Little Things Matter: Mechanical Ventilation for the Anesthetized Infant

Jeffrey M. Feldman, MD, MSE
Division Chief, General Anesthesia
Dept. of Anesthesiology and Critical Care Medicine
Children’s Hospital of Philadelphia
Professor of Clinical Anesthesia
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA

Disclosure
- Covidien/Medtronic
- Draeger Medical

The Children’s Hospital of Philadelphia

SCT

Ventilation during Surgery
- Unique situation compared with the ICU
- Dynamic and Significant Physiologic Changes
 - Surgical trauma and manipulation
 - Physiologic consequences of anesthetic drugs
- Hemodynamic
 - Blood volume
 - Vascular tone
 - Inotropy and Chronotropy
- Pulmonary compliance

Anesthesia for the Neonate
“Just keep the baby warm, hydrated and oxygenated”
Devil is in the Details

- Temperature: Hypothermia is not uncommon but temperature is easy to monitor and manage
- Room temperature
- Convection warmer
- Fluid warmer
- Respiratory gas humidity and heat
- Hydration
 - IV Access: must be adequate
 - Transfusion therapy: easy to overdo it
- Oxygenation & Ventilation

Scope of Discussion

- Physiologic Considerations
- Breathing Circuit considerations
- Airway
- Managing Dead Space
- Ventilator Technology
- Anesthesia ventilator requirements
- Anesthesia vs ICU Ventilator
- Ventilation Mode Selection
- Putting it all together: Monitoring!
 - Compliance
 - Oxygenation
 - CO2 Elimination

Physiologic Considerations

- Lung Maturity
- Transitional Circulation
- Bronchopulmonary Dysplasia

Lung Maturity

- Gestational Age:
 - < 26 wks: Formation of gas exchanging units
 - 26-36 wks: Refinement of gas exchange units
- What is the surface area for gas exchange?
- Are conditions sufficient to maximize gas exchange from the available functioning lung units?
- Ventilator Settings, Vent Mode, and PEEP
- V/Q relationships
- Pulmonary blood flow relies upon hemodynamic stability
- Nitric Oxide
- Surfactant administration
- Mitigating Factor
- Antenatal steroid therapy

Transitional Circulation

- Management
 - Avoided orasis
 - Decreased V/Q
 - Constriction
 - Hypoperfusion
 - Redistribution
 - Inhaled NO
 - Increased Fetal Dopamine
 - Monitoring Post-Ductal SpO2

The Injured Infant Lung

- Bronchopulmonary Dysplasia
- Old BPD
 - Injury and disordered repair of lung tissues
 - Permanent respiratory dysfunction
- New BPD
 - Less severe form of the disease
 - Results from less injurious mechanical ventilation
 - Improved further with Surfactant and Steroid therapy
 - Fewer alveoli for gas exchange
- Reduced Pulmonary compliance and Oxygen requirement
Evaluating the Infant
- Gestational Age
- Antenatal steroids and surfactant for immediate surgery (Partnership with NICU is key)
- Oxygen dependence
- Preoperative Ventilator settings and lung compliance
- Gas exchange information - PaO2 and PaCO2

Basic Principles
- Optimal Gas Exchange
 - Maximum PaO2 with minimum FiO2
 - Desired tidal volume with least pressure
 - Physiologic PaCO2
- Accurate and consistent volume delivery
- Minimize Dead Space
- Humidification

Topics to be Discussed
- Equipment
 - Endotracheal tube selection and patency
 - Apparatus Dead Space
 - Humidification
 - Available anesthesiology Ventilator
 - Breathing circuit compliance
- Do you need an ICU ventilator?
- Selection of Ventilation Mode
 - Pressure v Volume Control
- Monitoring considerations

Airway Considerations
- Cuffed v Uncuffed
 - Cuffed are acceptable/desirable
 - Proper size
 - Manage cuff pressure - Fixed leak pressure may not be acceptable
- Micro-Cuff Technology
 - Low dead space adapter
 - Seals at the trachea not the cricoid cartilage
 - Cuff profile - seals at lower pressure than traditional cuff
 - Intubation mark and Distal cuff location - less risk of endobronchial intubation
 - Expensive

Dead Space
- Definition: Bidirectional flow without gas exchange
- 3 A's of Dead Space
 - Alveolar - V/Q relationships
 - Anatomic
 - Apparatus
- Wasted or ineffective ventilation
 - X: Exhaled CO2 per breath
 - Z: Anatomic + Apparatus
 - Y: Alveolar

Dead Space & Gas Exchange
- Impact on Gas Exchange

TOTAL DEAD SPACE = Apparatus + Anatomic + Alveolar

Dead Space and VILI

- Increase RR can normalize CO2
- Etiology of Ventilator Induced Lung Injury
 - Barotrauma - ?
 - Volutrauma - Overdistention injury
 - Atelectotrauma - Repetitive collapse and recruitment of alveoli
- Current Approach - Peep and minimize tidal volume

VILI & Power

- Total Power influences risk of lung injury
- Healthy piglets 21 +/- 2 Kg
- 5 groups: VT 38 mls/kg x 54 Hrs
 - RR 3, 6, 9, 12, 15 bpm
 - Power J/min
 - Pressure - Volume Curve
 - Threshold for injury 12J/min
- Increased dead space will increase the power delivered to the lung

Minimizing Dead Space Impact

- Anatomic - Not much option
- Alveolar - maximize alveolar ventilation, maintain hemodynamics
- Apparatus selection
 - ETT
 - Circuit devices - HME, Gas sampling, extensions

Dead Space and Gas Exchange

- Dead space typically assumed to impact CO2 elimination
- What is the impact on oxygenation?
- Alveolar Gas Equation - FiO2 Dependent, as CO2 rises, PaO2 is impacted
- Efficiency of ventilation - ? evidence
- Arterial CO2 (PaCO2) or surrogates (ETCO2) are primarily used to assess the impact of dead space

Airway Apparatus

- Endotracheal Tube
 - Internal dead space
- Connectors
 - Elbow
 - Flexible
- HMEs/Filter
- What are the best choices?
 - VT is 6-8 mls/kg
 - Common items can significantly increase Vd/Vt
 - Each device adds dead space!

Humidification

- Rationale
 - Decrease heat loss
 - Protect mucosa
 - Prevent drying of secretions
- Passive Humidification (HME)/Filter
 - Simple:
- Active

Feldman, Jeffrey, MD, MSE Little Things Matter: Mechanical Ventilation for the Anesthetized Infant
Humidity Targets

- Physiologic

<table>
<thead>
<tr>
<th>Location</th>
<th>Approx Temp C</th>
<th>Humidity mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>Larynx</td>
<td>31-33</td>
<td>26-32</td>
</tr>
<tr>
<td>Trachea</td>
<td>34</td>
<td>34-38</td>
</tr>
<tr>
<td>Bronchi</td>
<td>37</td>
<td>44</td>
</tr>
</tbody>
</table>

- Recommended
 - 33-44 mg H2O/L @ 34-41 deg C
 - Minimum of 30 mg H2O/L for HMEs
 - Increased temp risks thermal injury and overhydration

Williams R. CCM. 1996;24:1920.

HMEs

- Dead Space Implications
 - Minimum tidal volume a guide
 - Gas sampling important?
 - None: 0.2 ml/min volume
 - Present: 0.36 ml/min volume
 - Are they effective humidifiers?

HME Choices

<table>
<thead>
<tr>
<th>HME</th>
<th>Humidity (mg/L) @ mls</th>
<th>Dead Space mls</th>
<th>Sampling?</th>
<th>Vol Range mls</th>
<th>Resistance (cmH2O @ L/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua N</td>
<td>30 @ 25</td>
<td>2</td>
<td>No</td>
<td>10-50</td>
<td>1.8 @ 15</td>
</tr>
<tr>
<td>Humidstar 2</td>
<td>37.6 @ 50</td>
<td>2</td>
<td>No</td>
<td>10-50</td>
<td>1.1 @ 10</td>
</tr>
<tr>
<td>Twinstar 8</td>
<td>37.9 @ 50</td>
<td>8</td>
<td>Yes</td>
<td>25-200</td>
<td>1.4 @ 10</td>
</tr>
<tr>
<td>Gibeck Pedi</td>
<td>30 @ 100</td>
<td>13</td>
<td>Yes</td>
<td>50-250</td>
<td>1.6 @ 20</td>
</tr>
<tr>
<td>DAR Neo</td>
<td>30 @ 50</td>
<td>10</td>
<td>Yes</td>
<td>30-100</td>
<td>0.6 @ 5</td>
</tr>
<tr>
<td>DAR Inf</td>
<td>32 @ 250</td>
<td>31</td>
<td>Yes</td>
<td>75-300</td>
<td>1.6 @ 20</td>
</tr>
</tbody>
</table>

- Which HME you select matters
 - Dead space
 - Presence of a gas sampling adapter

HMEs - Temperature, WOB

- Temperature
 - Passive humidifiers have increased latency
 - Temperature similar
- Work of Breathing
 - Increased resistance
 - Important during spontaneous/unsupported ventilation

Do you need Gas Sampling?

- Capnography is a monitoring standard
 - Critical to be able to assess ETI integrity
- Sidestream adapter
 - Increases dead space - HME or alone
 - Alone - XX mls
 - Offers anesthetic agent monitoring
- Mainstream Capnography is an alternative
 - Often requires another monitor
 - No Agent Analyzer
- Philips Infant/Neonate: < 1 ml
- Draeger CO2 cuvette: < 5 mls
- What about humidity?
Active Humidifiers

- Highly Effective - Heat and Humidity
- Can exceed physiologic humidity
- Adds complexity
 - More connections
 - Heated Circuit - reduce rainout, maintain humidification
 - Infectious potential
 - False Alarms
 - Impact on Circuit Compliance
- Use low compliance circuit
- Pediatric heated circuit
 - Empty Reservoir: 1.5 mls/cmH2O
 - Full reservoir: 1.6 mls/cmH2O

Active Humidifier and Compliance

- Increases circuit compliance
- No humidifier
- Empty Humidifier
- Full Humidifier
- Minimize by filling reservoir
- Influences choice of anesthesia machine and ventilation mode
 - Need Compliance compensation
 - Test in the configuration you will use
 - If not then Pressure mode

Passive v Active Humidification

- Cochrane Review 2010
 - Kelly et al. Cochrane Review, 2010
 - 33 Trials - 30 adult, 3 pediatric
 - Minimal difference between active and passive
 - Passive: Reduced Cost and Risk of Pneumonia, Increased Min Vent and paCO2, Increased airway occlusion?
 - Active: Incr pneumonia risk
 - More research needed especially pediatric patients

Passive v Active Humidification

- Active v Passive for 18 hours
 - Schiffman, CCM 1997;25:1755
 - 6 Passive, 6 Active, 6 Passive
 - 40 infants and neonate
 - Active: 33.8 +/- 2.9 mg/L
 - Passive: 34.0 +/- 2.6mg/L
 - No difference in complications – Temp, CO2, Airway occlusion

Humidification recommendations

- Active Humidifier + Mainstream Adapter
 - Least added dead space
 - Complexity
 - No agent monitoring
- Active Humidifier + Sidestream Adapter
 - Dead space increases (4-5 mls)
 - Agent monitoring possible
- Passive Humidifier w/ Sampling Adapter
 - Maximum dead space impact (8 mls)
 - Match size of device to expected tidal volume
 - Use within volume specifications of the device
 - Avoid adding other airway devices
Anesthesia v ICU Ventilator?

- **The Key Difference: - Anesthetic Agent**
- Isolated patient circuit - Separate patient gas from drive gas
- Inspiratory volume limited to ventilator capacity
- Rate of change in gas concentrations related to FGF
- Circle system to support rebreathing of exhaled anesthetic vapor
- CO2 absorbent
- Scavenging system to prevent room contamination
- MANUAL Ventilation is easy

- **ICU Ventilator**
 - Drive gas is patient supply
 - "Unlimited" volume/pressure for ventilation mode
 - Most sophisticated ventilation modes
 - Monitoring advantages
 - Flow sensor mounted on the airway

Anesthesia Ventilator?

- **Differences in capabilities of anesthesia ventilators**
- Compliance Compensation is ESSENTIAL to accurate volume delivery and monitoring

Breathing Circuit Compliance

- **Compliance**
- Gas compression
- Tubing expansion
- Reduces volume delivered to the airway
- Compliance Compensation - Set tidal volume delivered to the airway.

Compliance Compensation Enhances Monitoring

- **Accurate Volume Delivery to the Airway**
- Improved volume monitoring
- Self test requires intended configuration

Compliance Compensation Limits

- **Example**
 - Draeger Apollo
 - INFANT: max 135 mL (@ set Vt < 100 mL) or 5.4 mls/cmH2O at 25 cmH2O
 - CHILD: max 165 mL (@ set Vt < 200 mL)
 - ADULT: max 240 mL or 6 mls/cmH2O @ 40 cmH2O
 - Pressure limit will protect patient at normal circuit compliance

Compliance Compensation

- **Essential feature for small infants - supports volume targeted ventilation modes and improved volume monitoring**
- Present in most modern anesthesia ventilators
- Initial self test to measure circuit compliance is essential
- Self test must be done with intended configuration
- Implications for monitoring
 - Tidal volume
 - Spirometry from a remote flow sensor
Anesthesia Ventilator Technology

- Traditional
 - Bellows
 - Piston
- Blower (Draeger)
 - Mechanical pressure generator
 - Rapid change in patient gas concentrations
- Volume Reflector (Maquet)
 - Pneumatic pressure generator
 - Drive gas directly coupled to patient gas

ICU Ventilator

- Advantages
 - Unlimited drive gas
 - Drive gas and patient gas are the same
 - Modes of ventilation
 - Monitoring - airway flow sensor
- Airway flow sensor is a major advantage
 - Direct measurement of inspired and expired volume
 - Ability to control volume delivery directly
 - Direct measurement of spirometry
 - Flow Sensor adds dead space!
 - Draeger Flow Sensor - 0.8 mls
 - Draeger CO2 sensor - 0.5 mls

Spec Comparison

<table>
<thead>
<tr>
<th>Device</th>
<th>Type</th>
<th>Pmax</th>
<th>RR Max</th>
<th>PEEP</th>
<th>Vt min</th>
<th>Compl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babylog P-ICU</td>
<td>80</td>
<td>150</td>
<td>25</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aisys/Avance P-Bellows</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>A7 P-Bellows</td>
<td>80</td>
<td>100</td>
<td>50</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Flow-i P-Reflectr</td>
<td>70</td>
<td>100</td>
<td>20</td>
<td>5-20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Apollo M-Piston</td>
<td>80</td>
<td>100</td>
<td>35</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Perseus M-Blower</td>
<td>70</td>
<td>100</td>
<td>20</td>
<td>5-20</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

P - Pneumatic
M - Mechanical

Ventilator Recommendations

- Anesthesia Ventilator
 - Compliance compensation essential
 - Volume mode
 - Recruitment
 - Anesthetic vapor delivery
 - Monitoring
 - Familiarity
 - Plan for humidification and gas sampling to minimize dead space
- ICU Ventilator
 - Significant lung disease
 - Recruitment per exchange
 - Stable on ICU ventilator settings
 - Airway flow sensor is helpful especially in volume mode
 - Does allow for minimal dead space configuration
- What ventilation mode?

LPV & Anesthetized Patient

- Randomized Prospective Study
 - 400 Patients (200 per group) abdominal surgery
 - Traditional (10-12 mls/kg no PEEP, Recr) v LPV (6-8 mls/kg + PEEP/Recr)
 - 55 v 21 patients had one or more major pulm or extrapolmonary Cx within 7 days
- Complications: Pneumonia, resp failure, sepsis
- LOS 13 v 11 days

Lung Protective Ventilation

- Lung protective ventilation beneficial in adults
 - Volume target 7 mls/kg
 - Pressure Limit < 30 cmH2O
 - PEEP
 - Recruitment maneuver
 - Most impact in “at risk” patients
 - Limited data in pediatric surgical patients
Neonatology Experience

- Cochrane Review: VTV vs PLV in Neonates
 - Volume targeted lung protective ventilation reduced death and chronic lung disease vs Pressure Limited Ventilation
 (Ref: Wheeler et al., Cochrane Review, 2011)
- Neovent Study Group
 - Volumes 4-7 ml/kg typical
 - PEEP 4-6 cmH2O
 (Ref: van Kamm AH, J Pediatrics. 2010;157:767.)

Ventilation Modes

- Controlled Modes
 - VCV: Volume Controlled Ventilation
 - PCV: Pressure Controlled Ventilation
 - PCV-VG, Autoflow, PRVT, PRVC: Volume Targeted Ventilation with constant Pressure
- Supported Modes
 - Pressure Support Ventilation
- Hybrid Modes
 - VCV/PS: Synchronized Volume Controlled Ventilation with Pressure Support
 - PCV/PS: Synchronized Pressure Controlled Ventilation with Pressure Support
 - Airway Pressure Release Ventilation (APRV)

Volume Controlled Ventilation

- VOLUME CONSTANT (Set)
- Flow = Set Volume ÷ Set i-Time
- PRESSURE VARIES with lung compliance
- Peak Pressure at end inspiration
- Ventilator does not know anything about lung compliance

Pressure Controlled Ventilation

- VOLUME VARIES with lung compliance
- Peak flow set, flow changes with lung compliance
- PRESSURE CONSTANT (Set)
- = Set Pressure for Set i-Time
- Max Inspiratory Pressure for entire inspiratory time
- Ventilator does not know anything about lung compliance

Picking the Ventilation Mode

"If I change to volume mode the PIP goes down"

- PIP results from flow through the resistance of the airways
- In the absence of flow
 - Pressure is reduced
- Pressure – volume relationship determined by lung compliance
- Best way to impact inspiratory pressure is to maximize lung compliance

Insp Pressure - PCV and VCV

Ref: Nunn's Respiratory Physiology
Volume Target - Constant Pressure

- **VOLUME CONSTANT (Set)**
 - Peak flow set, flow changes with lung compliance

- **PRESSURE CONSTANT**
 - Pressure derived

- Ventilator must learn lung compliance
- Measures relationship between volume and pressure
- Limited if frequent changes in lung compliance

Selecting the Ventilation Strategy

- **Volume is important**
 - Lung protective ventilation
 - Accurate tidal volumes must be reliably delivered
- **PEEP is important**
- **Excessive pressure should be avoided**
- **Pressure limit protective but not a strategy**
- **Square wave pressure may improve gas exchange in difficult to ventilate patients**

- New anesthesia ventilators offer volume guarantee and favorable pressure waveform
 - Accurate volume delivery
 - PHT, AutoFlow, PCV-VG, PRVC
- **Volume modes may be limited in the smallest patients**
 - 3 Kg or volumes less than 20 mls
 - Difficult to monitor precisely
 - PCV is reliable and will provide consistent tidal volume if lung compliance does not change

Which Ventilation Mode

- **VCV**
 - Guaranteed tidal volume is desirable
 - Leaks are unlikely - Cuffed tubes helpful
 - Pressure limit can protect against transient compliance changes eg. cough, surgical maneuver
 - If you reach the pressure limit the set volume is not delivered!
- **PCV**
 - Equipment without accurate volume delivery
 - Small tidal volumes at lower limit of specifications (< 3 Kg)
 - Pressure waveform promotes lung recruitment
 - Underlying lung pathology i.e., heterogeneous compliance (ARDS)
 - Leaks eg. uncuffed ET, bronchopleural fistula
 - Need to monitor tidal volume and respond to changes

Monitoring Considerations

Goals of Optimizing Ventilation

- **Oxygenation**
 - Maximum PaO2
 - Minimum FiO2
- **CO2 Elimination**
 - Acceptable PacCO2
- **Lung Compliance**
 - Desired volume
 - Minimum pressure
- Are bedside monitors helpful to meet these goals?

Pulse Oximetry

- **Convenient**
- **Measures saturation not partial pressure**
- Cannot detect moderate oxygenation changes when using supplemental oxygen
- Maintain low FiO2 - desirable & better monitoring
Pulse Oximetry
- Saturation vs inspired oxygen curves

Ref: Jones JG. JCMC 16:337, 2000

Capnography
- Convenient
- Well established
- Good monitor of airway integrity
- Limited utility for effectiveness of ventilation
- Unpredictable arterial to end-tidal CO2 gradient
- Small tidal volumes (decr Vd/Vt) will influence the gradient
- Arterial blood gas analysis is required when control of carbon dioxide is essential

Minimizing the ET to PaCO2 Gradient
- Key Factors
 - Tidal Volume
 - Dead space to tidal volume ratio
- GOAL: Best alveolar sample, minimal dilution by dead space gas
- Minimize dead space
- Insure adequate tidal volume and evaluate if tidal volume influences ETCO2.

ETCO2 and Exhaled Volume
- Study of Portable Capnometer in Spont Breathing, non-intubated patients
- Compared ETCO2 to PaCO2 after tidal volume and vital capacity maneuver
- Reduced PaCO2-ETCO2 gradient with vital capacity maneuver

Volumetric Capnography
- Volumetric Capnography
 - Volume measurement informs the quality of the signal
 - Blood gas data provides efficiency of ventilation
 - Requires mainstream CO2/flow sensor

Lung Recruitment and Monitoring
- Evaluation of lung recruitment in Obese patients using Pulse Oximetry and Volumetric Capnography
 (Tusman et al. A&A 2014;118:137)
 - Lung recruitment in 20 obese patients undergoing bariatric surgery
 - Used SpO2 - FiO2 relationship to find opening and closing pressures
 - Volumetric CO2 to determine dead space and CO2 exhaled per breath
 - Assessed value of monitored parameters for detecting closing pressure based upon lung compliance changes
Continuous Spirometry

- Pressure/volume and Flow/volume Loops
- Breath to breath lung compliance
- No information on gas exchange
- New ventilator technology facilitates measurement
- Influenced by Ventilator mode

PV Loops and Ventilator Mode

- VCV v PCV

Conclusions

- The approach to Ventilation and oxygenation in small infants is important especially immediately after delivery
- Equipment Considerations
 - Modern anesthesia ventilator with compliance test at circuit configuration intended for use
 - Minimize apparatus dead space especially HME
 - Consider active humidifier with a gas sampling port or mainstream capnography
- Ventilator Mode
 - VCV preferred but PCV acceptable with careful monitoring of exhaled volume
 - Manual ventilation is often required during surgery which favors an anesthesia ventilator
- Monitoring
 - Optimize the ventilator strategy for the individual patient