FDA Perspective on Closed-Loop Studies

Practical Ways to Achieve Targets in Diabetes Care
July 19, 2014
Keystone, CO

Courtney H. Lias, Ph.D.
Office of In Vitro Diagnostic Device Evaluation and Safety
Center for Devices and Radiological Health
Food and Drug Administration
What is an Artificial Pancreas (AP)?
Artificial Pancreas

- Many still struggle to maintain good glycemic control
- Hypoglycemic unaware individuals at risk
- Risk of nighttime hypoglycemia
- Better quality of life needed

- FDA believes that development of an Artificial Pancreas will improve outcomes for people with diabetes

- Challenges:
 - Device limitations – pump imprecision, sensor inaccuracy/unreliability
 - Biology – complicated
 - Inter-individual variability – one size fits all possible? Smart algorithms?

- Good news - Brilliant people working on these problems….
Background

• Where we were 10 years ago
• CGM approval/improvement
• Open loop studies / Algorithm development
• Compensating for CGM/pump failures
• Gradually increasing confidence in algorithms
Current Status

• AP Clinical studies – much progress!
 • Clinic – close monitoring, oversight
 • Camp – stresses the system
 • Outpatient/Hotel – managed supervision
 • Home – flexible, can be monitored, use of companions
Current Status

• Medtronic MiniMed 530G Threshold Suspend System Approved in October 2013

• First step toward an AP

• Suspends insulin delivery when CGM value reaches a set threshold (e.g., 60 - 90 mg/dL)
Opportunities – Device Consolidation

• Challenges for patients
 • Difficult being a patient with diabetes
 • Medical devices help, but can also contribute to frustrations and non-compliant therapy
 • Must carry - Cell phone, pump, meter, CGM receiver, insulin pens, strips, etc…

• Potential solutions
 • Efforts to consolidate devices onto fewer platforms (e.g., meter, CGM, pump receiver in one)
 • Requires good coordination between companies in many instances

• FDA is creating and communicating policies to encourage device company collaboration
Opportunities – Mobile Apps

• To facilitate device consolidation, mobile platforms are key
 • Nearly everyone now carries a cell phone
 • enable functions to allow for medical device interaction from that platform

• Challenges include
 • Security, hacking – specialized communication protocols essential
 • Android vs. Apple OS

• FDA is working closely with industry on requirements/process for market entry, upgrades, etc.
 • Guidance on Mobile Medical Apps – provides more clarity and transparency

• Promises to be more convenient for patients and better for AP development
Opportunities – Component AP Systems

• Traditional pathway = one company sells whole AP device (sensor, pump, algorithm)

• Alternate pathway = different companies sell the components of an AP (e.g., algorithm on app that communicates with pump and sensor)

• More choices/access

• Working on Policies to Foster this Innovation:
 • Who is responsible? (for adverse events, etc.)
 • Impact of Device modifications/generations
Opportunities - Commercialization

• Investigators beginning to think more about commercialization

• Previous focus on algorithm development/tweaking

• Much more attention on how to translate their discoveries/innovations into real medical devices

• Very significant and exciting change in tone!
Common Misconceptions

• An AP does not have to develop/approve in a measured progression
 • Some thought FDA would require a slow progression (e.g., threshold suspend, predictive suspend, treat-to-range, full AP)
 • No reason not to try to develop the fully closed loop device if the technology is ready!

• Remote monitoring can be a good safety mitigation in studies, but is not always required
 • There are many ways to mitigate the risk in clinical studies
 • Appropriate tools depend on study design
Common Misconceptions

• Clinical studies in children is allowed
 • Some have thought FDA will not allow AP investigations in children
 • Often can design studies to incorporate pediatric patients
 • Have been many pediatric trials already
 • Investigators should consider device differences between populations
 • e.g., DexCom G4 approved in pediatrics, but studies show the sensor much less accurate in children than adults (particularly in the hypo range)
 • Study mitigations and algorithms may need to account for device performance differences

• HbA1c is not the only endpoint FDA will accept for AP studies
 • Some have thought only HbA1c is accepted
 • Endpoint should be what makes sense for the claims being tested
Common Misconceptions

• Enacting safety mitigations for studies does not mean that these mitigations have to be part of the final system
 • Some have thought that if remote monitoring is used to mitigate risks in a clinical study that it will also be needed once the device is approved
 • Study mitigations are for the safety of study participants and are not part of the device itself

• Artificial Pancreas devices do not have to be perfect with zero risk to be beneficial
 • Approval decision is a benefit/risk decision
 • Approval Decision made in the context of the significant risks people with diabetes face every day due to their disease
Where do we go next?

• Continue to work with Investigators and Companies who are developing these devices to encourage their development

• Continue to learn from patients and healthcare providers about the needs and desires of this community

• Continue to develop policies that promote rather than prohibit AP availability

It will happen, and sooner than you think!
Thank you!

courtney.lias@fda.hhs.gov