Is Primary Prevention of T1D A Realistic Expectation?

Marian Rewers, MD, PhD
Professor, Clinical Director
Barbara Davis Center for Childhood Diabetes
University of Colorado School of Medicine

BDC Keystone Conference
July 18, 2014
T1D incidence is doubling every 20 years
What environmental factors are responsible?

Incidence /100,000/ yr
in children 0-14 yr

TEDDY Ann NYAS 2008
Two-step model of pre-T1D

Genetic susceptibility

Islet autoimmunity (IA):
PERSISTENT autoantibodies insulin, GAD_{65}, IA-2, or ZnT8

Clinical Diabetes

ADA / WHO

Trigger
virus? diet?

Promoters?
Multiple islet autoantibodies predict progression to diabetes in children
Ziegler A, Rewers M, Simell O et al. JAMA. 2013;2473

Nearly all children positive for 2+ islet autoantibodies develop diabetes in 15 yrs
Primary Prevention (before islet autoantibodies appear)

- Prevent triggering of islet autoimmunity
- Diabetes diagnosis
Secondary Prevention (in subjects with islet autoantibodies)

Islet autoantibodies

Delay diagnosis of diabetes

Beta cell function

Time
When does islet autoimmunity begin?
Late onset of islet autoimmunity

DAISY

Environmental TRIGGER DIABETES
Phenotypes of Type 1 Diabetes

- **β-cell function**: 100%
- **Insulin dependence**:
 - Early T1D
 - Classical T1D
 - Adult T1D

Trigger of autoimmunity
Candidate environmental causes:

- Hot enteroviruses
- ↓ childhood infections = hygiene
- ↑ food
 - microbiota
- ↓ intake of Ω-3 fatty acids
- ↓ intake of vit. D
- mycotoxins
- rotavirus
- cow’s milk
- gluten

Not routine immunizations

Rewers, June 2014
Find Prevention for T1D!

- 424,000 newborns screened
- 8,677 high-risk children intensively followed until 15 yrs

- Find the environmental trigger (virus, dietary factor)
- Develop vaccine/ elimination diet
- Public health screening and prevention to eradicate diabetes

Currently funded by the NIH
TEDDY protocol

Clinic visits every 3 months (including ab+ children older than 4):

Blood for: GADA, IAA, IA-2A, ZnT8; DNA, mRNA, infectious agents, HbA1c, PBMC, erythrocytes, storage plasma/serum;

Nasal swabs, tap water, toenail clippings, and salivary cortisol. urine samples; DNA from FDRs

Interviews: medications, immunizations, infections, family history; maternal pregnancy diet; child’s 24 hr recall, 3 day FFQ; negative life events, parental anxiety, depression, physical activity. Accelerometer;

Stool samples collected monthly -> quarterly

Blood
Dietary Factors

Fetal
- Nitrates, nitrites, nitrosamines
- Coffee/tea
- Cod liver oil
- Vitamin D
- Birth size
- Tubers, root vegetables

Infancy
- Breast-feeding
- Timing of exposure to:
 - cow’s milk
 - cereals/gluten
 - solid foods
 - root vegetables
 - berries
- Vitamin D
- Cod liver oil
- Weight/height gain

Childhood
- Cow’s milk
- Coffee/tea
- Nitrates, nitrites, nitrosamines
- Vitamin C
- Vitamin D
- Vitamin E
- Omega-3 fatty acids
- Nicotinamide
- Zinc
- Weight/height gain
Infant diet and the risk of islet autoimmunity

Cow’s milk < 3 month
DAISY
DIPP
BABYDIAB

Cereal < 4 or >6 mo; DAISY

Gluten < 3 months; BABYDIAB

Ω-3 FA intake; DAISY
Ω-3 FA erythrocyte wall; DAISY
no association with progression to T1D

Maternal Vit D suppl. DAISY
DIPP

Infant Vit D intake DAISY (2012)
Infant Vit D blood levels; DIPP (2008)

Hazard Ratio

0.12 0.25 0.5 1 2 4 8
Clinical Trials of Infant Diet Modification
None has succeeded, YET!!!

TRIGR (Trial in Genetically at Risk)
Weaning to hydrolyzed vs. intact cow milk formula

BABY-DIET
Delay in gluten exposure 6m -> 12m

NIP (Nutritional Intervention to Prevent T1D) TrialNet
Ω-3 FA docosahexanoic acid (DHA)

FINDIA - milk formula with low cow’s insulin content

Vitamin D supplementation
Larger TRIGR Study - Casein Hydrolysate Does NOT Delay Beta-Cell Autoimmunity

- 2159 high-risk infants newborns in 15 countries
 - High-risk HLA haplotypes
 - First-degree relative with T1D
 - Screened regularly for islet autoantibodies
Intervention:

Gluten introduction
Delayed until age 12 months
vs. standard 6 months

Eligibility

Age <2 months, no gluten
2 T1D first degree relatives
or
1 relative AND high-risk HLA
Small Overlap of T1D and Celiac Disease Among TEDDY subjects

Persistent confirmed Islet Ab+ 264

Persistent TG Ab+ 329

T1D 83

CD 200

Feb 2012
BABYDIET Study Population

Children screened by HLA-genotyping on cord blood

- Children eligible for follow-up, offered to participate in the study
 - Consented to participate
 - Randomized to control group
 - Lost to follow-up
 - Randomized to late-exposure group
 - Lost to follow-up
 - Children with low-risk genotypes, excluded from the study

- Total
 - Initial screening: 1,168
 - Eligibility for follow-up: 169
 - Consented to participate: 150
 - Randomized: 150
 - Control group: 77
 - Lost to follow-up: 14
 - Late-exposure group: 73
 - Lost to follow-up: 16
 - Excluded due to low-risk genotypes: 999
BABYDIET – Reported Exposures

- Gluten
- Solid foods
- Age at first exposure
- Duration of exclusive breastfeeding

Graphs showing the age at first exposure to gluten and solid foods, with controls and late-exposure groups, and their respective p-values.
BABYDIET – Results
Development of Islet Autoantibodies to insulin, GAD, IA-2

Any autoantibodies

Multiple autoantibodies

Control group
Late gluten exposure
Child’s weight gain, BMI and growth are NOT related to islet autoimmunity (IA) or progression to T1D

Islet Autoimmunity
- BMI > age 2 y: DAISY 2009
- Weight gain velocity > age 2 y: DAISY 2009
- Weight < age 2 y: TEDDY 2013
- Height < age 2 y: TEDDY 2013

Progression to T1D
- BMI > age 2 y: DAISY 2009
- Weight gain velocity > age 2 y: DAISY 2009
- Weight < age 2 y: TEDDY 2013
- Height < age 2 y: TEDDY 2013

Similar results from BABYDIAB 2010
Enteroviral infections (EV) and the risk of islet autoimmunity (IA) or progression to T1D

EV and islet autoimmunity
- DAISY, Graves 2003 (n=26)
- MIDIA, Tapia 2010 (n=27)
- DIPP, Salminen 2004 (n=12)
- DIPP, Salminen 2003 (n=41)
- VIGR, Al-Shaheeb 2010 (n=13)

EV and progression to T1D
- DAISY, Stene 2010 (n=50)
- DIPP, Oikarinen 2011 (n=38)
Environmental toxins from food, water processing

- Vacor (rodentocide)
- Mycotoxins (*Streptomyces*)
 - Streptozotocin
 - Bafilomycin

Common scab disease
Summary:

• Unknown environmental factors are doubling the incidence of T1D every 20 years

• Triggers and promoters of progression to diabetes are largely unknown

• Autoantibody testing may help to pin-point the trigger

• Islet autoimmunity usually starts in early childhood, but may develop at any age → different T1D phenotypes

• 84% of children positive for ≥2 islet autoantibodies will develop diabetes in the next 15 years (70% in 10 yrs)
Summary:

• Little evidence to support the ‘accelerator hypothesis’ or link between obesity and T1D
• Feeding babies with cow’s milk formulas does not cause T1D
• Cereals to be added between 4-6 month of life while breast feeding
• Omega free fatty acids may be protective from early childhood IA
Summary:

- Presence of enterovirus in **blood** predicts T1D in **some** cases
- Routine immunizations /timing unrelated to T1D
Conclusion:

- Primary prevention is a realistic expectation
- Lot’s of work remain to be done
Questions

Barbara Davis Center for Childhood Diabetes
www.barbaradaviscenter.org

marian.rewers@ucdenver.edu