Update on Thoracic Anesthesia

Glenn Gravlee, MD
University of Colorado School of Medicine

Objectives

• Understand controversies in fluid management for lung resections and how they apply to specific types of patients and resections.
• Be able to identify and discuss common problems in positioning double-lumen endobronchial tubes.
• Understand the anatomy and physiology of esophagectomy
• Explain anesthetic techniques for esophagectomy
• Understand pros and cons of different anesthetic techniques for one lung ventilation.
• Compare risks and benefits of paravertebral blocks versus thoracic epidural analgesia

Update on Thoracic Anesthesia

• Lung Isolation
 – Indications, techniques, hypoxemia
• Fluid Management
• Esophagectomy Considerations
• Analgesia: Paravertebral Block vs TEA
• Robotic Thoracotomy

Speaker Recommendation: Recent SCA Workshop

F. Indication for lung isolation
1. Absolute
 • a) Minimizing cross contamination due to:
 • (1) Blood
 • (2) Pus
 • (3) Protein
 • (4) Disruption of the bronchial tree with inadequate ventilation (bronchopleural fistula)
2. Relatively absolute:
 • a) Thoracic surgery, excluding:
 • (1) Purely elective, rare
 • (2) Surgeon able to operate using lung retraction, rare

Double Lumen Tube Modifiers

• Open thoracotomy (vs VATS)
 – Pulmonary retraction is plausible in some open thoracotomies – incision size an issue
• Difficult intubation: Consider bronchial blocker + SLT
• Pre-existing severe shunt/hypoxemia
 – Medical ICU patients defying Dx, not responding to Rx, on ventilator for advanced hypoxemia with severe infiltrates
 – Consider intermittent apnea with SLT
 – May need ICU ventilator in OR: TIVA

Difficult DLT Placement: Unexpected

• Follow ASA Algorithm to maintain gas exchange and place single-lumen ETT
• Now what? Several options:
 – One lung ventilation for case if feasible (our surgeons dislike)
 – Bronchial blocker (our surgeons dislike)
 – Use tube-changer to place DLT
Tube Changer for DLT

- Tube changer depth key: generally assume past carina in R mainstem: Hence will need FOB-guided reposition of bronchial lumen into L side if L sided DLT
- Often hangs up at larynx: DL may help even if you can’t see cords
- Consider 2 tube changers (11 F rather than 14), one in each lumen of DLT, then DL with video laryngoscope during tube advancement through larynx

DLT vs Bronchial Blocker

DLT
- Ease of suction
- Rapid Lung collapse
- Positioning usually easy
- Greater airway rupture incidence (still low)
- Lesser chance of migration once positioned

Blocker
- Difficult airway advantage
- Slow Lung collapse
- Marginal suction capability
- Reduced chance of bronchial rupture
- Facilitates post-op ventilation
- Positioning can be a challenge
- Selective lobar blockade possible

Bronchial Blocker Options

<table>
<thead>
<tr>
<th>Arndt Blocker</th>
<th>Cohen Blocker</th>
<th>Fuji Flexible</th>
<th>EZ Blocker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>M</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>Balloon shape</td>
<td>Spherical or elliptical</td>
<td>Spherical</td>
<td>Spherical</td>
</tr>
<tr>
<td>Resistance moment</td>
<td>None</td>
<td>Some, preplaced to deflect the tip</td>
<td>None</td>
</tr>
<tr>
<td>Inside diameter recommended for central use</td>
<td>8F (4.3 SLT), 9F (5.6 SLT)</td>
<td>9F (8.0 SLT)</td>
<td>9F (8.0 SLT)</td>
</tr>
</tbody>
</table>

Bronchial Blocker Positioning

Right
- Proximal cuff ~ 1 cm distal to carina
- But still CAN be over RUL orifice

Left
- Proximal cuff 1-2 cm distal to carina
- Harder to place, easier to stabilize

Campos JH, SCA Thoracic Workshop Syllabus 2012
Generally OK, but presumes knee-jerk transfer of lung protective ventilation from ARDS setting to OLV setting

Concerns:
1. Permissive hypercapnia in the context of RV afterload and it may increase Q to nondependent lung
2. PEEP in setting of emphysema/ventilated dependent lung. FRC may increase Q to nondependent lung and auto-PEEP to ventilated lung. Lohser J, Anes Clinics 2012;30:683

Higher L-R ETCO2 Difference during 2LV in lateral position predicts higher PaO2 during OLV

• Makes sense:
 • Higher ETCO2 in dep lung from higher blood flow
 • Another predictor of higher PaO2: L lung is collapsed and “up”

Higher SpO2 > 90% seems reasonable

• Modifiers: Surgical field (risk vs benefit of re-expansion of lung), Pt baseline SpO2, coronary artery disease /ECG ischemia
• Zebra: CONSIDER low CO as a contributor to OLV hypoxemia (via low SVO2): In which case volume bolus or inotrope infusion could help

OLV Hypoxemia: Respect the DLT

• Cases of neurologic injury and cardiac arrest do occur — not a time for timidity
• Call for help early
• Engage the surgeon early
• Malposition of the tube is the most common malady, but stat simultaneous application of two maneuvers will “save” you
 1. RE-EXPAND OF COLLAPSED LUNG
 2. DEFLATION OF BRONCHIAL CUFF
• IF SPO2 < 80, DO BOTH BEFORE REACHING FOR THE BRONCHOSCOPE

Findings: SpO2 < 90% in 24%
- Mean lowest SpO2 79% and 83% (2 groups)
- Duration means 5-10 min

Mean highest ETCO2 54+5 mmHg

Mean highest PIP 45+6

Anesthesia Information Systems:
Blessing vs Curse

Ehrenfeld JM, JCTVA 2010;24:598-601

- One lung anesthesia database reviewed for 196 Pts
- Findings: SpO2 < 90% in 24%
 - Mean lowest SpO2 79% and 83% (2 groups)
 - Duration means 5-10 min
- Mean highest ETCO2 54+5 mmHg
- PIP > 35 cm H2O in 34%
 - Mean highest PIP 45+6

How much hypoxemia should you tolerate during OLV?

No definitive answer, but SpO2 > 90% seems reasonable

Would head down position with venous congestion explain?
Hypoxemia and OLV: Primary Interventions

- Hypoxemia during Thoracotomy
 - Increase FiO₂
 - Initial respiratory support

- Critical incidents
 - Secure airway
 - Lung isolation
 - Control ventilation
 - Immediate reposition of operating lung

Lohser J, Anes Clinics 2012;30:683

Hypoxemia and OLV: More advanced interventions

- Oligophasic hypoxia
- Consider advanced interventions

Lohser J, Anes Clinics 2012;30:683

Subtleties of OLV Management

- Pre-existing lung disease: More hyperinflation (emphysema, increased FRC, breath stacking) vs more hypo-inflation (restrictive/infiltrative Dz) – the latter responds well to recruitment maneuvers/PEEP to ventilated lung
- Surgeon capacity to help with hypoxemia varies with exposure and procedure:
 - Distortion or pressure to “crimp” a lobar PA, early exposure and clamping of PA in lobectomy or pneumonectomy

Remember that any insufflation technique requires partial re-inflation of collapsed lung to work

Fig. 3. Schematic representation of the Intermittent Positive Airway Pressure technique. A bloodless filter is attached to the 15 mm connector of the non-ventilated DLT lumen. Tubing with an oxygen flow of 2 L/min is connected to the sampling port of the filter. The open port of the filter is occluded for 2 seconds and open for 8 seconds. See text for details. (Reproduced from Russell VJ. Intermittent positive airway pressure to manage hypoxia during one-lung anesthesia. Anesthesiology 2009;110:433; with permission.)

Advanced Hypoxemia Management

Lohser J, Anes Clinics 2012;30:683

Update on Thoracic Anesthesia

- Lung Isolation
- Fluid Management
 - Philosophical shift, goal-directed Rx, Postpneumonectomy Pulmonary Edema, hypotension management
- Esophagectomy Considerations
- Analgesia: Paravertebral Block vs TEA
- Robotic Thoracotomy
Clinical Result

- Practitioners are afraid to give fluids during major abdominal and thoracic procedures
- Previous anathema of masking hypovolemia or CV depression with alpha-agonists is now embraced
- Several hours of phenylephrine “pops” or infusion without consideration of adverse effects
 - Variation on theme: vasopressin

Granted

- Too much fluid was given in past: The direction of change has been good
- But has pendulum swung too far?
- Example: 8 hour Whipple with epidural – after 4 ml 0.25% bupiv, BP in 60s. Total crystalloid 2.0 L, 1 U RBCs, 1000 mL 5% albumin, Hgb 8, EBL 1500.
 - Surgeon happy with fluid management, tendency to micromanage
 - Surgeon notes that bladder is empty, advises fluid
 - 3 L of plasmalyte in 15 min, Pt responds well

Pulmonary Surgery: Fluids

Higher risk patients likely to reside at top of this pyramid, i.e., narrower span:
- Bilobectomy and Pneumonectomy
- Advanced COPD
- Known CVD
- DM, Renal impairment

Searl CP, Anes Clinics 2012;30:641
• Possible pathogenesis of post-pneumonectomy pulm edema involving one-lung ventilation

• Other factors potentially contributing:
 – Fluids, direct surgical trauma, altered lymphatic drainage (even contralateral to resection)

Postpneumonectomy Pulm Edema and Intra-op Fluids

• Statistical relationship to Positive Fluid Balance is anecdotal at best, no randomized trials

• Much is made of 1 retrospective study of 10 cases of which 4 suggested a possible fluid mgmt connection (Zeldin RA, JTCVS 1984;87:359)

• Subsequent studies: No such connection (Turnage WS Chest 1993;103:1646; Waller DA ATS 1993;55:140)

• One report links intraop fluids > 2 L with PPPE (Parquin F Eur J CTS 1996;10:1996)

High-risk Pts undergoing Major Pulmonary Resections (Bilobectomy, Pneumonectomy, maybe Decort)

Best fluid mgmt? Consider Goal-directed even in absence of controlled studies

• Invasive or noninvasive CO has the most support

• PAC? Out of favor, but consider

• Esophageal Doppler, TEE: Reasonable alternatives

• Goal? CI>3, DO2>600, MAP>65 (70?) using fluids, RBCs, inotropes

• Focusing 1° on SBP/MAP using vasoconstrictors lacks evidence-based support

Considerations re Phenylephrine

• What if Pt is indeed hypovolemic?

• What if Pt is too deep?

• What if Pt has reduced myocardial contractility? LV afterload implications

• What if Pt has increased pulmonary vascular resistance? RV afterload implications

• What is the minimal acceptable BP for any given Pt?

If we are to embrace restrictive fluid strategy, we should do it strategically

• Tenuous science gleaned from low-risk colon resection and pneumonectomy Pts is being extrapolated into one-size fits all for open and closed laparotomies and all thoracotomies including VATS wedge resections in ASA I Pts

• We need to consider adverse consequences of hypovolemia/ low cardiac output/high SVR states
 – Likely OK in ASA I-II Pts for short periods
 – Likely not OK in ASA II-IV Pts for multiple hours

How do we assess when fluid restriction is not OK?

Monitoring of Circulatory system “happiness”

• CVP? “Random number generator”

• PA catheter with CI/CO? Passe – in need of a “comeback” award?

• TEE for preload/SV assessment? Selectively OK

• Pulse or Pleth volume/contour? Tends to fail when “stressed”

• Doppler cardiac output? Promising, but would love to have preload assessment as well
A Systematic Review and Meta-Analysis on the Use of Preemptive Hemodynamic Intervention to Improve Postoperative Outcomes in Moderate and High-Risk Surgical Patients

Mark A. Hamilton, FRCP, FRCA, Maurizio Cocconi, MD, and Andrew Rhodes, FRCP, FRCA

- 29 studies, 2420 Pts, most interventions were fluids/inotropes (not pressors), goals were a mix dominated by CI and DO₂
- Types of surgery not given, no known trials in thoracotomy Pts (Abdominal>Total hip>>others)
- Mortality OR 0.48 (0.33-0.70) unless isolated to higher Jadad (quality) scores, then 0.62 (0.39-1.01=NS). But Cx reduced either way (OR 0.43-0.44, CI 0.28-0.59)

Can Changes in Arterial Pressure be Used to Detect Changes in Cardiac Output during Volume Expansion in the Perioperative Period?

Karnick Le Manach, M.D., Ph.D., Christoph K. Hoyer, M.D., Ph.D.,

- Anesthesiology 2012;117:1165-74
- Looked at 500-mL colloid bolus effects on various intra-arterial pressure permutations in 402 surgical Pts
- Measured CO with one of four (I) methods

Le Manach Y, Anes 2012;117:1165

- Decrease in Resp PPV >3% detects an increase in CO of >15% with Sens 90%, Spec 77%, “gray zone” of only 14% of population (Ooh BABY, how great is that?)
- No mention of vent settings, CO measurement reliability/variability

More benefit ascribed to PA Cath, CI/DO₂, and supranormal targets

Hamilton MA Anesth Analg 2011;112:1392

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. at risk</th>
<th>No. at outcome</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched</td>
<td>383</td>
<td>315</td>
<td>0.48 (0.33-0.70)</td>
</tr>
<tr>
<td>Non-matched</td>
<td>199</td>
<td>141</td>
<td>0.62 (0.39-1.01)</td>
</tr>
<tr>
<td>Controls</td>
<td>2200</td>
<td>1616</td>
<td>0.67 (0.50-0.92)</td>
</tr>
<tr>
<td>Triggers</td>
<td>9</td>
<td>6</td>
<td>0.44 (0.19-1.00)</td>
</tr>
<tr>
<td>Acceptance</td>
<td>3</td>
<td>2</td>
<td>0.44 (0.19-1.00)</td>
</tr>
</tbody>
</table>

Table 2. Subgroup Analysis for Mortality

Le Manach Y, Anes 2012;117:1165

Hypotension: Are thigh-high SCDs an answer?
Systemic hemodynamic effects of sequential pneumatic compression of the lower limbs: a prospective study in healthy volunteers

Soffia Fasoli MD (Professor), Michele Zaza MB (Resident).

- Supine healthy awake volunteers
- Compression from ankles to upper thigh
- Compression increased MAP and SVRI with slight decreases in HR and CI (bioimpedance method)
- A consideration to compensate for reverse T-berg often seen in thoracotomies (and other procedures)

Update on Thoracic Anesthesia

- Lung Isolation
- Fluid Management
- **Esophagectomy Considerations**
 - Analgesia: Paravertebral Block vs TEA
 - Robotic Thoracotomy

Speaking of High-risk Procedures: Esophagectomy

- Depending on stage, 5-year survival 3-49%
- Operative mortality 8-9% (higher at lower volume centers)
- Morbidities: PULMONARY, Anastomotic leaks (leading to PULMONARY)
- Anastomotic viability aided by epidural/sympathectomy, but compromised by vasoconstrictor Rx

 — Jaeger JM, Anes Clin 2012;30:731-47

Esophagec: Resp Cx Multifactorial: But few have benefit of prospective trials

- Anesthetic
 - Absence of Epidural
 - XS Fluids (> 4 L?): Maybe targeted CD/SV helps
 - Transfusion
 - OLV duration
 - Delayed extubation
 - High Tidal Volumes: Maybe (inflammation evidence)
 - DLT Cx/hypoxemia

 — McKevith JM, Curr Opin Anaesth 2010;23:34-40

- Surgical/Oncologic
 - Blood Loss
 - Procedure duration
 - Recurrent Larm Injury (Aspiration: may be higher with min invasive)
 - Anastomotic Leaks
 - Induction chemo/rad pre-op (increases colonization of Resp tree)

Impact of a multidisciplinary standardized clinical pathway on perioperative outcomes in patients with esophageal cancer

- 2 institutions, not randomized, mix of simultaneous and historical controls, large variation in group sizes (12,12,12,74)
- Slightly different protocols, main focus post-op
- Key elements: same-day extubation, sits up DOS, epidural to Day 5, sit day 1, walk day 2, jejunal feedings day 2

Esophagectomies: McKevith JM, Curr Opin Anaesth 2010;23:34-40
Impact of a multidisciplinary standardized clinical pathway on perioperative outcomes in patients with oesophageal cancer

K. B. Posner1, S. B. Markert1, C. R. Bricker1, V. Sonaw1, S. Singh1 and D. F. Love1

Department of Thoracic-Surgical Oncology, University of Virginia, Charlottesville, Virginia, USA

To whom correspondence should be addressed: Dr. K. B. Posner, Department of Thoracic-Surgical Oncology, University of Virginia, Charlottesville, VA 22908, USA

Key elements: TEA intra- and post-op 5-6 d, “conservative” fluids (but median 650 mL/hr intra-op), vasopressors prn for SBP w/in 20%, U/O goal 0.3-0.5 mL/kg/hr

- Largest group also had LIDCO goal-directed fluid Rx for first 6 hrs post-op
- Principal outcome improvements other than protocol per se: Decreased ICU LOS (1 vs 3 D), decreased hospital LOS (mean 13-17 vs 7-8)

Association of No Epidural Analgesia with Postoperative Morbidity and Mortality after Transthoracic Esophageal Cancer Resection

- Peculiar epidural vs non-epidural groupings inadequately explained
- Yet: biggest risk factor for pneumonia was absence of epidural (41% vs 25%, N=185 total)
- Absence of epidural almost doubled reintubation (15% vs 29%) and ICU LOS (2.8 vs 5.8 D)

 observational Esophagectomy Multimodal Approach

- Neal JM et al., Reg Anes Pain Med 2003;28:328

- Key elements: TEA intra- and post-op 5-6 d, “conservative” fluids (but median 650 mL/hr intra-op), vasopressors prn for SBP w/in 20%, U/O goal 0.3-0.5 mL/kg/hr

- N=56, 0 mortality, all extubated in OR, CV Cx 9% (arrhythmia #1), Resp Cx 15% (Pneumonia #1)

- Vasopressor frequency/dosing not given

Esophagectomy anastomotic blood flow (laser) and epidural

- Epidural decreased MAP, SVR, and CI
- Epid bolus: No change in HR, but epi (dose?) increased HR and CI to above baseline (NS)
- Al-Rawi OY, Anesth Analg 2008;106:884

Update on Thoracic Anesthesia

- Lung Isolation
- Fluid Management
- Esophagectomy Considerations
- Analgesia: Paravertebral Block vs TEA
- Robotic Thoracotomy

Post-thoracotomy Analgesia Questions

Fact: Thoracic Epidural Analgesia = Gold Std

Question: Are Paravertebral or Intercostal Blocks underutilized? Subqueries:
- Is PVB as effective as TEA?
- Does PVB technique matter?
- Does PVB offer greater safety than TEA?
- Does VATS merit regional analgesia?
- Are Pt expectations about chronic post-thoracotomy pain realistic?
Distressing Aspects of Post-thoracotomy Pain

- Multimodal therapy: Added benefit unproven
- IV opioid PCA: Helps a little, no better than RN-controlled IV opioids in ICU/stepdown setting
- “Complete” post-op analgesia uncommon
- Chronic pain is common (50% plus)
 - Pre-emptive analgesia benefit? Unproven to date

Paravertebral Space Anatomy

Source: Ultrasound for Regional Anesthesia, Toronto Western Hosp

Paravertebral Block Techniques

- Traditional “blind”
- Nerve stimulator-guided
- Ultrasound guided
- Direct vision (surgeon placed)

Prospective comparisons lacking, greatest number of reports use direct vision

PVB Complications vs TEA

Daly DJ, Curr Opin Anes 2009; 22:38-43

- Less hypotension: Decidedly
- Lower hematoma risk? Probably, but ASRA guidelines re anticoag are the same
- Less itching for sure: Virtually nil with PVB
- Less urinary retention? Probably, but most often moot
- LOS: ND

Respiratory Cx and Function: PVB vs TEA

Davies RG; BJA 2006; 96:418-26

<table>
<thead>
<tr>
<th>Outcome</th>
<th>PVB</th>
<th>TEA</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoventilation</td>
<td>56/0.005</td>
<td>56/0.005</td>
<td>56/0.005</td>
<td>56/0.005</td>
<td>56/0.005</td>
</tr>
</tbody>
</table>

Table 1 Summary of findings from a systematic review and meta-analysis of trials comparing paravertebral block with epidural analgesia on side-effects associated with analgesic therapy.
Rare Prospective 3-group comparison of TEA (LA vs LA+O) and PVB (LA)

Grider JS, JCTVA 2012;26:83

Best Analgesia: TEA LA+O

<table>
<thead>
<tr>
<th>Spirometry: TEA LA=O by a hair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. VATS Cases, Inflation Spirometry Data, and Intravenous PCA Inefficiency from All Collection Points.</td>
</tr>
<tr>
<td>FE1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
</tr>
</tbody>
</table>

Higher dose calculates to 0.5% @ 8 mL/hr or 0.25% @ 15 mL/hr

Kotze A, BJA 2009;103:626

Update on Thoracic Anesthesia

- Lung Isolation
- Fluid Management
- Esophagectomy Considerations
- Analgesia: Paravertebral Block vs TEA
- **Robotic Thoracotomy**

Robotic-Assisted Thoracotomy

Steenwyck B, Anes Clinic 2012;30:699

Robotic Assisted Thoracic Surgery (RATS)

Offers some advantages to surgeon over VATS
- Principally more instrument control, degrees of freedom, rotational capability (360°)
- Learning curve issues
- Positioning quirks depending upon specific procedure: Slightly more intense “field avoidance” issues than VATS