 hr
 - Releases vWF-VIII from endothelium
 - tachyphylaxis with repeat doses
 - not effective with ongoing pressor therapy

Cryoprecipitate
- Patients exposed to amines
 - NE, EPI, AVP
- Recent administration of DDAVP
- Contains VWF, Factor VIII
 - also fibrinogen, Factor XIII

Vitamin D Deficiency and CKD
- Vitamin D3 - cholecalciferol
 - 25-OH D < 30 ng/mL
 - Decreased intake of dairy products
 - phosphate restriction
 - Decreased sunlight exposure
 - Vitamin D loss with proteinuria
 - Vitamin D loss in dialysate

6. Anticipate
renal osteodystrophy

Vitamin D Deficiency and CKD
- Vitamin D1 - cholecalciferol
 - 25-OH D less active
 - 1,25-OH$_2$ D more active
 - I-alpha hydroxylase (kidney)
 - anti-inflammatory innate immunity
 - healthy bones & joints
Renal Bone Disease
- Vitamin D deficiency (20-80% of ESRD)
- Hypocalcemia (impaired GI absorption)
- Increased parathyroid hormone (PTH)
 - mobilization of calcium from bones
 - metastatic calcification, osteodystrophy
 - brittle bones and joints
 - cardiac fibrosis (increased risk of CVD)
- Careful positioning and pressure protection!

7. Anticipate the Impact of Dialysis
Renal replacement therapy (RRT)

Renal Replacement Therapy (RRT)
Diffusion
Convection
Dialysis
Ultrafiltration

Dialysis (diffusion)
- Diffusion along Concentration Gradient

Dialysis (diffusion)
- Diffusion along Concentration Gradient

Convection (ultrafiltration)
- Hydrostatic Pressure

Convection (ultrafiltration)
- Solvent Drag
- Volume Shift

Renal Replacement Therapy (RRT)
- Diffusion
- Convection
- Osmotic Shift
- Volume Shift

Renal Replacement Therapy (RRT)
- Intermittent Hemodialysis (IHD)
- Continuous RRT (CRRT)
- Peritoneal Dialysis (PD)
What Dialysis Does Well

Controls manifestations of acute uremia
- Pulmonary edema
- Hyperkalemia, acidosis
- Acute uremia:
 - encephalopathy
 - enteropathy
 - serositis
 - thromboctopathy

What Dialysis Does Poorly

Controls manifestations of chronic uremia
- Cardiovascular complications (SCD)
- Anemia
- Renal osteodystrophy
- Peripheral neuropathy
- Impaired resistance to sepsis
- Poor wound healing

Timing of Preoperative Dialysis

- Ideal: afternoon, the day before surgery!
- Adverse effects of dialysis:
 - AV shunt (low SVR)
 - hypovolemia, hypotension, SCD
 - electrolyte imbalance (K, Mg, Pi)
 - myocardial ischemia, arrhythmias
 - dysequilibrium syndrome
 - residual anticoagulation

Renal Drug Disposition

- Few drugs are totally renal dependent
 - aminoglycosides, digoxin
- Many drugs are partially renal dependent (decrease maintenance doses)
 - metformin, cimetidine, penicillin, milrinone
 - pantoconium, vecuronium, rocuronium
 - atropine, glycopyrrolate, neostigmine
- Some drugs have active metabolites
 - morphine, meperidine, vecuronium

Rocuronium

Robertson EN et al. Eur J Anaesthesiol 2005; 22: 4-10

- Elimination is independent of renal function
- Pharmacodynamic data are conflicting
 - no difference, prolonged action, variable
- Immediately inactivated by sugammadex
 - complex is excreted by kidneys

Morphine

- 80% antianalgesic
- 10% analgesic (40 x potency)

Drugs Cleared in the Blood

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>succinylcholine</td>
<td>PChE</td>
</tr>
<tr>
<td>esmolol</td>
<td>RBC esterase</td>
</tr>
<tr>
<td>cisatracurium</td>
<td>Hoffman</td>
</tr>
<tr>
<td>remifentanil</td>
<td>esterase</td>
</tr>
<tr>
<td>clevidipine</td>
<td>esterase</td>
</tr>
</tbody>
</table>

9. Anticipate

nausea, vomiting, aspiration and perioperative GI bleeding
Gastrointestinal Disease and CKD

Thomas R et al. Ren Fail 2012, Oct 18 (ePub)

- Delayed gastric emptying (aspiration risk)
 - autonomic neuropathy
- GI Bleeding (increased risk and mortality):
 - peptic ulcer disease (25%)
 - erosive esophagitis, gastritis, duodenitis
 - ischemic colitis (IHD)
 - thrombocytopenia (normal count)
- Risk increases with stage of CKD

Postop Complications

- Acute kidney injury (AKI on CKD)
- Myocardial ischemia, arrhythmias
- Postoperative pneumonia
- Inability to tolerate hemodialysis
- Poor wound healing and wound infection
- Prolonged ICU length of stay

The Bottom Line

CKD is a multisystem disease - and can be a silent killer!

Be careful out there!

Good Luck!!