Practical Ways to Achieve Targets in Diabetes Care

Advances in Beta Cell Imaging

Gary Cline, Ph.D.
Yale University
Duality of Interest Declaration

The research presented in this lecture was supported in part by grants from the Yale-Pfizer Bioimaging Alliance.
Imaging Objectives

• Monitor Disease Susceptibility & Progression of Beta Cell Mass Changes
 – Type 1 & Type 2 Diabetes

• Identify Therapies that Preserve, Restore, or Regenerate Beta Cell Mass
 – Immunomodulation & Anti-Inflammatory
 – Hormones & Growth Factors
 – Hypoglycemic agents acting directly & indirectly on beta cells

• Monitor Viability of Islet Transplantation and Stem Cell Therapies & Devices.
 – Regenerative Medicine

• Correlate Anatomical Measures with Functional Insulin Secretion & Biomarkers
Imaging of β-cell function and Islet mass

<table>
<thead>
<tr>
<th></th>
<th>MRI</th>
<th>PET/SPECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>high +</td>
<td>low +/-</td>
</tr>
<tr>
<td>-Islet dia: 20-600 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Low</td>
<td>high (pmolar range)</td>
</tr>
<tr>
<td>Selectivity</td>
<td>Prelabeling or Function</td>
<td>Receptor specific</td>
</tr>
<tr>
<td>Repeated measurements</td>
<td>Yes</td>
<td>Yes, dose limitation</td>
</tr>
</tbody>
</table>

Magnetic Resonance Imaging

- Imaging of Transplanted Islet Mass
 - Superparamagnetic Iron-oxide nanoparticles
- Imaging β-cell function
 - Mn²⁺ uptake concurrent with Ca²⁺ uptake

PET/SPECT:

- Imaging of Endogenous Islet β-cell Mass with Receptor-Specific Probes.
 - G-protein coupled receptors (GLP-1R)
 - Vesicular monoamine transporter-type 2 (VMAT2)
Magnetic Resonance Imaging of Islet Mass

• Dextran-coated Superparamagnetic iron oxide nanoparticles (~30nm dia)
• Islets incubated with nanoparticles,
• Endocytotic uptake by all islet cells (~2-12pg Fe/cell)
• SPIO shortens T2 and leads to reduction (darkening) in signal intensity.
• Change in T2 linear with number of islets
• Detection limit of 1 islet (in vitro) at 9.4T

Magnetic Resonance Imaging of Transplanted Islet Mass

- Labeled human islets (n=1000) transplanted under left kidney capsule
- Non-labeled human islets transplanted under right kidney capsule
- T2*-weighted MRI: darkening (shorter T2) of labeled islets
- Transplant stable for 188 days.
- Restored normoglycemia in STZ-treated NOD-SCID mice.

Transplanted Prelabeled Human Islets into Mouse Liver

- Labeled human islets (n=500) transplanted into liver by intraportal infusion
- Restored normoglycemia in STZ-treated NOD-SCID mice.

Monitoring of immune rejection of transplanted human islets

- Islets labeled by overnight incubation with Superparamagnetic iron oxide nanoparticles (Feridex, FDA-approved)
- Intraportal infusion of 1000 islets into mice: immunodeficient NOD-SCID, or immunocompetent Balb/C
- Marked increase in rate of loss of islet number in Balb/C vs. NOD-SID (associated with increased apoptosis in Balb/C mice)
- Fate of iron after cell death: internalization and clearance by Kupffer cells.

Noninvasive assessment of pancreatic β-cell function with manganese-enhanced MRI.

- The MR contrast agent Mn2+ labels glucose-stimulated beta cells by entering activated Ca2+ channels.
- Mn2+ increases the water proton longitudinal relaxation rate R1 proportionally with concentration.

MRI Mapping of Pancreatic Water Proton Longitudinal Relaxation Rate R1

- R1 mapping images acquired 1-hour after administering glc and Mn\(^{2+}\).
- Pulse sequence generates gradient echo images: intensity dependent on R1 and the inversion times.

- R1 mapping images depicting an axial slice through the mouse abdomen. White arrow denotes the Mn\(^{2+}\)-enhanced pancreas.

- Longitudinal magnetization relaxation curves are generated from images.
- Mn\(^{2+}\)-enhanced pancreatic R1 is calculated from curves.

Mn$^{2+}$-enhanced pancreatic R1 reflects functional beta cell mass

- Pixel-wise Mn$^{2+}$-enhanced pancreatic R1 maps
- Mn$^{2+}$-enhanced Pancreatic R1 is significantly lower in STZ-treated diabetic mice ($p < 0.05$, n=6 mice/group).

Detecting gradations in loss of functional beta cell mass

Used cytoxan-accelerated NOD-BDC2.5 transgenic T cell receptor mice, a model characterized by development of diabetes within a 7 day time period after injecting cytoxan.

- Mn$^{2+}$-enhanced pancreatic R1 decreased step-wise as Tg+ mice became diabetic.
- R1 remained constant in Tg- mice who do not develop diabetes within this window.
- Mn$^{2+}$-enhanced pancreatic R1 correlated well with pancreatic insulin.

1) Antkowiak PF et al. World Molecular Imaging Congress, 4th meeting. Accepted.
Molecular Imaging of \(\beta \)-cell mass by PET. Moving forward from validation to the clinic

- Development of receptor-specific probes
 - amenable to PET-isotope radiolabeling
 - safe for use in human investigation

- Validate correlation of quantitative PET image with BCM in animal models.

- Validate correlation of quantitative PET image with BCM in healthy and T1DM volunteers.

- Simplify infusion, scanning, and data analysis.
G-Protein Coupled Receptors as β-Cell Selective Imaging Targets

Pancreatic β-Cell

Database Mining of potential GPCR Targets
- GIP Receptor
- NPY2 Receptor
- mGluR5 Receptor
- PK1 Receptor
- GLP-1 Receptor
- GPR40 Receptor
- GPR109 Receptor
Exendin-4-like fluorochrome, E4K12-Fl

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Amino Acid sequence</th>
<th>Length (aa)</th>
<th>NIRF mod</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucagon-like peptide-1</td>
<td>GLP1</td>
<td>HAEGTFTSDVSSYLEGQAAKEFIAWLWKGR</td>
<td>30</td>
<td>none</td>
<td>3299</td>
</tr>
<tr>
<td>Exendin-4</td>
<td>E4</td>
<td>HHEGFTSDLQKQQEAAEAVRLFIEWKLKGGPSSGAPPSSX</td>
<td>39</td>
<td>none</td>
<td>4188</td>
</tr>
<tr>
<td>Exendin-4(40-Pra)</td>
<td>E4<sub>40-Pra</sub></td>
<td>HHEGFTSDLQKQQEAAEAVRLFIEWKLKGGPSSGAPPSSX</td>
<td>40</td>
<td>none</td>
<td>4282</td>
</tr>
<tr>
<td>Exendin-4(40-Fl)</td>
<td>E4<sub>40-Fl</sub></td>
<td>HHEGFTSDLQKQQEAAEAVRLFIEWKLKGGPSSGAPPSSX(NIRF)</td>
<td>40</td>
<td>Pra40</td>
<td>5623</td>
</tr>
<tr>
<td>Exendin-4(K12Fl)</td>
<td>E4<sub>K12-Fl</sub></td>
<td>HHEGFTSDLQKQMEAAEAVRLFIEWKLKGGPSSGAPPSS</td>
<td>39</td>
<td>K12</td>
<td>5311</td>
</tr>
</tbody>
</table>

Molecular model of exendin-4-like fluorochrome, E4K12-Fl, based on NMR-structure

Molecular model of exendin-4-like NIR fluorochrome E4K12-Fl (amino acids 9-39) complexed with the extracellular domain of GLP-1R, based on the crystal structure 3C59 (30).

Reiner et al. Bioconjugate Chem., 2010
Immuno- and fluorescence histology of adjacent pancreas sections from a MIP-GFP mouse injected with E4K12-Fi

Reiner et al. Bioconjugate Chem. 2010
Internalization is key for in vivo imaging with radiolabeled GLP-1 analogues

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (nM)</th>
<th>Kd (nM)</th>
<th>Bmax (receptors per cell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Lys40(DTPA)]exendin-3</td>
<td>13.5 (9.9–18.5)</td>
<td>8.7 (7.6–10.1)</td>
<td>26 000 (24103 to 29103)</td>
</tr>
<tr>
<td>[Lys40(DTPA)]exendin-4</td>
<td>13.4 (10.5–17.0)</td>
<td>17.6 (14.2–23.3)</td>
<td>41 000 (35103 to 50103)</td>
</tr>
<tr>
<td>[Lys40(DTPA)]exendin(9–39)</td>
<td>14.4 (4.8–43.2)</td>
<td>15.1 (6.9–80.7)</td>
<td>37 000 (13103 to 60103)</td>
</tr>
</tbody>
</table>

• Similar in vitro binding of GLP-1 agonists and antagonist
• Reduced specific uptake of GLP-1 antagonist
• Biodistribution: Lower uptake and rapid washout of antagonist

SPECT-(GLP-1R) imaging of β-cell tumors with [Lys40(Ahx-DTPA-\(^{111}\)In)NH2]Exendin-4

PET-(GLP1R)- imaging of INS-1 tumor with [Lys\(^{40}(68\text{GA-DOTA})\)-Exendin-3
VMAT-2 imaging

Brain: VMAT2 transport of dopamine into vesicles for delivery to and release from presynaptic junction.

β-cells: VMAT2 transport of dopamine into insulin-containing vesicles. Dopamine binds to D2 receptors inhibiting insulin release.

Quantitative PET Imaging of pancreatic β-cell mass with 18F-FP-DTBZ in Control and T1DM humans.

- **MR session**: Region of interest (ROI) drawn in MR space. Labeled MR image. Non-linear registration. Co-registered PET & MR.
- **PET session**: PET image. Arterial blood. Extract TACs.
- **AST session**: C-peptide, insulin release. Correlate PET with AST results.
- **PET TACs**: PET TACs. Tracer binding parameters. Tracer binding correlates with beta cell function.
- **Kinetic modeling**: Tracer binding parameters.
Orthogonal View Images
(after bolus injection of 18F-FP-DTBZ)

- marrow
- myocardium
- pancreas head
- liver
- pancreas body
- pancreas tail
- spleen
Imaging β-cell mass vs. individual islets

Quantitative imaging of BCM is an integrated signal, **NOT** the uptake per islet.

- HR+ has reconstructed resolution of ~ 6 mm
 - Islet diameter: 20-600 μm.
- Conservative ROI placement
 - ≤ 2 voxels (5.1 mm) across in body and tail, ≤ 3 voxels (7.7 mm) in head
 - Pancreas diameter $\sim 12-20$ mm in head, 9-14 mm in body and tail
- Given spatial resolution, effective size of pancreas, and exclusion of edge voxels, errors due to Partial Volume Effects should be minor
 - Simulation: hot islets, warm pancreas, cold background blurred to 8mm FWHM

See also discussion in Ichise and Harris, *JNM* 52(3):494-5, 2011
Challenges for Pancreatic Imaging

Respiratory motion

Control subject
mCT PET/CT scanner
with ANZAI belt
4 hr respiratory gating scan
(8 segments)

Gated image (0-10 min)

Bolus + constant infusion
($k_{bol}=360\text{min}$)

Effect of respiration

Phase 1

Phase 6

Gated PET (Bolus+Infusion, 210-240 min)
Effect of respiration

Phase 1

Phase 6

Gated PET (Bolus+Infusion, 210-240 min)

Size of ROI on pancreas (whole)

78 mm3
Effect of respiration

Phase 1

Phase 6

Gated PET (Bolus+Infusion, 210-240 min)

Size of ROI on pancreas (whole)

49 mm3

78 mm3
Effect of respiration

Gated PET (Bolus+Infusion, 210-240 min)

Size of ROI on pancreas (whole)
- Phase 1: 29 mm3
- Phase 6: 49 mm3
- Other: 78 mm3

Naganawa M., et al.
Region of Interest Placement

- ROIs drawn on summed PET images using MRI to guide and confirm localization

- Conservative ROI placement along central axis, excluding edge voxels susceptible to signal spill-out
Tissue Time Activity Curves

$[^{18}F]$FP-DTBZ pancreatic uptake is reduced in T1DM

Standardized Uptake Value [unitless]
$[^{18}\text{F}]\text{FP-}(+)\text{-DTBZ}$ Pancreatic Uptake Reduced in Type 1 Diabetes Patients

Healthy control (HC) subjects

Type 1 diabetes (T1DM) patients

All images summed 0-90 min post-injection (0-20 SUV)
[18F]FP-(-)+-DTBZ Pancreatic Uptake is Reduced in Type 1 Diabetes Patients

Healthy control (HC) subjects vs. Type 1 diabetes (T1DM) patients

Normandin et al., J Nucl Med 2012

0-90 min post-injection (0-20 SUV)
\[^{18}\text{F}\text{FP}-(+)-\text{DTBZ} \] Pancreatic Uptake Correlates with β-cell Function.

Healthy control (HC) subjects vs. Type 1 diabetes (T1DM) patients

$R^2=0.60 \quad P=0.0007$

$R^2=0.31 \quad P=0.048$

$R^2=0.59 \quad P=0.0023$

Normandin et al., J Nucl Med 2012

All images summed 0-90 min post-injection (0-20 SUV)
Summary

- $[^{18}\text{F}]\text{FP}-(+)-\text{DTBZ}$ PET showed marked qualitative differences between controls and T1DM, which were quantified by kinetic modeling with arterial input functions.

- Before accounting for pancreas size, binding density correlated significantly with insulin secretion capacity.

- Accounting for pancreas volume enhanced group differences in $[^{18}\text{F}]\text{FP}-(+)-\text{DTBZ}$ binding and strengthened correlations between tracer binding and β-cell function.
Molecular Imaging of β-cell mass.
Targeting VMAT2 with Dihydrotetrabenazine (DTBZ) tracers: Moving to the clinic

1. Validate correlation of quantitative PET image with BCM in healthy and T1DM volunteers.
2. For Clinical Research:
 - Reduce scan time and standardize time for image acquisition
 - use of optimal infusion protocol
 - bolus vs. bolus-constant infusion
 - Standardize Modeling
 - one-tissue (1T)
 - two-tissue (2T) compartment model
 - multilinear analysis (MA1) with various t^* (5 to 50 min)
 - Use a validated Reference Region (e.g., kidney, spleen, etc)
 - simplified reference tissue model (SRTM)
 - Non-specific binding ~same as pancreas exocrine
 - eliminate or minimize blood draws
Scan Duration

≥ 180 min (MA1) BP_{ND}

≥ 90 min (SRTM) BP_{ND}

Mean ± SEM
BP_{ND} (SRTM)

\[t_{max} = 90\text{min} \]

- Pancreas whole: 20% underestimation of BP_{ND}
- Mean ± SEM

Pancreas whole:
- □: HC
- ●: T1DM

Good correlation:
- \[y = 0.83x \]
- \[R^2 = 0.81 \]

20% underestimation of BP_{ND}
Acknowledgments
Faculty and staff at Yale PET Center

Yale
• Richard E. Carson, Ph.D.
• Kitt-Falk Petersen, M.D.
• Marc D. Normandin, Ph.D.
• Mika Naganawa, Ph.D.

Pfizer
• Judith L. Treadway, Ph.D.
• Roberto Calle, Ph.D.
• Tim McCarthy, Ph.D.

Support
• Yale-Pfizer Bioimaging Alliance
• Juvenile Diabetes Foundation
Pancreas Volume Decreased in T1DM (MRI)

Pancreas volume (cm3) Pancreas volume index (cm3 / m2)

<table>
<thead>
<tr>
<th></th>
<th>Ctl</th>
<th>T1DM</th>
<th></th>
<th>Ctl</th>
<th>T1DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>32%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P = 0.002

P = 0.001
[18F]FP-DTBZ Pancreatic Uptake Binding Parameters (Total \(\beta\)-cell mass: corrected for pancreas volume)

- Standardized Uptake Value (SUV\textsubscript{60-90}) [cm3]
 - \(P < 0.005\)
 - Control
 - T1DM

- Volume of Distribution (\(V_T\)) [ml]
 - \(P < 0.01\)

- Binding Potential (\(BP_{ND}\)) [cm3]
 - \(P < 0.005\)
 - 59%

Source: Normandin et al., J Nucl Med 2012
$[^{18}F]FP$-DTBZ Pancreatic Uptake Binding Parameters:
Correlation with β-cell function

β-cell density
(independent of pancreas volume)

$R^2 = 0.59$
$P = 0.0023$

Total β-cell mass

$R^2 = 0.78$
$P = 0.0001$

Control

T1DM

Normandin et al., *J Nucl Med* 2012