Background

- Pulmonary Hypertension (PH) is a progressive disorder characterized by inflammatory cell recruitment, including T & B lymphocytes, & altered pro-inflammatory cytokine profiles
- Pathogenesis involves vascular injury, cell death, & persistent inflammation, yet details of this process are still relatively unknown
- Vascular remodeling & inflammation of the right ventricle (RV) has been documented in the monocrotaline (MCT) rat models of PH
- Cardiac fibrosis causes increased stiffness & induces pathological signaling within cardiomyocytes, resulting in progressive cardiac failure; excessive extracellular matrix (ECM) impairs mechano-electric coupling of cardiomyocytes & increases risk of arrhythmias
- Myocardial inflammation & edema likely compromise cardiac function
- The **objective** of this study was to investigate the extent of fibrotic remodeling & excess fluid accumulation in hearts of rats with PH

Hypothesis

- We hypothesized that PH is associated with the accumulation of excess fluid in the ventricles & fibrosis of cardiac tissue that may contribute to diminished cardiac output and ventricular failure

Materials & Methods

- Rat heart sections & those derived from experimental PH induced by MCT injection, were stained & compared to controls to identify morphology & organization of cardiac vessels
- Antibodies:
 - Lycopersicon Lectin & ULEX Lectin labels rodent endothelial cells green (FITC)
 - α-Actinin antibody (1α) labels myocytes
 - mouse anti-Aquaporin-1 antibody (1α) labels lymphatic vessels & some blood vessels

Results

Figure 1. Significant RV and LV Edema in MCT-Induced PH. Expanded fluid compartment likely causes an increased O2 diffusion distance in the tissue

Figure 2. Upper Panels: Trichrome stain of Normoxic (Nx) and MCT-induced PH rats. Pervascular and transmural fibrosis is evident as collagen deposition (blue stain, yellow arrows) **Middle & Lower Panels:** Fluorescent stains of Normoxic and MCT-induced PH rats. Lectins outline the vessels. No co-localization between α-Actinin and ULEX Lectin. RV, Right Ventricle

Figure 3. Cardiac output at the left atrial pressure of 15 mm Hg. expressed as a percent of control, plotted as a function of extracellular fluid. W, wet weight; D, dry weight. As myocardial edema accumulates, the heart’s ability to maintain cardiac output at LAP of 15mm Hg diminishes (REF 2)

Discussion

Figure 4. Mechanisms that potentiate myocardial edema formation. Myocardial edema compromises cardiac function directly, or indirectly by altering the matrix. (Adapted from Ref 2)

Conclusions

- Fluid accumulation is evident in RV & LV MCT rats; may contribute to constrictive loss of cardiac function
- The degree of PH is directly proportional with the degree of RV fibrosis, so we speculate myocardial edema and fibrosis may contribute to ventricular dysfunction and ultimately RV failure
- **Future Studies:** We intend to further understand the impact of fibrosis and edema upon the lymphatic vessels of the heart in PH

References

Acknowledgements

- Department of Pulmonary & Critical Care Medicine, University of Colorado Denver Health Sciences, Aurora, Colorado 80045
- NIH HL-084823-02 & HL-014985-01 (K.R.S.)
- Webb-Waring Center, School of Medicine, University of Colorado Denver Health Sciences, Aurora, Colorado 80045
- Dr. John Repine, Director, Webb-Waring Center
- David H. Wagner, PhD, Assistant Director for Summer Program
- Regina Richards, MSW, BA, Director, Office of Diversity and Inclusion, School of Medicine, University of Colorado Denver Health Sciences
- North Foundation
- Colorado Leaders, Interns, Mentors in Business
- Colorado University Summer Program (CUSP) – NIH funded