DIETARY ISSUES IN DIABETES

Elizabeth J Mayer Davis, PhD
Department of Nutrition, Gillings School of Global Public Health
Department of Medicine, School of Medicine
University of North Carolina at Chapel Hill, USA

July 2013, Keystone Diabetes Symposium
Presenter Disclosure

• Funding
 • NIH, CDC, Abbott Diabetes Care, Eli Lilly, Sanofi
Outline

- Goals for medical nutrition therapy (MNT) for diabetes
- Evidence and current recommendations for dietary intake
- Effective behavior change strategies
MNT Goals

• Achieve and maintain:
 • Blood glucose levels in the normal range
 • Lipid/lipoprotein profile that reduces the risk for vascular disease
 • Blood pressure levels in the normal range

• Prevent, or slow rate of development of, chronic complications

• Address individual nutrition needs, taking into account personal and cultural preferences and willingness to change

• Maintain pleasure of eating by only limiting food choices when indicated by scientific evidence

ADA, Position Statement on Nutrition-2008
A NOTE ON WEIGHT LOSS

Focus on the Look AHEAD Trial
Weight Loss Recommendations

- Weight loss is recommended for all overweight or obese individuals who have or are at risk for diabetes

- For weight loss, low-CHO, low-fat calorie-restricted, or Mediterranean diets may be effective in the short-term (up to 2 years)

ADA, Standards of Medical Care in Diabetes-2012
Look AHEAD Trial

- Does sustained weight loss in people with diabetes reduce CVD risk?

- N=5143 randomized to:
 - Intensive Lifestyle Intervention (ILI)
 - Diet + physical activity to achieve 7% weight loss in 1 year
 - Calorie-controlled, < 30% energy fat, < 10% energy saturated, ≥ 15% energy protein, meal replacements; portion controlled
 - 175 minutes/week of physical activity (brisk walking intensity)
 OR
 - Diabetes Support and Education (DSE)
 - 3 group sessions/year

Look AHEAD Trial

• After 4 years of follow-up*:
 - ILI lost 5% of baseline body weight (vs. 1% DSE)
 - ILI had improved glycemic control, blood pressure, HDL-c and TG

• After up to 11 years of follow-up:
 - Early stop (Fall 2012) due to futility --
 - No evidence for reduced risk of CV events in ILI
 - However, ILI needed less intensive medication regimens

MNT FOR DIABETES

Goals and ADA Recommendations
An Unusual Challenge

• No “Diabetic Diet”

• Need to individualize
 • Role of nutrition in daily blood glucose management
 • Mostly involves total CHO (but not entirely)
 • Depends on diabetes medication regimen

 • Role of nutrition in long-term CVD risk management
 • Mostly involves dietary fats (but not entirely)
 • Depends on CVD risk profile

• May or may not include weight loss

• Need for day-to-day and lifelong adherence
Historical Perspective

<table>
<thead>
<tr>
<th>Year</th>
<th>CHO (%)</th>
<th>Protein (%)</th>
<th>Fat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 1921</td>
<td>Starvation Diets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1921</td>
<td>20</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>1950</td>
<td>40</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>1971</td>
<td>45</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>1986</td>
<td>≤60</td>
<td>12-20</td>
<td><30</td>
</tr>
<tr>
<td>1994</td>
<td>Based on assessment & treatment goals</td>
<td>10-20</td>
<td>Based on goals < 10% saturated fat</td>
</tr>
<tr>
<td>2002</td>
<td>Comment on GI</td>
<td>15-20 (usual)</td>
<td>Based on goals < 7% saturated fat Minimize trans fats</td>
</tr>
<tr>
<td>2008</td>
<td>Recommendation that low-CHO diets should not be used for management of diabetes removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Recommendation that use of GI & GL may provide additional benefit for glycemic control removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Recommendations under review / revision</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADA Systematic Review: 2012

- Focus on literature published since 2001 relating to macronutrients, eating patterns, and individual foods independent of weight loss
- Results of this review currently being used to update the most recent comprehensive nutrition position paper (2008 ADA Position Statement on Nutrition)

Wheeler et al. Diabetes Care 2012;35:434-45
Results: Low-CHO diets

- Low-CHO defined as < 40% of total kcal as CHO
- 11 clinical trials evaluated
 - 3 single-arm; 7 parallel randomized; 1 crossover
 - All in adults with type 2 diabetes
 - All weight-loss studies and most compared low-CHO to low-fat

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Range</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>10-55</td>
<td>Per study arm</td>
</tr>
<tr>
<td>Duration</td>
<td>14 days-1 yr</td>
<td>9/11 were ≥ 3 mos</td>
</tr>
<tr>
<td>Retention</td>
<td>58-100%</td>
<td>6/11 were ≥ 80%, including both 1-year studies 2/11 were 100%, both metabolic unit studies</td>
</tr>
<tr>
<td>Achieved CHO in intervention group</td>
<td>21-120 g/day</td>
<td>7/11 were very low CHO (21-70 g/day) → only 4/7 achieved very low CHO 4/11 were low CHO (30-<40% kcal as CHO)</td>
</tr>
</tbody>
</table>

Wheeler et al. *Diabetes Care* 2012;35:434-45
Results: Low-CHO diets

- Results:
 - Improvements in markers of glycemic control and insulin sensitivity
 - Improvements in HDL-c
 - Improvements in other lipoproteins, but not consistently better than control

<table>
<thead>
<tr>
<th>Amount CHO</th>
<th>Total # Studies</th>
<th>Improved Glycemic Control(^1,) (2)</th>
<th>Improved TG(^1)</th>
<th>Improved HDL-c(^1)</th>
<th>Improved LDL-c(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low CHO</td>
<td>21-70 g/day</td>
<td>7</td>
<td>4(*)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Low CHO</td>
<td>30-<40%</td>
<td>4</td>
<td>3(†)</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^1\)Number of studies reporting significant effect (p < 0.05) relative to baseline or control.
\(^2\)A1C, FBG, or fasting insulin.
\(*\)3/4 had retention rates < 80%.
\(†\)1/3 had retention rate < 80%.

Wheeler et al. *Diabetes Care* 2012;35:434-45
Low-CHO study example

• Highest quality study evaluated given:
 • Design (parallel randomized)
 • Duration (1 year)
 • Retention (> 80%)
 • Adherence (~33% kcal CHO at 6 and 12 mos in intervention compared to ~50% in controls)

• Compared low-CHO and low-fat diets
 • Overweight adults with type 2 diabetes (intent-to-treat analysis)
 • 55 intervention (low-CHO)
 • 50 control (low-fat)
 • Primary outcomes: weight and A1C
 • Secondary outcomes: blood pressure and lipids

Davis et al. Diabetes Care 2009;32:1147-52
Low-CHO study example

• Results:
 • Weight loss faster on low-CHO diet but similar weight reduction at 1 year
 • No significant changes in A1C at 1 year in either group
 • Significantly greater increase in HDL-c on low-CHO diet at 1 year

• Conclusion: relationship between low-CHO diet and glycemic control is more unclear than cumulative evidence may suggest

Davis et al. Diabetes Care 2009;32:1147-52
Results: Low-GI diets

- 8 clinical trials evaluated
 - 5 parallel randomized; 3 crossover
 - All in adults with type 2 diabetes
 - Control diets were variable (high-GI, high-fiber, traditional, very-low-CHO)

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Range</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>12-67</td>
<td>Per study arm</td>
</tr>
<tr>
<td>Duration</td>
<td>4 wks-1 yr</td>
<td>4/8 were ≥ 3 mos</td>
</tr>
<tr>
<td>Retention</td>
<td>58-100%</td>
<td>5/8 were ≥ 80%, including both 1-year studies 3/8 were 100%, all free-living</td>
</tr>
<tr>
<td>Achieved GI in intervention group</td>
<td>39-77 units</td>
<td>Wide range; no consistent definition; confounding by high-fiber</td>
</tr>
</tbody>
</table>

Wheeler et al. *Diabetes Care* 2012;35: 434-45
Results: Low-GI diets

- In general, there is little difference in glycemic control and CVD risk factors

<table>
<thead>
<tr>
<th>Low GI</th>
<th># Studies</th>
<th>Improved Glycemic Control(^1,2)</th>
<th>Improved TG(^1)</th>
<th>Improved HDL-c(^1)</th>
<th>Improved LDL-c(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>3(^*)</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^1\)Number of studies reporting significant effect (p<0.05) relative to baseline or control.
\(^2\)A1C or FBG.
\(^*\)2/3 had retention rates <80%.

Wheeler et al. *Diabetes Care* 2012;35:434-45
Low-GI study example

- Highest quality study evaluated given:
 - Design (randomized, controlled)
 - Duration (6 mos)
 - Retention (74%; compare to 58% in other 6-mos trial)
 - Adherence (achieved GI of 69.6 compared to 83.5 among controls)

- Compared low-GI and high-fiber diets
 - Overweight adults with type 2 diabetes (intent-to-treat analysis)
 - 57 intervention (low-GI)
 - 67 control (high-fiber)
 - Primary outcome: A1C
 - Secondary outcomes: FBG and lipids

Jenkins et al. *JAMA* 2008;300:2742-53
Low-GI study example

• Results:
 • A1C decreased by 0.5 in low-GI compared to 0.2 in high-fiber
 • HDL-c increased by 1.7 mg/dL in low-GI compared to decrease of 0.2 mg/dL in high-fiber

• Key limitation:
 • Low-GI diet had *higher* fiber than High-fiber diet at 6 mos:

<table>
<thead>
<tr>
<th></th>
<th>Low-GI Diet</th>
<th>High-fiber Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber (g/1000 kcal)</td>
<td>18.7 (17.3-20.0)</td>
<td>15.7 (14.7-16.7)</td>
</tr>
<tr>
<td>Glycemic Index</td>
<td>69.6 (67.7-71.4)</td>
<td>83.5 (82.4-84.7)</td>
</tr>
</tbody>
</table>

Jenkins et al. *JAMA* 2008;300:2742-53
Saturated fat (recommend < 7% kcal)

• Increasing focus on specific fatty acids:
 • Stearic acid (C18:0): ~1/3 of saturated fat intake (meat, dairy), converted, in part to oleic acid (C18:1) potentially explaining neutral effect on total cholesterol, LDL and HDL
 • Palmitic acid (C16:0): primary saturated fat (vegetable oil, meat, dairy) and primary endogenously produced fatty acid
 • Lauric (C12:0), Myristic (C14:0) and Palmitic (C16:0) have adverse effects on lipids

• Food perspective: high correlation between stearic and palmitic acid (both meat, dairy sources)

• Several recent studies suggest limited evidence for saturated fat in relation to CVD outcomes although replacement with PUFA may be beneficial

Micha *Lipids* 2010; Mente *Arch Int Med* 2009; Flock *Curr Opin Clin Nutr Metab Care* 2012, Astrup, *AJCN* 2011
Omega-3 fatty acids

• 3 parallel RCTs evaluated in Wheeler systematic review:
 • Supplementation does not improve A1c but may decrease TG
 • Effects on HDL-c and LDL-c are unclear

• ORIGIN doubled-blind trial*
 • Eligibility: impaired fasting glucose, IGT, or diabetes
 • Randomized to 900mg omega–3 suppl (N=6319) or placebo (N=6292)
 • Primary endpoint: death from CV causes
 • Median follow-up 6.2 yrs
 • No effect of omega-3 suppl on CV death: HR (95% CI), 0.98 (0.87-1.10)
 • Too late in the natural history of atherosclerosis??
 • Supplements may not be the issue….range of intake available from food may be most relevant

*ORIGIN Trial Investigators NEJM 2012;367:309-18
Omega-6 and \textit{trans} fatty acids

- Omega-6 FA’s (e.g., vegetable oil) can be converted to arachidonic acid and may exert pro-inflammatory response
 - Ratio of omega-6 to omega-3 is uncertain however omega-6 still preferred to saturated fat

- \textit{Trans} fatty acids: minimize intake (although naturally occurring \textit{trans} fat from dairy, \textit{trans}-palmitolic acid, may be beneficial)
Results: Mediterranean diet

- 5 clinical trials evaluated
 - 4 parallel randomized; 1 crossover
 - All in adults with type 2 diabetes

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>Range</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>10-108</td>
<td>Per study arm</td>
</tr>
<tr>
<td>Duration</td>
<td>4 wks-4 yrs</td>
<td>4/5 were 4 wks</td>
</tr>
<tr>
<td>Retention</td>
<td>91-100%</td>
<td>4/5 were 100%, all 4-wk trials</td>
</tr>
<tr>
<td>Achieved intake in intervention group</td>
<td>44-53% CHO</td>
<td>No clear definition of “Mediterranean Diet”</td>
</tr>
<tr>
<td></td>
<td>10-15% Saturated fat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-21% MUFA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-11.5% PUFA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-19% Protein</td>
<td></td>
</tr>
</tbody>
</table>

Wheeler et al. *Diabetes Care* 2012;35:434-45
Results: Mediterranean diet

- Results:
 - No advantage of Mediterranean Diet over other diets for glycemic control
 - Mediterranean Diet may improve HDL-c and TG

<table>
<thead>
<tr>
<th></th>
<th># Studies</th>
<th>Improved Glycemic Control</th>
<th>Improved TG</th>
<th>Improved HDL-c</th>
<th>Improved LDL-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med Diet</td>
<td>5</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1Number of studies reporting significant effect (p<0.05) relative to baseline or control.
2A1C, FBG, or postprandial glucose.

Wheeler et al. *Diabetes Care* 2012;35:434-45
Mediterranean Diet: Update

• PREDIMED trial
 • Eligibility: type 2 diabetes mellitus or ≥ 3 risk factors: smoking, hypertension, high LDL-c, low HDL-c, overweight or obesity, family history of premature coronary heart disease
 • Randomized to 1 of 3 diets: Mediterranean supplemented with extra-virgin olive oil (N=2543), Mediterranean supplemented with mixed nuts (N=2454), or control (advice to reduce fat; N=2450)
 • Primary endpoint: myocardial infarction, stroke, or death from cardiovascular causes
 • Median follow-up 4.8 yrs

Estruch et al. NEJM 2013
Mediterranean study example

- Results:

<table>
<thead>
<tr>
<th>(n, events)</th>
<th>MeDiet +EVOO Adjusted* HR (95% CI)</th>
<th>MeDiet+Nuts Adjusted* HR (95% CI)</th>
<th>Control Adjusted* HR (95% CI)</th>
<th>P-value interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>(7447, 288)</td>
<td>0.70 (0.54-0.92)</td>
<td>0.72 (0.54-0.96)</td>
<td>0.70 (0.54-0.92)</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>(3833, 98)</td>
<td>0.69 (0.43-1.12)</td>
<td>0.66 (0.40-1.07)</td>
<td>0.69 (0.43-1.12)</td>
</tr>
<tr>
<td>Yes</td>
<td>(3614, 190)</td>
<td>0.69 (0.50-0.97)</td>
<td>0.74 (0.51-1.06)</td>
<td>0.69 (0.50-0.97)</td>
</tr>
</tbody>
</table>

*Adjusted for sex, age, smoking, and family history of early CHD

Estruch et al. *NEJM* 2013
BEHAVIOR CHANGE STRATEGIES

Behavioral science as relates to dietary adherence
Why don’t patients eat what I want them to eat?

• Viewing patients as “obedient adopters of facts and recommendations” is too simplistic

• **Individual perspective** – Many characteristics play a role in food and beverage choices
 • Biological
 • Psychological
 • Cultural
 • Economic

• **Context** – Individuals interact reciprocally with their environment
 • Eating behaviors of family and friends
 • Neighborhood and workplace food and built environment
 • Local, state, and national policies relating to health

Marrero et al. *Diabetes Care* 2013;36:463-70
Recommendations for Clinicians

• Need to change approach to establishing therapeutic goals
 • *Empower* patients through *collaborative* goal setting and *shared* decision making
 • Be open-minded about patient choices, even if they conflict with what you consider to be “best practice”
 • *Motivational interviewing* can help identify *patient ambivalence* about behavior change and resolve *discrepancies between patient goals and behaviors*

Marrero et al. *Diabetes Care* 2013;36:463-70
Recommendations for Clinicians

- Ensure that the patient receives adequate training to encourage self-management
 - Review laboratory data as part of goal setting

- Ongoing support is critical for sustaining behavior change
 - Renew or revise the plan at each visit
 - Peer support programs and new technologies may help

- **Recognize that the behaviors involved in managing diabetes are dynamic and multidimensional**

Marrero et al. *Diabetes Care* 2013;36:463-70
CONCLUSION

Challenges and Future Directions
Key Nutrition Recommendations

- **Weight loss is recommended** for all overweight or obese individuals who have or are at risk for diabetes.

- Individuals who have or are at risk for diabetes should receive **individualized** MNT as needed to achieve treatment goals.

- The **mix of CHO, protein, and fat may be adjusted to meet the metabolic goals** and individual preferences of the person with diabetes.

- The **Mediterranean Diet** holds promise – but needs to be further evaluated with consideration of culture and context of patients’ lives.

- **Watch for Update late in 2013**

ADA, Standards of Medical Care in Diabetes-2012
Future Directions

- We need a better understanding of differences in individual response to diet
 - May explain mixed results throughout the literature
 - Future research should involve post-hoc analyses of existing data to generate hypotheses and use of innovative genetic tools

- We need to improve our understanding of the biochemical mechanisms underlying nutrition-related CVD risk
 - For example, role of fiber and omega-3 fatty acids in inflammatory response

- We need a more integrated understanding of individual nutrient effects in the context of dietary patterns
THANK YOU