Foes to Friends: Changing Contexts and Changing Intergroup Perceptions

Christopher M. Weible a, Saba N. Siddiki a & Jonathan J. Pierce a

a School of Public Affairs, University of Colorado, Denver, CO, USA

Available online: 15 Nov 2011

To cite this article: Christopher M. Weible, Saba N. Siddiki & Jonathan J. Pierce (2011): Foes to Friends: Changing Contexts and Changing Intergroup Perceptions, Journal of Comparative Policy Analysis: Research and Practice, 13:5, 499-525

To link to this article: http://dx.doi.org/10.1080/13876988.2011.605941

Clipper CS2000

PLEASE SCROLL DOWN FOR ARTICLE
Foes to Friends: Changing Contexts and Changing Intergroup Perceptions

CHRISTOPHER M. WEIBLE, SABA N. SIDDIKI and JONATHAN J. PIERCE
School of Public Affairs, University of Colorado, Denver CO, USA

ABSTRACT To advance the study of comparative public policy there must be stronger methodological and theoretical descriptions and explanations of the development of policies and the actors, events, and contexts surrounding their development. Using the social construction and advocacy coalition frameworks, this study compares intergroup perceptions in adversarial and collaborative contexts in the Lake Tahoe Basin, United States. The results suggest one of the benefits of collaborative compared to adversarial contexts is improved intergroup perceptions. However, years may be needed for improved intergroup perceptions to take effect, and these effects may indicate the continuation of relative group positions.

Introduction

The ambition of comparative public policy is toward better methodological and theoretical approaches for stronger descriptions and explanations of public policy development across space, time, or both. The challenges confronting the advancement of comparative public policy are nontrivial, including clear and consistent use of conceptual definitions, choice and application of theories, and the application of rigorous research designs (Feldman 1978; Rose 1991; Lodge 2006). Contributions to this literature, therefore, must involve transparent methods of data collection and analysis and the potential to develop or test pertinent theories within a research design that offers explanatory leverage. This article seeks to make such a contribution through two forms of comparison: first, there is a comparison of two complementary theoretical frameworks; and second, there is a comparison of intergroup perceptions as a context shifts from adversarial to collaborative over time.

Intergroup perceptions vary by contexts. Some contexts are adversarial, where there is strong disagreement and distrust as well as lack of communication and
cooperation between political rivals. In these adversarial contexts, common venues for resolving conflicts are courts, legislative processes, and top-down decision making by government agencies that may benefit one interest at the loss of a rival interest. Other contexts are more collaborative where institutional arrangements encourage face-to-face communication between rivals, establish fair rules of negotiation, emphasize problem definitions and win–win solutions, allow for open participation, and facilitate shared access to authority. The result is collaborative politics where rivals manage to cooperate, despite their disagreements.

This article seeks to compare intergroup perceptions in adversarial and collaborative contexts guided by two theoretical frameworks. The first is the social construction framework (Schneider and Ingram 1993, 1997) and the second is the advocacy coalition framework (Sabatier and Jenkins-Smith 1993). Intergroup perceptions are examined in the social construction framework by measuring perceptions of the positive or negative constructions and weak or strong power of groups. The advocacy coalition framework provides a different way to analyze intergroup perceptions with its “devil shift” concept, or the extent that people exaggerate the power and maliciousness of their opponents (Sabatier et al. 1987).

These frameworks are applied to a case study of water and land policy in the Lake Tahoe Basin, located on the California and Nevada border in the United States. The data used are taken from three questionnaires based on samples of policy participants actively involved with Lake Tahoe water and land policy. The first questionnaire was administered in an adversarial context (1984), the second in an early collaborative context (1990), and the third in a mature collaborative context (2001). The Lake Tahoe Basin makes for an interesting case study for two reasons. First, it is one of the few case studies where there exists datasets on the perceptions of policy participants that span more than a decade, thereby capturing changes in their perceptions in adversarial and collaborative contexts. Second, water and land policy processes in the Lake Tahoe Basin typify international trends of shifting governance from adversarial to more collaborative approaches (Howlett 2000). Given the Lake Tahoe case study, this article seeks to answer the following research question: To what extent do intergroup perceptions change as contexts change from adversarial to collaborative?

Theoretical Overview and Propositions

Comparisons of collaborative and adversarial contexts have been undertaken by a number of researchers. Most notably, Ostrom and her colleagues have documented how people can overcome the temptation for self-interested, short-term solutions by developing trust and reciprocal relations in the context of common pool resource management (Ostrom 2005). Ostrom’s argument is that some institutional arrangements promote trust and reciprocity and, therefore, help people reach, monitor, and enforce agreements over extended periods of time. Weber (1998) similarly describes how collaborative contexts reduce transaction costs, something trust helps to mitigate. Additionally, trustworthy relationships are at the center of Layzer’s (2008) arguments for collaboration, which is suggested to occur through a sequence of steps from face-to-face negotiations, to trust, to the development of
shared interests, and, finally, to an agreed-upon plan. Putting the exact mechanisms aside, numerous studies describe the virtues of collaborative compared to adversarial contexts through resolving value differences, increasing trust, and mitigating conflict (NRC 1996; Weber 1998; Wondolleck and Yaffee 2000; Koontz et al. 2004; Ansell and Gash 2007).

While collaborative contexts are frequently studied (El Ansari et al. 2001; Ansell and Gash 2007), there have been far fewer comparative designs contrasting adversarial and collaborative contexts; notable exceptions include Coglianese (1997, 2003), Lubell (2004a, 2004b), Ambruster and Leach (2006), Daley (2007), Meyer and Konisky (2007), Layzer (2008), Weible and Sabatier (2009), and Weible et al. (2010). Results from these comparisons are, however, mixed with some finding collaborative contexts to constitute mostly symbolic talk (Lubell 2004a) and others finding collaborative contexts to foster better outcomes under some settings (Layzer 2008). This article adds to this research endeavor by comparing collaborative and adversarial contexts through changes in intergroup perceptions with the aid of two complementary theoretical frameworks: the social construction framework and the advocacy coalition framework.

Social Construction Framework

The social construction framework was first developed and later refined by Schneider and Ingram (1993, 1997, 2005, and Ingram et al. (2007)) to identify the enduring interactions between policy designs and the distribution of benefits and burdens within society. The social construction framework builds from three central concepts that are applicable to this study: target populations, social constructions, and power.

Target populations are defined as the group of people affected by a policy design (Ingram and Schneider 1991; Schneider and Ingram 1993: 335, 1997: 84–89). Some examples of target populations given by Schneider and Ingram (1997: 109) include “veterans”, “criminals”, “small businesses” and “mothers”. While target populations do differ extensively, they are defined as the targets of decision makers chosen for behavioral change through the incentives or sanctions of policy designs (Schneider and Ingram 1991).

Social constructions are normative and refer to the perceptions and symbols associated with target populations (Schneider and Ingram 1993: 335, 1997: 106–108, 2005: 1–28). Examples of social constructions include “greedy”, “deserving”, and “mean”, among others (Schneider and Ingram 1993: 335). These concepts are evaluative and can be applied as positive, negative, or mixed. For example, a target population may be described as “greedy”, which can be inferred as a negative evaluation, while a deserving target population may be described as “trustworthy” and subsequently understood as a positive evaluation. Social constructions of target populations may appear intractable to change but they are dynamic over time and may show variance across a population (Schneider and Ingram 1997: 73, 106–107).

Power is defined “mainly in terms of the first face of power – to influence” (Schneider and Ingram 1997: 108). The capability to influence can be operationalized by identifying political resources as represented by votes, wealth, leadership skills, and the potential to mobilize people, among others (Schneider and Ingram 1993: 335, Ingram et al. 2007: 101).
These three concepts combine to formulate four categories of target populations that according to the framework receive different types of benefits and burdens (Schneider and Ingram 1993). Those who are advantaged have power and are positively constructed and are expected to receive a disproportionate share of benefits and few burdens. Contenders have power but are negatively constructed and are expected to receive sub-rosa benefits and few burdens. Dependents do not have power but are positively constructed and are expected to receive rhetorical benefits and some of the burdens. Deviants do not have power and are negatively constructed and are expected to receive limited to no benefits and a disproportionate share of the burdens.

For the social construction framework, we test the following proposition: Target populations will be more positively constructed and more powerful in collaborative compared to adversarial contexts.

The Advocacy Coalition Framework

The advocacy coalition framework guides researchers in understanding coalition behavior, learning, and policy change. Within the advocacy coalition framework, there exists the devil shift concept that posits “at least in relatively high conflict situations, political elites tend to see their opponents as ‘devils,’ i.e., as being more powerful and more ‘evil’ than they actually are” (Sabatier et al. 1987: 451).

The cognitive basis for the devil shift lies in the advocacy coalition framework’s three assumptions about the mental model of actors. First, actors rely on heuristics to overcome constraints in information processing (Simon 1996; Jones 2001). Second, actors distort the processing of information and retain stimuli consistent with preexisting beliefs and reject stimuli dissonant with preexisting beliefs (Munro and Ditto 1997; Munro et al. 2002). As a result, there are systematic biases in perceptions. Third, actors remember losses more than gains and, therefore, will remember political defeats more than political victories (Quattrone and Tversky 1988).

Integrating these three assumptions creates a model of the individual where belief change is very difficult because dissonant information is filtered out. People with opposing beliefs will interpret the same piece of information in very different ways, leading to distrust, a suspicion of opponents’ motives, and a portrayal of opponents as malicious or evil. In addition, histories of political defeats result in groups magnifying their opponents’ political power. The resulting process is identified as the devil shift, as actors exaggerate both the evilness and power of their opponents.

The devil shift involves two dimensions: evilness and power. This study adopts the definition of evil found in Sabatier et al. (1987: 451–452) as the negative perceptions of the motives, reasonableness, and/or behavior of opponents. This study also adopts the definition of power found in Sabatier et al. (1987: 452) as the ability to influence subsystem affairs, such as policy designs. A concept can be defined by its negative pole or by the concept’s negation (Goertz 2005). The negation of the devil shift has already been defined by Leach and Sabatier (2005) as the “angel shift”. The angel shift is the tendency for actors to exaggerate the power and virtues of their allies. In this article, we measure the extent that actors experience the devil shift in relation to the perceived evilness and power of their opponents, the angel shift in
relation to the perceived power and virtues of their opponents, and a mix (exaggerating the attributes of both allies and opponents) as the policymaking context shifts from adversarial to collaborative.

From the advocacy coalition framework, we seek evidence for the following proposition: There will be a decrease in the number of actors experiencing the devil shift and an increase in the number of actors experiencing the angel shift in collaborative compared to adversarial contexts.

Lake Tahoe Case Study

Located in the Sierra Nevada mountains on the border of California and Nevada, the Lake Tahoe Basin is one of the largest alpine lakes in the world. In the early history of the Lake Tahoe Basin, the area was home to Native American tribes and then, later, to resource-extractive industries established by American settlers. In the twentieth century, visitors and residents in the Lake Tahoe Basin increased substantially after the creation of a major interstate highway and international attention to the area with the 1960 Winter Olympics. Soon after, tourism boomed in the late 1960s as millions of people began to visit the lake throughout the year to snow ski, hike, and gamble. Thousands more bought property for business or primary or second residential homes, with the permanent population in the Basin growing from fewer than 20,000 before 1960 to 55,000 in 1998 (USDA 2000: 607–608) and the number of homes increasing from 500 to 19,000 units from the 1960s to the 1980s (Elliot-Fisk et al. 1996). The increase in the number of people visiting and living in the Lake Tahoe Basin led to environmental degradation and conflict over land use and its potential impact on water clarity (Kauneckis and Imperial 2007).

From the 1960s onward, the policy and political context of the Tahoe Basin has been described by multiple observers as representing two types: an adversarial context from the 1960s to 1986/87 and a collaborative context from 1986/87 to the present (Elliot-Fisk et al. 1996; Kauneckis et al. 2000; Nechodom et al. 2000; Sabatier et al. 2003; Kauneckis and Imperial 2007; Weible and Sabatier 2009). The adversarial context began in the late 1960s in response to the growing concern among environmentalists and their allies about the potential adverse effects on the environment from the new visitors, residents, and development. In 1969, California, Nevada, and the federal government signed a bi-state compact, which created the Tahoe Regional Planning Agency (TRPA) to coordinate water quality management in the Lake Tahoe Basin (Elliot-Fisk et al. 1996). The compact charged the TRPA with developing land use plans and with regulating development. The TRPA approved the first general plan in 1971 and quickly received criticism from business groups and developers for imposing too many restrictions on development as well as from environmental groups for not restricting development enough (Kauneckis and Imperial 2005).

Lake Tahoe Basin leaders revised the bi-state compact in 1980 to give priority to environmental quality over economic development. Based on the 1980 compact, the TRPA adopted a new general plan in April of 1984. The next day, environmental groups filed lawsuits alleging the plan would not control development. A property rights group also filed a lawsuit alleging violations of property rights. In June 1984, a court stopped all construction in the Basin until an acceptable plan was adopted.
In response, the 1985 Nevada legislature threatened to withdraw the state from the bi-state compact, ending the agreement on environmental regulation in the Basin (Elliot-Fisk et al. 1996; Kauneckis et al. 2000). By 1985, a stalemate ensued where policy participants on all sides considered the status quo unacceptable and saw no other means to address the issues of concern except by negotiations.

Following almost two years of negotiations led by the TRPA, a new plan was approved in 1986/87 and a context of collaboration began (Nechodom et al. 2000). Evidence of collaboration includes the implementation of the 1986/87 plan, which was helped by several organizations with institutional arrangements that encourage collaboration and consensus (Elliot-Fisk et al. 1996). These consensus-based organizations include the Transportation and Water Quality Coalition (est. 1989); the Tahoe Coalition of Recreation Providers (est. 1991); the Tahoe Truckee Economic Coalition (est. 1992); and the Forest Health Consensus Group (est. 1992) (Nechodom et al. 2000). Further evidence of collaboration includes the joint effort to support the Presidential Summit in 1997, joint lobbying for federal funds for transportation planning, and the design and implementation of the Environmental Impact Plan (Kauneckis and Imperial 2005). The Lake Tahoe Environmental Impact Plan was initiated, representing one of the largest collaborative efforts in the country, with nearly 50 government and non-government entities in the Basin. Through these efforts, Kauneckis and Imperial (2005) document successful establishment of institutional arrangements for the long-term cooperative management of resources in the Basin, including power sharing, shared goals, and effective monitoring.

Today, the politics in the Lake Tahoe Basin continues to be more collaborative than prior to 1986/87. The Tahoe Science Consortium, for example, represents joint fact finding among scientists and government entities (Hymanson and Collopy 2010). The Lake Tahoe Environmental Impact Plan continues in its implementation and still represents one of the largest collaborative initiatives in the United States (Murphy and Manley 2009). Thus, while the data in this study are more than a decade old, they were measured over time at the critical points in the development of public policy in the Lake Tahoe Basin.

Research Approach

Three questionnaires were administered to policy participants in the Lake Tahoe Basin in three periods: an adversarial context (1984), an early collaborative context (1990), and a mature collaborative context (2001), to capture their perceptions regarding the state of the Basin and how they felt it should be managed. Respondents of the questionnaires were chosen through a modified snowball sampling technique. In some cases, respondents were found within an agency/organization of interest. Additional potential participants were recommended through preliminary interviews and by a stakeholder advisory committee formed to help conduct this research project. The stakeholder sample included representatives from local government and public utility districts (PUDs), business and property rights groups, environmental groups, researchers and scientists, and regional development agencies, including the Tahoe Regional Planning Agency, the Tahoe Conservancy, and the Lahontan Regional Water Quality Control Board. In 1984, 334 surveys were mailed and 202 were returned (60 per cent response rate).
In 1990, 534 surveys were mailed and 316 were returned (59 per cent response rate). In 2001, 657 surveys were mailed and 365 were returned (56 per cent response rate) (Sabatier et al. 2003).

The construction and power dimensions of the social construction framework were operationally defined by two questions. Both questions asked survey respondents to score more than ten groups on a scale from 0 to 100 on influence (power) and evaluation (construction). Power was defined as how influential a group was perceived to be on environmental policy in the Lake Tahoe community. Construction was defined in terms of how respondents would evaluate the performance of this group as it pertains to the type of Tahoe Basin they (the respondents) would like to see (see section 1 in the appendix for the exact wording of the questions). The ten groups that the respondents were asked to rate on influence and evaluation from 1984 to 2001 included the following: (1) the Tahoe Regional Planning Authority, (2) the gaming industry, (3) the Lahontan Water Quality Control Board, (4) the United States Forest Service (USFS), (5) land developers, (6) environmental groups, (7) local government, (8) business associations, (9) property rights groups, and (10) the United States Environmental Protection Agency (EPA). These questions were consistent across the three surveys, though the groups differed slightly between the earlier questionnaires (1984, 1990) and the 2001 questionnaire (see appendix for complete operational definition).

For the devil shift concept, three operational measures are required: evil, influence, and opponents. Since evil is defined to mean negative perceptions of the motives, reasonableness, and/or behavior of opponents (Sabatier et al. 1987), this article uses the same construction variable used for applying the social construction framework. The rationale is that the variable involves an assessment of the negativity of the performance of different groups, which is a form of behavior, of different groups. While this measure does not capture the full breadth of the evil concept, it does measure intergroup assessments of the behavior of opponents (and allies as well). In addition, this is nearly the exact measure used by Sabatier et al. (1987) for measuring the original version of the devil shift.

We also use the same measure for power in the devil shift theory as used for the social construction framework. The rationale is that power is measured as influence, which is the meaning of the concept in the social construction framework. Also, this is essentially the same measure of power used by Sabatier et al. (1987) in the original application of the devil shift.

Some readers may disagree with using the same variables to represent concepts from two different frameworks. We, however, consider this one of the insightful contributions of this study. This article compares two complementary approaches for analyzing data and understanding changes in group perceptions within changing contexts. Both frameworks have similar concepts in their respective propositions that can legitimately be measured by the same variable. The tenets of both frameworks, however, guide the research toward different modeling of these variables. The importance of this distinction is that even though we are using the exact same measures to analyze changes in perceptions of target population and the devil shift, the modeling and interpretation of the data differ.

The Lake Tahoe questionnaires did not directly ask respondents to identify opponents. Instead, this study measures opponents by belief differences, thereby
assuming that differences in beliefs equate with those an actor disagrees with and may perceive as an opponent. To identify opponents, a three-step process was taken. First, a pro-development scale was created (see appendix) that measures the extent to which actors are willing to trade off environmental protection for development in the Lake Tahoe Basin. The pro-development belief scale was then used to cluster all respondents into two belief-based coalitions. The k-mean cluster analysis found a pro-development coalition with 90 members and a mean of 5.1 in 1984, with 123 members and a mean of 5.0 in 1990, and with 131 members and a mean of 4.9 in 2001. A pro-environment coalition was also found with 110 members and a mean of 1.8 in 1984, with 189 members and a mean of 1.8 in 1990, and with 233 members and a mean of 1.9 in 2001. Respondents within the same belief coalition we call “allies”, and respondents in the other belief coalition we call “opponents”.

The second step was to assign the ten organizations measured by the power and construction variables to one of the two belief coalitions. The pro-development belief coalition includes land developers, property rights groups, local governments, the gaming industry, and business associations. The pro-environment belief coalition includes TRPA, the Lahontan Regional Water Quality Board, the US Forest Service, environmental groups, and the US EPA (see appendix for group means and percentage of affiliated respondents associated with both coalitions).

The third step was to model exaggeration. This was accomplished for power by taking the individual’s reported score for the power variable of an organization in an opposing coalition minus the overall mean score for that opponent by the entire sample of respondents. For example, in 2001 a member of the pro-development coalition might give environmental groups a power score of 90 but the population mean was 68, giving a positive 22 and thus suggesting that this individual is exaggerating the power of environmental groups. The construction variable was calculated by taking the mean score for the entire sample of respondents minus the individual score. Similar calculations were done for allied organizations in the same belief coalition to form the angel shift; that is, the tendency to exaggerate the power and virtues of allies. Since the devil shift was measured for five pro-development organizations and for five pro-environment organizations, it is possible for respondents to experience just the devil shift, just the angel shift, both, or neither.

To enhance the rigor in testing both propositions, several control variables are used and their complete operational definitions are in the appendix. The control variables include pro-development beliefs, commercial and private property ownership, sex, and education. Deriving propositions for these control variables is not this study’s intent. Instead these control variables are used to account for changes in the composition of respondents over time and rule out possible rival explanations.

Results

The analysis of the data is conducted in two phases. The first involves the analysis of changes in perceptions of target populations. This first analysis based on the social construction framework involves comparing power and social construction on the four-quadrant grid identified by Scheider and Ingram over time (Figure 1). To account for possible influences in the changing demographics in the Basin, multivariate techniques are used to assess shifts in both power and construction
over time (Tables 1 and 2). A similar approach is used to study the devil shift. First, a table is used to summarize changes in the devil shift over time and then controls are incorporated in a multinomial logit analysis to better assess the devil shift while accounting for changing demographics in the Tahoe Basin (Tables 3 and 4).

Changes in Perceptions of Target Populations

Figure 1 plots the changes in mean perception of the influence and social construction of groups in the adversarial context in 1984, the early collaborative context in 1990, and the mature collaborative context in 2001. The four quadrants in Figure 1 each signify one of the classifications within the social construction framework: advantaged, contenders, dependents, and deviants. The changes in mean scores for the power and construction variables for each group (represented by numbers) were plotted by dots and change over time by vector lines starting in 1984, then to 1990, and finally to 2001 (see Figure 1). The middle point of the scale for both power and social construction is used to demarcate the different quadrants.

Visual inspection of the plots indicates that most groups gained in power and social construction between 1984 and 2001 as the context shifted from adversarial to collaborative. In the adversarial context of 1984, three groups were characterized as advantaged, five as contenders, zero as dependents, and two as deviants. In the early collaborative contexts of 1990, four groups were characterized as advantaged, four as contenders, zero as dependents, and two as deviants. By the mature collaborative
<table>
<thead>
<tr>
<th></th>
<th>Winners</th>
<th>USFS</th>
<th>Developers</th>
<th>Gaming</th>
<th>US EPA</th>
<th>TRPA</th>
<th>Local</th>
<th>Lahontan</th>
<th>Env.</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Businesses</td>
<td>35.13***</td>
<td>5.34***</td>
<td>58.10***</td>
<td>63.50***</td>
<td>41.79***</td>
<td>79.68***</td>
<td>59.68***</td>
<td>67.43***</td>
<td>65.12***</td>
</tr>
<tr>
<td>Constant</td>
<td>(Year 84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 01</td>
<td>17.63***</td>
<td>12.04***</td>
<td>11.9***</td>
<td>10.80***</td>
<td>8.36***</td>
<td>7.06***</td>
<td>6.00**</td>
<td>5.05*</td>
<td>-0.55</td>
<td>-6.59***</td>
</tr>
<tr>
<td>Year 90</td>
<td>9.48***</td>
<td>2.24</td>
<td>-2.87</td>
<td>-1.02</td>
<td>1.56</td>
<td>4.85**</td>
<td>-1.88</td>
<td>-2.60</td>
<td>4.35*</td>
<td>3.70*</td>
</tr>
<tr>
<td>Controls</td>
<td>Pro-Dev</td>
<td>-2.63***</td>
<td>-0.48</td>
<td>-9.21***</td>
<td>-5.72***</td>
<td>1.04</td>
<td>1.46***</td>
<td>-4.45***</td>
<td>0.83</td>
<td>1.63***</td>
</tr>
<tr>
<td>Adv Deg</td>
<td>-2.15</td>
<td>-0.68</td>
<td>-0.90</td>
<td>0.77</td>
<td>-4.40*</td>
<td>-2.47</td>
<td>-1.98</td>
<td>-1.65</td>
<td>1.19</td>
<td>0.54</td>
</tr>
<tr>
<td>Own</td>
<td>-6.86**</td>
<td>-3.01</td>
<td>-9.28***</td>
<td>-2.9</td>
<td>-6.74***</td>
<td>-0.67</td>
<td>-1.19</td>
<td>-1.02</td>
<td>-2.61</td>
<td>-1.89</td>
</tr>
<tr>
<td>Own private</td>
<td>1.61</td>
<td>1.19</td>
<td>-2.4</td>
<td>0.90</td>
<td>-5.84**</td>
<td>1.00</td>
<td>-2.79</td>
<td>1.94</td>
<td>5.31***</td>
<td>1.08</td>
</tr>
<tr>
<td>property</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>2.71</td>
<td>4.169*</td>
<td>3.5*</td>
<td>3.22*</td>
<td>7.97***</td>
<td>2.13</td>
<td>1.16*</td>
<td>3.46*</td>
<td>4.44*</td>
<td>3.98*</td>
</tr>
<tr>
<td>Panel</td>
<td>2.61</td>
<td>5.53</td>
<td>-3.9</td>
<td>-2.07</td>
<td>4.65</td>
<td>2.28</td>
<td>5.96</td>
<td>2.39</td>
<td>8.24*</td>
<td>10.67**</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.14</td>
<td>0.06</td>
<td>0.40</td>
<td>0.19</td>
<td>0.06</td>
<td>0.06</td>
<td>0.13</td>
<td>0.03</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>$F(p$-value)</td>
<td>17(0.000)</td>
<td>7.3(0.000)</td>
<td>69(0.000)</td>
<td>25(0.000)</td>
<td>5(0.000)</td>
<td>74(0.000)</td>
<td>16(0.000)</td>
<td>40(0.000)</td>
<td>60(0.000)</td>
<td>12(0.000)</td>
</tr>
<tr>
<td>n</td>
<td>786</td>
<td>800</td>
<td>804</td>
<td>808</td>
<td>763</td>
<td>793</td>
<td>796</td>
<td>770</td>
<td>794</td>
<td>778</td>
</tr>
</tbody>
</table>

*p < 0.10, **p < 0.01, ***p < 0.001.
Table 2. Regression results for construction

<table>
<thead>
<tr>
<th>Winners</th>
<th>US EPA</th>
<th>TRPA</th>
<th>Local govt</th>
<th>Developers</th>
<th>Lahontan regional govt.</th>
<th>Gaming industry</th>
<th>Env. groups</th>
<th>Property rights grps</th>
<th>USFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Businesses</td>
<td>30.34***</td>
<td>38.00***</td>
<td>52.57***</td>
<td>47.32***</td>
<td>30.69***</td>
<td>52.61***</td>
<td>32.91***</td>
<td>52.66***</td>
<td>36.24***</td>
</tr>
<tr>
<td>Year 01</td>
<td>12.56***</td>
<td>9.19**</td>
<td>7.25***</td>
<td>6.15**</td>
<td>4.59*</td>
<td>4.57*</td>
<td>3.56*</td>
<td>-3.42*</td>
<td>-4.10*</td>
</tr>
<tr>
<td>Year 90</td>
<td>8.25***</td>
<td>-0.11</td>
<td>8.19***</td>
<td>3.73*</td>
<td>6.08**</td>
<td>0.98</td>
<td>2.53</td>
<td>-0.72</td>
<td>8.95***</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-dev</td>
<td>5.31***</td>
<td>-3.48***</td>
<td>-6.81***</td>
<td>5.05***</td>
<td>7.28**</td>
<td>-7.40***</td>
<td>8.14***</td>
<td>-13.00***</td>
<td>6.45***</td>
</tr>
<tr>
<td>Adv deg</td>
<td>-5.25**</td>
<td>-2.42</td>
<td>-2.72</td>
<td>-4.88***</td>
<td>-2.1</td>
<td>-1.77</td>
<td>0.42*</td>
<td>1.44</td>
<td>-3.88*</td>
</tr>
<tr>
<td>Own</td>
<td>-3.91*</td>
<td>-6.90**</td>
<td>-0.36</td>
<td>-2.20</td>
<td>-1.34</td>
<td>-4.75*</td>
<td>-1.87</td>
<td>-4.40*</td>
<td>3.58</td>
</tr>
<tr>
<td>Own private property</td>
<td>1.79</td>
<td>-5.31**</td>
<td>-3.09</td>
<td>-3.89**</td>
<td>-3.29*</td>
<td>1.69</td>
<td>-6.72***</td>
<td>3.34*</td>
<td>-0.80</td>
</tr>
<tr>
<td>Female</td>
<td>2.61</td>
<td>-5.46*</td>
<td>-1.09</td>
<td>1.91</td>
<td>-0.56</td>
<td>1.65</td>
<td>0.91</td>
<td>1.40</td>
<td>4.56*</td>
</tr>
<tr>
<td>Panel</td>
<td>1.34</td>
<td>1.24</td>
<td>1.81</td>
<td>1.53</td>
<td>-0.88</td>
<td>-1.28</td>
<td>-11.63**</td>
<td>2.11</td>
<td>13.58**</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.16</td>
<td>0.14</td>
<td>0.19</td>
<td>0.14</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.48</td>
<td>0.22</td>
</tr>
<tr>
<td>$F(p$-value)</td>
<td>19(0.000)</td>
<td>15(0.000)</td>
<td>23(0.000)</td>
<td>16(0.000)</td>
<td>29(0.000)</td>
<td>27(0.000)</td>
<td>29(0.000)</td>
<td>91(0.000)</td>
<td>28(0.000)</td>
</tr>
<tr>
<td></td>
<td>765</td>
<td>735</td>
<td>798</td>
<td>779</td>
<td>781</td>
<td>757</td>
<td>785</td>
<td>782</td>
<td>756</td>
</tr>
</tbody>
</table>

* $p < 0.10$, ** $p < 0.01$, *** $p < 0.001$.
In the context of 2001, four groups were characterized as advantaged, five as contenders, zero as dependent, and only one as deviant. The two groups that moved to a new category were the TRPA, which shifted from contenders to advantaged, and business groups which shifted from deviant to contenders.

Eight groups remained in the same quadrant from 1984 to 2001. Of these eight, all but two increased in power, construction, or both. Those that remained in the same quadrant but experienced gains on either axis include (i) the Lahontan Regional Water Quality Board and the US Forest Service in the advantaged category,
developers, the gaming industry, local government, and property rights groups in the contenders category, and (iii) the US EPA in the deviant category. Only two of these eight groups remained on the same quadrant but decreased on either axis: environmentalists in the advantaged category and property rights groups in the contender category.

The second step taken to test the social construction framework’s proposition is to explain the differences in the power and construction variables over time – in relation to a number of control variables – through a series of ordinary least square regression models. The purpose is less to derive estimates of actual changes in intergroup perceptions and more to assess whether the changes in intergroup perceptions from Figure 1 remain after controlling for changing demographics. Tables 1 and 2 provide ordinary least square regression outputs of the perception of a given group’s power and construction, respectively. The three datasets have been pooled, with the dependent variable being perceived power (Table 1) and construction (Table 2) of a given group. Among the independent variables are Year 1990 and Year 2001. These year variables indicate the extent of change from 1984 (the baseline year).

The remaining independent variables are controls including pro-development beliefs, advanced degree ($1 = yes, 0 = no$), part of the panel ($1 = yes, 0 = no$), and female ($1 = yes, 0 = no$), own commercial property ($1 = yes, 0 = no$), own private property ($1 = yes, 0 = no$). The panel variable controls for those 34 individuals who completed more than one survey. Pro-development beliefs are the only independent variable that is not dichotomous. It includes a battery of three questions asking respondents to express their disagreement to agreement on balancing environmental protection and economic development in the Lake Tahoe Basin that were originally asked on a seven-point variable, with $1 = strongly disagree$ and $7 = strongly agree$ and combined into a single variable by taking the mean. (See the appendix for factor loadings and Cronbach’s alphas for the pro-development belief variable across the three datasets.) The purpose of the controls is to ensure that changes in the Basin’s constructions cannot be explained by changes in the demographics in the Tahoe Basin; hence, if the year variables remain significant there would be evidence that as the Tahoe Basin shifted from adversarial to collaborative contexts so did constructions and power perceptions.

Since the environmental belief variable has been centered with its mean set at zero and the remaining independent variables are dichotomous, the constant is equal to the mean construction or power dependent variables for a given group in 1984 for a particular baseline individual. This baseline individual is a person with mean environmental beliefs, who does not have an advanced degree or own property of any sort, who is male, and not part of the panel. This baseline individual, for example, perceives the power of business as 35 (the constant value first column in Table 2). If this baseline individual were to own commercial property, the perceived power of businesses in 1984 would drop by 6.8 points. This same baseline individual would perceive the power of business by 18 more points in 2001 and by more than 9 points in 1990, from the 1984 baseline value of 35. To assess changes over time, we focus on the Year 1990 and 2001 variables. Positive values for the two Year variables indicate that a group is more powerful or constructed more positively in 1990 or 2001 compared to 1984. A negative value indicates that the group is less powerful and more negatively constructed in 1990 or 2001 compared to 1984.
The groups are ordered in Tables 1 and 2 by the extent that they gained (winners) or lost (losers) over time on the power and construction variable as indicated by the Year 2001 coefficient. For example, the group that gained the most in 2001 on the power variable (Table 2) was businesses, which gained about 18 points. Businesses were also the big winners on the construction variable (Table 3), gaining about 13 points. The groups that lost the most on the construction variable were the US Forest Service (five point drop) and for the power variable were property rights groups (seven point drop).

The results of the regression analysis indicate that there were statistically significant changes in the construction of groups between 1984 and 2001 as the policy context shifted from adversarial to collaborative. Inspection of the data suggests that while there were some changes in the construction between 1984 and 1990 of different groups, the more significant changes were observed between 1984 and 2001. For example, nine out of the ten Year 01 coefficients were statistically significant and positive in Table 2, whereas only three out of the ten Year 90 coefficients were statistically significant and positive. Only property rights groups were less powerful and constructed more negatively in 1990 and 2001, compared to 1984.

Among the control variables, pro-development beliefs were the most significant in terms of both power and construction. On the power dimension, pro-development beliefs tended to be negatively associated with the power dependent variable by groups likely to support pro-development goals. For example, the gaming industry, developers, local government, business associations, and property rights groups all are negatively associated with power. However, pro-development beliefs were positively associated with the power variable by environmental groups and TRPA. On the construction dimension, the opposite was true, with pro-development beliefs being positively associated with construction by all groups expected to support development (e.g., businesses, local government, developers, the gaming industry, and property right groups). Pro-development beliefs were negatively associated with the construction variable by all other groups.

An additional significant variable on the power dimension that revealed some peculiar trends was ownership of commercial property, which was negatively associated with businesses, developers, and the US EPA. Similar associations occur for the construction dimension. There was an observed pattern in the data indicating that groups classified as being in the contender category, primarily those identified with having pro-development beliefs, tend to rate themselves as not being powerful, but positively constructed. This finding is peculiar given that the framework suggests contenders are politically powerful and generally are negatively constructed by the community (Schneider and Ingram 1997: 108).

There are different ways to interpret the findings from Figure 1 and Tables 1 and 2. The first is optimistic. Clearly, Figure 1 shows that there have been mostly positive shifts toward the advantaged category and, thus, evidence that collaborative contexts are conducive to improved perceptions of groups compared to adversarial contexts (supporting the first proposition). The second is pessimistic; that is, given that almost all groups shifted in the same direction instead of converging it is quite possible that the relative influence and power among groups remained relatively stable through the transition to a more collaborative context. The third is a
combination of pessimism and optimism; that is, collaborative contexts improve group relations as most groups improve their power and perceptions, but also that long-standing positions of power and social construction remain. The correct interpretation is impossible to ascertain with the data at hand but, most importantly, even the pessimistic interpretation is more positive than negative. Most groups are reported as more influential and positively constructed even if they remained in the same relative position over time.

Finally, there are interesting shifts among the particular groups that require detailed explanation. For example, the rise of the TRPA likely reflects its central position in many of the management and policy decisions in the Tahoe Basin as the group has been involved in many of the collaborative efforts in the Tahoe Basin (Nechodom et al. 2000). Presumably, as the Tahoe Basin shifted more toward collaborative processes, the TRPA was viewed more like a neutral arbiter – especially after the successful orchestration of the consensus-based process in 1986/87 – than a constraint on economic development in the Tahoe Basin. Likewise, many of the nongovernment groups did not improve at all in position or were even reported to have decreased. Environmental groups and property rights groups both decreased in their perceived power and constructions from the adversarial context in 1984 to the mature collaborative contexts in 2001. The impacts of both groups on Tahoe Basin affairs most likely decreased as the need for lawsuits and advocacy decreased after 1986/87. Indeed, one property rights group in the Basin, the Tahoe-Sierra Preservation Council, was particularly influential prior to 1984 through filing many of the lawsuits (Kauneckis and Imperial 2005). The biggest shifts as the context moved from adversarial to collaborative were observed among developers, gamers, and businesses. Similar to TRPA, these organizations represent the business development industry in the Tahoe Basin and are usually invited to participate in the collaborative processes, most likely increasing the perception of their influence and positive construction. These observations are largely speculative, and we leave it to further studies to verify or refute the strength of these observations.

Finally, the changes in group perceptions after the 1986/87 consensus were more pronounced in 2001 than in 1990, suggesting that it may take more than a decade for group perceptions to change. This makes sense if we assume that group perceptions are rooted in belief systems that have been shown to be rigid and stable over time (Sabatier and Jenkins-Smith 1993).

The Advocacy Coalition Framework

Table 3 presents the number and percentages of respondents in a given year who are experiencing the angel shift, no devil or angel shift, mixed devil and angel shift, and the devil shift in 1984, 1990, and 2001. The angel shift and devil shift would occur if respondents’ perceptions of the influence and evaluation of their allies and opponents, respectively, is more than the entire population average. The mixed category would occur if a respondent were to report both an angel shift and devil shift. The prediction is that the number of people experiencing the devil shift will have decreased over time.

Table 3 provides partial support for the proposition, with the number of actors experiencing the devil shift decreasing from 53 per cent of respondents in 1984 to
44 per cent of respondents in 2001. This provides support that a shift from the adversarial to the collaborative context will be accompanied by an improvement in perceptions of allies and opponents.

Table 3 also indicates that the angel shift remains at a constant level (less than 10 per cent of respondents across time). While this angel shift remains relatively constant, the number of people experiencing a mixed angel and devil shift increases. One interpretation of this result is that, by open participation rules and shared access to authority and policymaking, collaborative policymaking empowers all sides of a debate and, therefore, actors are likely to see gains in a mix of both the angel shift as well as the devil shift. In other words, in such contexts, actors are likely to exaggerate their perceptions of the attributes of both allies and opponents.

The results from Table 3 are threatened by a lack of control of rival explanations that could explain the changes in the number of respondents experiencing the devil shift, angel shift, mixed, or neither. For example, respondent characteristics may have changed over time, thereby providing one explanation for the changes in the devil or the angel shift over time. To account for some of the rival explanations, a multinomial logit model was run to explain membership in the four categories as outlined in Table 4. Control variables include the same as found in Tables 1 and 2 with the addition of absolute pro-development beliefs. To create this variable, the absolute value of the mean-centered pro-development belief variable was calculated. Therefore, actors with either extreme pro-environment beliefs or pro-development beliefs score high on the scale and actors with moderate pro-development or pro-environment beliefs score near zero. The rationale for including this variable is that people with extreme beliefs are expected to experience greater devil shift than people with moderate beliefs.

The coefficients from the multinomial logit output are difficult to interpret meaningfully. Therefore, change in predicted probability for theangel shift (the letter “A” in Table 4), mixed angel and devil shift (M), devil shift (D), and no devil shift or angel shift (N) from changes in the independent variables from zero to one (0/1) or from a one standard deviation change (std). The mixed angel and devil shift can occur because it is possible for respondents to exaggerate the perceived power and behavior of their allies and their opponents. Asterisks (*) indicate a significant relationship \((p < 0.05)\) between a change in the range in an independent variable and a change in predicted probability between two categories of the dependent variable. Pseudo \(R^2\) is 0.06. The complete multinomial logit output with devil shift (D) as the baseline can be found in the appendix.

The results from Table 4 support the findings in Table 3, with year 2001 showing a 15 per cent increase in the mixed angel and devil shift category (M) compared to 1984. There is also a 10 per cent decrease in the probability for the devil shift in 2001 compared to 1984 as well as a similar drop in experiencing neither an angel shift nor a devil shift. The rise in the angel shift in 2001 is near zero. The results from Table 4 also indicate that the effect from 1984 to 2001 is greater than between 1984 and 1990. The implication is that it may take years for the results of collaborative policymaking to have a measurable effect on group perceptions.

For the controls, the absolute pro-development belief variable is a significant determinant of the devil shift. A one standard deviation increase in pro-development beliefs is associated with a 15 per cent increase in the likelihood of the experience of a
devil shift, holding all else equal. Few of the other control variables are significant with the exception of owning or not owning property, which is associated with nearly a 10 per cent decrease in mixed angel and devil shift.

In the final analysis, we find partial support for the devil shift proposition, with a decrease in the devil shift but not an increase in the angel shift over time. The results do find that respondents are more likely to experience both the angel and devil shift in collaborative policymaking than in adversarial policymaking – suggesting that collaboration tends to benefit both allies and opponents. In addition, there is a stronger effect in 2001 compared to 1990, which suggests that the effects of collaboration on group perceptions may take years to decades to take effect.

The findings in applying the advocacy coalition framework are similar to those of the social construction framework by suggesting the importance of time in measuring changes in group perceptions in collaborative processes. The likely explanation is that collaborative contexts, involving institutional arrangements that feature open and fair rules of participation, tend to benefit everyone, including a typical respondent’s allies and opponents.

Discussions of the Strengths and Weaknesses of the Theoretical Frameworks

The application and comparison of two theoretical frameworks help clarify their relative strengths and weaknesses. For the social construction framework, this application is possibly the first to use quantitative data from questionnaires to place the different groups into four quadrants spanning strong and weak power and positive and negative construction and then to track their relative shifts over time. For the advocacy coalition framework, this article provides a rare study of the devil shift (for others see Leach and Sabatier 2005; Sabatier et al. 1987). The two frameworks tell different stories describing how intergroup perceptions change with changing contexts. The application of both frameworks suggest that almost everyone benefited from the emergence of a collaborative context but the collaborative context possibly reinforced status quo positions with the social construction framework or increased both the devil and angel shifts with the advocacy coalition framework.

This application of both frameworks also exposes their weaknesses. For the social construction framework, placement on the quadrant (Figure 1) was conducted based on the overall mean among respondents. Different placements would certainly be possible if the general public were surveyed or, for example, if the placement were instead expressed as the perceptions of respondents with pro-environmental beliefs or with pro-development beliefs. One of the next steps in applying the social construction framework is to illustrate multiple depictions of the power and constructions of groups from the perspective of different groups and by members of the general public.

Additionally, this application of the social construction framework has its limitations. The literature on the social construction framework often describes the construction dimension in relation to the benefits and burdens of policy designs with specific normative labels of target populations. For example, past applications of the social construction framework might equate construction with “greed” or “deservedness” and then associate this construction with the distribution of a policy’s burdens (Hunter and Nixon 1999; Jensen 2005). The construction variable,
used in this analysis, does not measure the degree that groups are “greedy” or “deserving”. Instead, the construction scale spans a positive and negative evaluative continuum with a normative component. We consider these two dimensions, that is, the positive and negative continuum and the normative component, the constitutive dimensions for operationalizing the construction concept. Notwithstanding, we encourage conceptual clarity for the concepts in the social construction framework, guidelines for clear operational definitions, and efforts by other researchers to improve our measures.

For the advocacy coalition framework, the results demonstrate again that the devil shift concept is quantifiable and applicable as done by Sabatier et al. (1987) and Leach and Sabatier (2005). However, questions remain about the source of this devil shift. The concept operates at the individual level but then how does the devil shift upscale to the coalition level? Is one coalition member enough to say that a coalition is experiencing the devil shift or are all coalition members necessary? Another question is more theoretical: the original description of the devil shift concept does not discuss the negative pole of the angel shift. If actors can exaggerate the power and maliciousness of opponents they could also exaggerate the power and virtues of allies. The results indicate that both can exist even simultaneously by the same respondent. The next step in studying the devil shift is toward greater theoretical clarity about how the devil and angel shifts affect coalition stability and maintenance, learning, and policy change.

The application of the devil shift is hampered by the lack of a direct measure of an opponent and the operational measure for maliciousness. Ideally, the questionnaires would have included questions asking respondents to identify at least one if not all of their political opponents in water and land use policy in the Lake Tahoe Basin. The assumption instead is that respondents who disagree in their pro-development beliefs are opponents. While this measure is conceptually incomplete, we find our approach has face validity in identifying allies and opponents. Additionally, one of the main dimensions of the devil shift is maliciousness, which involves negative exaggerations of opponents’ motives, reasonableness, and behaviors. Evaluating the behavior of groups based on the type of Basin they would like to see captures some aspect that normatively evaluates opponents but does not capture reasonableness and motives. There is a need for better operational measures of the constitutive dimensions of the devil shift.

Conclusion

This study compares two theoretical frameworks and their respective approaches for understanding changes in group perceptions within adversarial and collaborative contexts. For the social construction framework, the results corroborate the proposition that the respondents will perceive groups more positively and powerfully after the emergence of collaborative policymaking. But the effects are true across all groups. Thus, one interpretation is that collaboration does not help those viewed as disadvantaged but instead all actor categories, thereby continuing the relative position of actors in terms of their perceived power and construction.

For the devil shift proposition from the advocacy coalition framework, the results support expectations for the decrease in the devil shift but not an increase in the
angel shift. The theoretical rationale, largely speculative, is that collaborative contexts involve fair negotiations and the eventual development of trust that erodes exaggerations in the malicious intents of opponents. In addition, since collaborative contexts often include shared access to authorities, the perceived power of opponents is kept in check and, therefore, the devil shift decreases. The results also indicate that collaboration leads to an increase in respondents experiencing a mix of both the angel and devil shifts. One interpretation of this result is that collaborative policymaking leads to increases in the perceived power of both allies and opponents and, thus, neutralizes degenerative competition in the political system.

The data used in this article span nearly two decades and are analyzed to compare group perceptions before and after the emergence of institutional arrangements that foster collaborative policymaking. Specifically, the surveys measure perceptions in an adversarial context in 1984, an early collaborative context in 1990, and in a mature collaborative context in 2001. The results show better intergroup perceptions in 2001 than in 1990. One of the implications is that changes in group perceptions are more likely to be measured in 2001 than in 1990; that is, it might take years to measure changes in group perceptions. Given this result, the likely explanation is that it simply takes time to overcome rigid belief systems and prior decades of political confrontations.

The over-time comparisons indicate that there is more support for collaborative contexts than not. Despite the concurrent strengthening of both angel and devil shifts and the relative stagnation of actors’ positions in Figure 1, intergroup perceptions are better in the collaborative than the adversarial contexts. The results provide tepid support for the arguments that collaborative subsystems lead to better political relations through increased and shared power and through positive views of other actors in the system (NRC 1996; Weber 1998; Beierle and Cayford 2002; Lubell 2004b; Sabatier et al. 2005).

This article contributes to the study of comparative public policy in several ways. First, comparison of the same public policy development over extended periods of time permits useful descriptive and explanatory insight into changing intergroup perceptions that cross-sectional studies of public policy most likely overlook. Second, the results of institutional arrangements that encourage collaboration are more positive than negative but with some ambiguous effects. This study demonstrates, for instance, that, after the emergence of collaborative contexts, there was evidence of improved intergroup perceptions but also of possible reinforcement of relative positions among actors. Third, the comparison of two complementary theoretical frameworks provides further evidence that theories direct the researcher toward certain types of observations, modeling, and interpretation (Sabatier 2007). Therefore, analyzing public policy is benefited by conducting theoretical comparisons rather than the use of just one.

References

United States Department of Agriculture (USDA), 2000, *Lake Tahoe Watershed Assessment: Volume 1*. Pacific Southwest Region of the USDA Forest Service, Tahoe Regional Planning Agency, University of California at Davis, University of Nevada at Reno, the Desert Research Institute, Reno, Nevada.

Appendix

Group Pro-Development Beliefs and Percentage Affiliation with Belief Coalitions

2001
Pro-development coalition (means, percentage of representatives in the pro-development coalition)
Land developers (4.0, 56%); Gaming industry (5.6, 75%); Local government officials (3.7, 60%); Property rights groups (4.6, 79%); Business associations (4.4, 81%)

Pro-environment coalition (means, percentage of representatives in the pro-environment coalition)
TRPA (2.3, 85%); Lahontan regional WQB: (1.6, 100%); US Forest Service: (2.1, 100%); Environmental groups: (1.9, 86%); U.S. EPA: (2.0, 100%)

1990
Pro-development coalition (means, percentage of representatives in the pro-development coalition)
Land developers (4.9, 73%); Gaming industry (5.4, 100%); Local government officials (3.8, 56%); Property rights groups (5.0, 83%); Business associations (4.6, 81%)

Pro-environment coalition (means, percentage of representatives in the pro-environment coalition)
TRPA (2.4, 84%); Lahontan regional WQB (1.8, 100%); US Forest Service (2.1, 91%);
Environmental groups (1.6, 97%); US EPA (1.0, 100%)

1984
Pro-development coalition (means, percentage of representatives in the pro-development coalition)
Land developers (4.9, 89%); Gaming industry (4.8, 100%); Local government officials (4.0, 59%); Property rights groups (5.7, 100%); Business associations (4.5, 65%)

Pro-environment coalition (means, percentage of representatives in the pro-environment coalition)
TRPA (2.8, 71%); Lahontan regional WQB (1.3, 100%); US Forest Service (2.3, 100%);
Environmental groups (1.6, 97%); US EPA (1.0, 100%)

Output from Multinomial Logit Output Explaining Devil Shift

Number of observations = 785. \(\text{Chi}^2(27) = 103.67. \) Prob > \(\text{Chi}^2 = 0.0000. \) Pseudo \(R^2 = 0.06. \) Baseline is the Devil Shift.
Using a thermometer scale, please record the score which indicates the influence of each of the following groups in determining what has happened in the Tahoe Basin over the past 4–5 years. A score of 100 indicated an extremely influential group, and a score of 0 indicates group with no influence at all.

1. Land developers and builders
2. Gaming industry
3. Local government officials
4. Tahoe Regional Planning Agency
5. Lahontan Regional Water Quality Control Board
6. US Forest Service
7. Tahoe Conservancy
8. Environmental interest groups, e.g. League to Save Lake Tahoe
9. Property rights groups, e.g. Tahoe-Sierra Preservation Council
1984 Operational Measure Construction

Although evaluation of an organization’s performance may differ according to situation, we are interested in your overall evaluation of the performance of each of the following organizations over the period from 1970 to present, with respect to the kind of Basin you would like to see. On a thermometer scale for which a score of 100 indicates an extremely good job, and score of 0 indicates an extremely poor job, please assign a score for each organization which best reflects your overall evaluation of that organization’s performance over the past 15 years.

1. Land developers and builders
2. Gaming industry
3. Local government officials
4. Tahoe Regional Planning Agency
5. Lahontan Regional Water Quality Control Board
6. US Forest Service
7. Tahoe Conservancy
8. Environmental interest groups, e.g. League to Save Lake Tahoe
9. Property rights groups, e.g. Tahoe-Sierra Preservation Council
10. Business associations, e.g. Chambers of Commerce
11. US Environmental Protection Agency

1990 Operational Measure Power

Using the thermometer below, please record the score which indicates the influence of each of the following groups in determining what has happened in the Tahoe Basin since 1980. A score of 100 indicates an extremely influential group, and a score of 0 indicated a group with no influence at all.

1. Land developers and builders
2. Gaming industry
3. Local government officials
4. Tahoe Regional Planning Agency
5. Lahontan Regional Water Quality Control Board
6. US Forest Service
7. Tahoe Conservancy
8. Environmental interest groups, e.g. League to Save Lake Tahoe
9. Property rights groups, e.g. Tahoe-Sierra Preservation Council
10. Business associations, e.g. Chambers of Commerce
11. US Environmental Protection Agency

1990 Operational Measure Construction

Although evaluation of an organizations’ performance may differ according to the situation, we are interested in your overall evaluation of the performance of each of
the following organizations over the period from 1980 to the present, with respect to the kind of Basin you would like to see. On a thermometer scale for which a score of 100 indicates an extremely good job, and a score of 0 indicates an extremely poor job, please assign a score for each organization which best reflects your overall evaluation of that organization’s performance over the past ten years.

<table>
<thead>
<tr>
<th></th>
<th>1. Land developers and builders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Gaming industry</td>
</tr>
<tr>
<td></td>
<td>3. Local government officials</td>
</tr>
<tr>
<td></td>
<td>4. Tahoe Regional Planning Agency</td>
</tr>
<tr>
<td></td>
<td>5. Lahontan Regional Water Quality Control Board</td>
</tr>
<tr>
<td></td>
<td>6. US Forest Service</td>
</tr>
<tr>
<td></td>
<td>7. Tahoe Conservancy</td>
</tr>
<tr>
<td></td>
<td>8. Environmental interest groups, e.g. League to Save Lake Tahoe</td>
</tr>
<tr>
<td></td>
<td>9. Property rights groups, e.g. Tahoe-Sierra Preservation Council</td>
</tr>
<tr>
<td></td>
<td>10. Business associations, e.g. Chambers of Commerce</td>
</tr>
<tr>
<td></td>
<td>11. US Environmental Protection Agency</td>
</tr>
</tbody>
</table>

2001 Operational Measure Construction

Below is a list of 17 organizations (or types of organizations) that have been active in the Basin since 1990. We are interested in, first, your perceptions of the influence of each in determining what has happened in the Tahoe Basin since 1990 and, second, your evaluation of the overall performance of each organization with respect to the kind of Basin that you would like to see. The two criteria may be largely independent of each other. It is entirely possible, for example, that you may evaluate positively what Organization X is trying to do, but view it as being relatively ineffective (uninfluential) in determining what is going on in the Basin. Likewise, you may view an organization as extremely influential, but dislike what is doing. Using any number from 0 to 100, please first record the influence score of each organization where 100 indicates an extremely influential group, and a score of 0 indicates a group with no influence at all. Then please provide an overall evaluation of each group in terms of seeking to bring about the kind of Basin you would like to see on a scale where 100 = extremely high rating to 0 = extremely low rating.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1. Land developers and builders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2. Gaming industry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Local government officials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Tahoe Regional Planning Agency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Lahontan Regional Water Quality Control Board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. US Forest Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Tahoe Conservancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Environmental interest groups, e.g. League to Save Lake Tahoe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Property rights groups, e.g. Tahoe-Sierra Preservation Council</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Business associations, e.g. Chambers of Commerce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. US Environmental Protection Agency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Nevada Department of Transportation</td>
</tr>
</tbody>
</table>
Operationalization of Pro-development Beliefs.

In 1984, 1990, and 2001, the following three questions were asked. The answers to these questions categorized respondents as possessing or lacking pro-development beliefs. Respondents were asked to "please circle the response that comes closest to expressing the extent of your agreement or disagreement with the item. 1 indicates strong disagreement and 7 indicates strong agreement" for each:

1. "Protection of water quality requires that regulations be rigorously enforced, even when they create hardships for property owners." (Scale reversed, Factor loadings: 1984 = 0.84, 1990 = 0.86, 2001 = 0.81);
2. "There is too much concern for restricting growth in the Basin and not enough concern for encouraging it." (Factor loadings: 1984 = 0.89, 1990 = 0.91, 2001 = 0.84);
3. "We cannot afford to let policies claiming to promote "environmental quality" prevent continued economic development in the Basin" (Factor loadings: 1984 = 0.89, 1990 = 0.88, 2001 = 0.87). Cronbach’s alpha measuring correlation between factors 1984 = 0.85, 1990 = 0.86, 2001 = 0.79.

Respondents were placed into one of six categories of affiliations. "Local Governments" included city and county government employees (elected, appointed, and civil servants), as well as employees of public utility districts (PUDs) and general improvement districts (GIDs). "Regional Governments" consists of board members and key staff of the Tahoe Regional Planning Agency, the Lahontan Regional Water Quality Control Board, and the Tahoe Conservancy, as well as some members of miscellaneous regional organizations, such as the Forest Health Consensus Group. Elected, appointed, and civil service employees of the federal government, the State of California, and the State of Nevada are included in "State/Federal Governments". The "Environmental Groups" category constitutes people whose primary connection in relation to Lake Tahoe issues is holding a leadership position in the League to Save Lake Tahoe or some other environmental non-profit, while "Business/Property Rights Groups" includes leaders of various chambers of commerce, homeowners associations, boards of realtors, and the Tahoe Sierra Preservation Council. Finally, "Scientists" is comprised of university researchers and employees of private consulting firms.

Operationalization of Advanced Degree. In 1984, 1990, and 2001, the following question was asked: "Please indicate the highest level of education you have attained:" (please check) 1 = Not a high school graduate; 2 = High school graduate; 3 = Some college; 4 = College graduate; 5 = Advanced degree.

Operationalization of Panel. We identified 34 individuals in the panel from past mailing lists.
Operationalization of Female. In 1984, the following question was asked: “Sex”: (please check) 1 = Female; 2 = Male. In 1990, the following question was asked: “Your Sex”: (please check) 1 = Female; 2 = Male. In 2001, the following question was asked: “Your Gender”: (please check) 1 = Female; 2 = Male.

Operationalization of Own Commercial Property. In 1984, 1990, and 2001 the following question was asked: “Do you own commercial or investment property in the Lake Tahoe Basin?” (please check) 1 = Yes; 2 = No.

Operationalization of Own Private Property. In 1984, the following question was asked: “What type of residence, if any, do you have in the Tahoe Basin?” (please check) 1 = Permanent residence; 2 = Second or vacation home residence; 3 = More than one Basin residence; 4 = Lot(s) with no dwelling; 5 = None. 1–4 were coded as a 1, and 5 was coded as a 0. In 1990 and 2001, the following question was asked: “What type of residence (if any) do you have in the Tahoe Basin?” (please check) 1 = Permanent residence; 2 = Lot with no dwelling; 3 = Both a principal and second home in the Basin; 4 = Second or vacation home residence; 5 = None. 1–4 were coded as a 1, and 5 was coded as a 0.