Lymphocytic Alveolitis Is Associated with the Accumulation of Functionally Impaired HIV-Specific T Cells in the Lung of Antiretroviral Therapy–Naive Subjects

C. Preston Neff1, Jennifer L. Chain1, Samantha MaWhinney2, Allison K. Martin1, Derek J. Linderman1, Sonia C. Flores1, Thomas B. Campbell1, Brent E. Palmer1, and Andrew P. Fontenot1,3

1Department of Medicine, 2Department of Biostatistics and Informatics, and 3Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado

Abstract

Rationale: Lymphocytic alveolitis in HIV-1–infected individuals is associated with multiple pulmonary complications and a poor prognosis. Although lymphocytic alveolitis has been associated with viremia and an increased number of CD8+ T cells in the lung, its exact cause is unknown.

Objectives: To determine if HIV-1–specific T cells are associated with lymphocytic alveolitis in HIV-1–infected individuals.

Methods: Using blood and bronchoalveolar lavage (BAL) cells from normal control subjects and untreated HIV-1–infected individuals, we examined the frequency and functional capacity of HIV-1–specific T cells.

Measurements and Main Results: We found that HIV-1–specific T cells were significantly elevated in the BAL compared with blood of HIV-1–infected individuals and strongly correlated with T-cell alveolitis. Expression of Ki67, a marker of in vivo proliferation, was significantly reduced on HIV-1–specific T cells in BAL compared with blood, suggesting a diminished proliferative capacity. In addition, HIV-1–specific CD4+ and CD8+ T cells in BAL had higher expression of programmed death 1 (PD-1) and lower cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression than those in the blood. A strong correlation between PD-1, but not CTLA-4, and HIV-1–specific T-cell proliferation was seen, and blockade of the PD-1/PD-L1 pathway augmented HIV-1–specific T-cell proliferation, suggesting that the PD-1 pathway was the main cause of reduced proliferation in the lung.

Conclusions: These findings suggest that alveolitis associated with HIV-1 infection is caused by the recruitment of HIV-1–specific CD4+ and CD8+ T cells to the lung. These antigen-specific T cells display an impaired proliferative capacity that is caused by increased expression of PD-1.

Keywords: HIV; T cells; programmed cell death 1 receptor; cytokines; lung

Pulmonary complications, even with the advent of highly active antiretroviral therapy (HAART), are the leading cause of morbidity and mortality in HIV-1–infected individuals (1). These complications include chronic obstructive pulmonary disease; pulmonary hypertension; and opportunistic lung infections, such as Pneumocystis pneumonia and tuberculosis (2). Lymphocytic alveolitis usually accompanies these complications and is associated with a poor prognosis (3–5). Although epidemiologic evidence supports the role of HIV-1 infection in the incidence of lung disease, it is unclear whether this stems from a paucity of CD4+ T cells or from dysfunctional antigen-specific T-cell responses.

Regulation of T-cell function is a delicate balance between costimulatory signals that activate T cells and inhibitory
At a Glance Commentary

Scientific Knowledge on the Subject: Lymphocytic alveolitis is common in HIV-1–infected individuals and is associated with pulmonary complications and a poor prognosis. Although lymphocytic alveolitis has been associated with viremia and an increased number of CD8+ T cells in the lung, the exact cause remains unknown.

What This Study Adds to the Field: This study demonstrates that HIV-1–specific T cells in the lung of HIV-1–infected subjects are associated with the development of lymphocytic alveolitis. These compartmentalized HIV-1–specific T cells are functionally compromised and express high levels of the coinhibitory receptor, programmed death 1, suggesting an inability of these cells to adequately control HIV-1 in the lung.

Methods

Study Population
BAL cells and peripheral blood mononuclear cells (PBMCs) were obtained from 21 untreated HIV-1–infected subjects and 17 HIV-1–seronegative subjects (see Table E1 in the online supplement). Median viral load in HIV-1–infected subjects was 72,400 copies of HIV-1 RNA per milliliter plasma (range, 418–2,070,000 HIV-1 RNA per milliliter plasma), and the median CD4+ T-cell count was 562 cells per microliter (range, 219–1,342 cells per microliter). Informed consent was obtained from each subject, and the protocol was approved by the Colorado Multiple Institutional Review Board.

Antigen-Specific T-Cell Stimulation, Immunofluorescence Staining, and Flow Cytometry
PBMCs were isolated from heparinized blood, and BAL was obtained as previously described (15, 17, 18). PBMCs and BAL cells were stimulated, washed, incubated with FcR-blocking reagent (Miltenyi Biotec, Bergisch Gladbach, Germany), stained, and analyzed as detailed in the online supplement. In certain experiments, PBMCs and BAL cells were labeled with Celltrace Violet (Life Technologies, Carlsbad, CA) as previously described (12, 19), and HIV-1 gag-specific T-cell proliferation was determined as detailed in the online supplement.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism (GraphPad, San Diego, CA).

Figure 1. Increased numbers of CD8+ T cells in the bronchoalveolar lavage (BAL) of HIV-1–infected subjects. (A) Lymphocytes in the BAL of HIV-1–infected and HIV-1–seronegative subjects were enumerated, and values for each subject are depicted as separate points. Bars represent the median value of each group. Statistical significance of differences between subject groups was determined by Mann-Whitney test. (B) CD4/CD8 T-cell ratios from the blood and BAL of HIV-1–infected and healthy control subjects were determined via flow cytometry. Statistical significance was determined by Wilcoxon matched-pairs signed-rank test. CD4/CD8 T-cell ratio in the blood (C) and BAL (D) was correlated with peripheral viral load. Confidence intervals (CI) are shown. Statistical significance was determined by Spearman correlation test.
CA), SAS version 9.3 (Cary, NC), and R (version 2.13; http://www.r-project.org/). Mann-Whitney, paired t test, and Spearman correlation analysis were used to determine significance between groups. For regression analyses, which combined blood and BAL outcomes on each subject, the SAS MIXED procedure with a random subject effect was used to model within-subject correlation (20). Sensitivity analyses to adjust for smoking used linear regression and mixed models with log transformations as appropriate. Smoking-adjusted results are mentioned when smoking significantly altered interpretation (see Table E2). A P value of less than 0.05 was considered statistically significant.

Results

CD8⁺ T Cells Are Recruited to the Lung of HIV-1–Infected Subjects

To assess the severity of lymphocytic alveolitis in HIV-1–infected individuals, we analyzed the absolute number of lymphocytes in BAL of HIV-1–infected and seronegative subjects. The median number of lymphocytes in BAL of HIV-1–infected individuals (20.1 × 10⁶ cells per liter; range, 7.6–64 × 10⁶ cells per liter) was significantly higher than in seronegative subjects (4.8 × 10⁶ cells per liter; range, 0.7–46 × 10⁶ cells per liter; P = 0.0003) (Figure 1A). The median CD4:CD8 T-cell ratio in BAL of HIV-1–infected individuals was significantly decreased compared with blood (median, 0.28 [range, 0.02–1.70] vs. 1.12 [range, 0.33–2.67]; P = 0.0002) (Figure 1B). Conversely, no significant difference in the CD4:CD8 T-cell ratio in BAL of HIV-seronegative subjects was observed (P = 0.84) (Figure 1B). A strong inverse correlation was found between the CD4:CD8 T-cell ratio in blood and peripheral viral load (r = −0.57; P = 0.009) (Figure 1C), whereas no significant correlation was seen between the CD4:CD8 T-cell ratio in BAL and peripheral viral load (r = −0.30; P = 0.20) (Figure 1D). These findings confirm previous studies (5) and demonstrate that HIV-1–induced lymphocytic alveolitis is primarily caused by CD8⁺ T cells.

HIV-1–Specific IFN-γ–Producing CD4⁺ and CD8⁺ T Cells Are Compartmentalized to the Lung

To evaluate the frequency of virus-specific T cells in the lung of HIV-1–infected individuals was signiﬁcantly higher than in HIV-infected subjects. Paired values for each subject are depicted as separate points and connected by a solid line. (C) Frequency of cytomegalovirus (CMV)-specific IFN-γ–producing CD4⁺ and CD8⁺ T cells in blood and BAL of HIV-1–infected subjects (n = 14) is shown. Statistical significance of differences between subject groups in B and C was determined by Wilcoxon matched-pairs signed-rank test.

![Figure 2. Frequencies of HIV-1 gag-specific IFN-γ-producing CD4⁺ and CD8⁺ T cells in the blood and bronchoalveolar lavage (BAL) of HIV-1-infected subjects.](image-url)
individuals, BAL cells were stimulated with overlapping HIV-1 gag peptides, and IFN-γ-producing T cells were detected using intracellular cytokine staining. Representative dot plots depicting the frequency of HIV-1-specific IFN-γ-producing CD4+ and CD8+ T cells from blood and BAL of an HIV-1-infected subject are shown in Figure 2A. HIV-1-specific IFN-γ-producing CD4+ T cells were increased 18.2-fold in BAL compared with blood in 21 subjects (median, 0.14 vs. 2.55%; P < 0.0001) (Figure 2B). HIV-1-specific IFN-γ-producing CD8+ T cells were also compartmentalized to the lung, representing a 4.5-fold increase in lung compared with blood (median, 0.47 vs. 2.08; P < 0.0001) (Figure 2B). Although HIV-1-specific IL-2–producing CD4+ and CD8+ T cells were detected in BAL of HIV-1-infected individuals, the frequency was low compared with IFN-γ-producing T cells and was not statistically different between blood and BAL (see Figure E1). Cytomegalovirus (CMV)-specific IFN-γ-producing CD4+ and CD8+ T cells were also observed; however, the frequencies did not differ between blood and BAL (Figure 2C).

To determine if HIV-1–specific T cells contribute to lymphocytic alveolitis in HIV-1-infected subjects, we examined the association between the frequency of HIV-1–specific IFN-γ-producing T cells and absolute number of BAL lymphocytes. A strong correlation between the frequency of total HIV-1–specific IFN-γ–producing T cells and absolute number of BAL lymphocytes was observed (r = 0.77; P < 0.0001; confidence interval [CI], 0.47–0.91) (Figure 3A, left). Similarly, we examined the relationship between the number of BAL lymphocytes and HIV-1–specific IFN-γ–producing CD4+ and CD8+ T cells. A weak positive correlation was seen between the frequency of HIV-1–specific IFN-γ–producing CD4+ T cells and absolute number of BAL lymphocytes (r = 0.43; P = 0.08; CI, –0.05 to 0.75) (Figure 3B, left), whereas a strong positive correlation was seen between the frequency of HIV-1–specific IFN-γ–producing CD8+ T cells and absolute number of BAL lymphocytes (r = 0.62; P = 0.006; CI, 0.20–0.85) (Figure 3B, right).

These data suggest that although both HIV-1–specific CD4+ and CD8+ T cells contribute to alveolitis, HIV-1–specific CTL are the primary drivers. Similar findings were observed when using percentage of BAL lymphocytes, although a stronger correlation was seen with HIV-1–specific IFN-γ–producing CD4+ T cells compared with HIV-1–specific IFN-γ–producing CD8+ T cells (see Figure E2). No significant correlations were seen between the frequency of CMV-specific IFN-γ–producing CD4+ or CD8+ T cells and number of BAL lymphocytes (Figure 3C) or combined frequencies of CMV-specific T cells and BAL lymphocytes (Figure 3A, right). Taken together, these findings suggest that HIV-1–specific IFN-γ–producing T cells are compartmentalized to the lung and are in part responsible for the lymphocytic alveolitis observed in HIV-1-infected subjects.
Proliferation of HIV-1–Specific CD4+ and CD8+ T Cells Is Decreased in the Lungs of HIV-1–infected Individuals

HIV-1–specific T cells in blood have a decreased proliferative capacity (21–23). To evaluate if HIV-1–specific IFN-γ–producing T cells in BAL have similarly decreased proliferation, we examined Ki67 expression, a nuclear protein that demarks recent proliferation, in a subset of 13 subjects. Representative dot plots depicting frequency of Ki67-expressing HIV-1–specific IFN-γ–producing CD4+ and CD8+ T cells from blood and BAL of an HIV-1–infected subject are shown in Figure 4A. Ki67 expression on total CD4+ T cells was not significantly different between blood (median, 2.2; range, 1.1–3.4) and BAL (median, 2.6; range, 0.5–6.2; \(P = 0.17 \)) in HIV-1–infected individuals or in seronegative subjects (\(P = 0.19 \)) (Figure 4B, left). A significantly lower Ki67 expression was seen in total CD8+ T cells in BAL compared with blood in HIV-1–infected subjects (median, 4.5 vs. 2.8; \(P = 0.001 \)) (Figure 4A, right) but not in seronegative individuals (\(P = 0.92 \)) (Figure 4C, left). HIV-1–specific IFN-γ–producing CD4+ (median, 5.8; range, 0.4–12.5) and CD8+ (median, 6.6; range, 0.8–27) T cells in BAL had significantly lower Ki67 expression compared with their counterparts in blood (CD4 median, 5.8; range, 0–23; \(P = 0.03 \) (CD8 median, 20; range, 3.3–37; \(P = 0.03 \)) (Figures 4B and 4C, right).

To determine whether the decreased proliferative capacity was restricted to HIV-1–specific T cells in BAL, we analyzed Ki67 expression on CMV-specific T cells in blood and BAL in 10 HIV-1–infected subjects. Although a trend toward decreased Ki67 expression in CMV-specific IFN-γ–producing CD4+ and CD8+ T cells in BAL compared with blood was seen, statistical significance was not achieved (Figures 4B and 4C, right). Overall, these data suggest that HIV-1–specific T cells are proliferation-incompetent and preferentially recruited to the lung.

Coinhibitory Receptor Expression Is Altered on HIV-1–Specific CD4+ and CD8+ T Cells in BAL

Coinhibitory molecule expression is elevated on HIV-1–specific T cells in blood and associated with diminished T-cell function and reduced control of HIV-1 replication (10–12). To evaluate whether inhibitory receptors are associated with reduced HIV-1–specific T-cell proliferation,

![Image](https://example.com/image.png)

Figure 4. Proliferation of HIV-1 gag-specific IFN-γ–producing T cells in blood and bronchoalveolar lavage (BAL) of HIV-1–infected individuals. (A) Representative dot plots showing the frequency of HIV-1 gag-specific IFN-γ–producing CD4+ and CD8+ T cells expressing Ki67 in blood and BAL are shown. (B) Frequency of total (left) and virus-specific (right) CD4+ T cells from the blood and BAL of 10 seronegative and 13 HIV-1–infected subjects expressing Ki67 is shown. (C) Ki67 expression in total (left) and virus-specific (right) CD8+ T cells from the blood and BAL of seronegative and HIV-1–infected subjects is shown. Statistical significance of differences between blood and BAL was determined by a paired t test. CMV = cytomegalovirus.
in the lung, we examined PD-1 expression on T cells in BAL from HIV-1–infected individuals. Representative dot plots depicting PD-1 expression on total and HIV-1–specific CD4+ and CD8+ T cells from blood and BAL of an HIV-1–infected subject are shown in Figure 5A. Mean fluorescence intensity of PD-1 on total CD4+ (2,038; range, 728–4,398) and CD8+ (1,944; range, 874–6,889) T cells in BAL was significantly elevated compared with its expression on CD4+ (1,019; range, 676–1,683; \(P < 0.0001 \)) and CD8+ (1,483; range, 518–4,793; \(P < 0.0001 \)) T cells in blood (Figure 5B). However, after adjusting for smoking, PD-1 expression on CD4+ T cells in BAL was no longer significantly different compared with blood (\(P = 0.24 \) because of a 23.4% (0.36–49.8%) higher PD-1 expression on CD4+ T cells in BAL for smokers compared with nonsmokers (see Figure E3A). PD-1 expression on BAL CD8+ T cells was not different between smokers and nonsmokers (see Figure E3C).

Percentage of T cells expressing PD-1 was also examined, and a similar expression pattern was seen (see Figure E4). Because of increased PD-1 expression on BAL T cells, no significant differences were seen in PD-1 expression on total CD4+ and CD8+ T cells in BAL from normal subjects and HIV-1–infected individuals (see Figure E5).

PD-1 expression on BAL HIV-1–specific IFN-\(\gamma \)–producing CD4+ (median, 2,526; range, 1,099–8,000) and CD8+ (median, 2,361; range, 1,126–6,069) T cells was even higher compared with HIV-1–specific T cells in blood (CD4+ median, 1,398; range 728–5,111; \(P = 0.0005 \)) (CD8+ median, 1,773; range, 942–4,038; \(P = 0.0012 \)) (Figure 5C). After adjusting for smoking, PD-1 expression on HIV-1–specific IFN-\(\gamma \)–producing CD4+ T cells in BAL compared with blood remained statistically significant (\(P = 0.0004 \)). In addition, PD-1 expression on HIV-1–specific IFN-\(\gamma \)–producing CD4+ and CD8+ T cells was not different in smokers and nonsmokers (see Figures E3B and E3D). PD-1 expression on CMV–specific IFN-\(\gamma \)–producing T cells in blood and BAL was not significantly differentially expressed in these two compartments (see Figure E6).

Although PD-1 is expressed by both CD4+ and CD8+ T cells, CTLA-4, another coinhibitory receptor, preferentially plays a role in CD4+ T cells (10). Therefore, we examined CTLA-4 expression on CD4+ T cells in blood and BAL from 13 subjects. Expression of CTLA-4 was significantly increased on total CD4+ T cells in BAL compared with blood (\(P < 0.0001 \)) (Figure 6A). Conversely, HIV-1–specific IFN-\(\gamma \)–producing CD4+ T cells in BAL lose CTLA-4 expression compared with blood (\(P = 0.006 \)) (Figure 6B), in contrast...
to increased PD-1 expression on HIV-1–specific T cells in BAL. This differential expression of PD-1 and CTLA-4 on HIV-1–specific CD4⁺ T cells in BAL suggest that each coinhibitory receptor has a distinct role in regulating immune responses in the lung.

PD-1 Mediates Proliferation of HIV-1–Specific CD4⁺ and CD8⁺ T Cells in the Lungs

Coinhibitory receptor pathways mediate T-cell exhaustion and limit HIV-1–specific T-cell proliferation in blood during chronic HIV infection (7, 11, 24). To determine if reduced proliferation in lung was correlated with PD-1 and/or CTLA-4 expression, we compared receptor expression on HIV-1–specific IFN-γ-producing T cells with Ki67 expression using nine subjects from whom PD-1, CTLA-4, and Ki67 expression was assessed. Consistent with previous reports (11), Ki67 expression on antigen-specific T cells in blood was inversely correlated to PD-1 expression ($r = -0.70; P = 0.034$) (data not shown). Conversely, PD-1 and Ki67 expression on T cells in BAL were not statistically correlated ($r = -0.24; P = 0.49$) because of uniform high PD-1 and low Ki67 expression. However, combining PD-1 and Ki67 expression from blood and BAL T cells and using a statistic model that accommodates within-subject correlation, a negative relationship was seen between PD-1 and Ki67 expression on HIV-1–specific IFN-γ–producing CD4⁺ T cells ($P = 0.02$) (Figure 7A). Similar findings were observed when we modeled the relationship between the expression of PD-1 and Ki67 on HIV-1–specific IFN-γ–producing CD4⁺ T cells in blood and BAL ($P = 0.04$) (Figure 7B). Conversely, CTLA-4 expression was not significantly correlated to Ki67 expression in blood ($P = 0.52$) or in lung ($P = 0.86$) and did not show a trend when blood and BAL cells were analyzed together ($P = 0.61$) (Figure 7C). These combined data suggest that PD-1 expression is driving the diminished T-cell proliferation in the lung, whereas CTLA-4 plays a minimal role in HIV-1–specific T-cell proliferation.

To determine if PD-1 expression was a marker of activation or exhaustion, we performed proliferation studies with blockade of the PD-1/PD-L1 pathway using PBMCs and BAL cells from eight HIV-1–infected subjects. Compared with expansion following stimulation with HIV-1 gag peptides, addition of PD-L1 blockade resulted in a significantly greater expansion of HIV-1–specific CD4⁺ T cells in blood ($P = 0.02$) and BAL ($P = 0.01$) (Figure 8A). Similar findings were seen for blood and BAL CD8⁺ T cells (Figure 8B). The greater percentage of proliferating HIV-1–specific CD4⁺ and CD8⁺ T cells with gag peptides alone in BAL compared with blood reflects the higher percentage of HIV-1–specific IFN-γ–producing T cells in BAL (Figure 2B). Interestingly, when comparing

![Figure 6. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in total and HIV-1–specific CD4⁺ T cells in blood and bronchoalveolar lavage (BAL) of HIV-1–infected subjects. Mean fluorescence intensity (MFI) of CTLA-4 expression on total (A) and HIV-1 gag-specific IFN-γ–producing (B) CD4⁺ T cells from the blood and BAL of HIV-1–infected subjects is shown. Statistical significance of differences between blood and BAL was determined by a paired t test.](image)

![Figure 7. Prediction of Ki67 on HIV-1–specific CD4⁺ and CD8⁺ T cells in blood and bronchoalveolar lavage (BAL) of HIV-1–infected subjects with programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression. The expression of Ki67 is predicted by PD-1 on HIV-1 gag-specific IFN-γ–producing CD4⁺ (A) and CD8⁺ (B) T cells in the blood (black circles) and BAL (red circles) of HIV-1–infected subjects is shown. (C) The expression of Ki67 predicted by CTLA-4 in HIV-1 gag-specific IFN-γ–producing CD4⁺ T cells in the blood (black circles) and BAL (red circles) of HIV-1–infected subjects is shown. A mixed effects model was used to determine significance while accommodating for within-subject correlation. For each increase of 1,000 PD-1 mean fluorescence intensity (MFI) we saw a decrease of 2.32% (confidence interval [CI], 0.6–4.45%) and 7.58% (CI, 0.46–14.7%) HIV-1 gag-specific IFN-γ–producing CD4⁺ and CD8⁺ T cells expressing Ki67, respectively. For each increase of 1,000 CTLA-4 MFI, a 0.37% (CI, −1.24 to 2.0%) increase in HIV-1 gag-specific IFN-γ–producing CD4⁺ T cells expressing Ki67 was observed. PBMC = peripheral blood mononuclear cell.](image)
A strong positive correlation between the T cells in the lung are significant. Data shown in Figure 8A, B, and C represent the fold change of CD4+ and CD8+ T-cell proliferation induced by PD-1/PD-L1 pathway blockade in blood and bronchoalveolar lavage (BAL) after 6 days of stimulation with HIV-1 gag peptides in the presence or absence of anti-PD-L1 mAb. (A) Percentage of CellTrace Violet™-labeled CD4+ T cells in blood and bronchoalveolar lavage (BAL) after 6 days of stimulation with HIV-1 gag peptides in the presence or absence of anti-PD-L1 mAb. Data shown in A and B are minus background proliferation. (B) Fold change of CD4+ and CD8+ T-cell proliferation induced by PD-1/PD-L1 pathway blockade in blood and BAL is shown. Statistical significance of differences between blood and BAL was determined by a paired t test.

Discussion

The aim of this study was to determine the underlying mechanism of lymphocytic alveolitis, which has been associated with a poor prognosis in HIV-1–infected individuals. As previously described (3–5), our HAART-naive HIV-1–infected subjects had increased numbers of lymphocytes in BAL. We hypothesized that HIV-1–associated lymphocytic alveolitis is caused by an influx of HIV-1–specific T cells. We found that HIV-1–specific T cells in the lung are significantly increased compared with blood, and a strong positive correlation between the frequency of HIV-1–specific IFN-γ-producing CD4+ and CD8+ T cells and absolute number of lymphocytes in BAL was seen. Furthermore, phenotypic and functional analysis of these cells in BAL showed an inverse correlation between PD-1 expression and in vivo T-cell proliferation. Taken together, these data suggest that lymphocytic alveolitis of HIV-1–infected subjects is associated with recruitment of dysfunctional HIV-1–specific T cells to the lung.

The prevalence of lymphocytic alveolitis is increased in individuals with chronic HIV-1 infection and is associated with pulmonary complications (5). Consistent with these reports, lymphocytic alveolitis with an increase in CD8+ T cells was observed in our HIV-1–infected cohort. Preferential recruitment of CD8+ T cells to the lung is in part responsible for the imbalance in the CD4:CD8 T-cell ratio that has been associated with HIV-1–specific CTLs and disease progression (5, 25). Early studies hypothesized that CTL activity was directed against HIV-1–infected alveolar macrophages that coexpress HIV-1 antigens and CD4 (26). Recent studies have demonstrated that alveolar macrophages in HIV-1–infected patients with alveolitis secrete CXCR3 ligands that are capable of inducing T-cell chemotaxis (27). Furthermore, a significant positive correlation between macrophage inflammatory protein-1α, a cytokine produced by alveolar macrophages and chemotactic for CD8+ T cells, and CD8+ T-cell alveolitis has been shown (28).

Although these studies suggest that the influx of virus-specific T cells, and more specifically CD8+ T cells, causes lymphocytic alveolitis, an association between HIV-1–specific T cells and alveolitis had not been demonstrated until now. A correlative analysis revealed a strong relationship between the frequency of total HIV-1–specific T cells and absolute number of BAL lymphocytes, whereas no significant correlation with CMV-specific T cells was observed. These data suggest that the influx of HIV-1–specific T cells, and more specifically CD8+ T cells, is closely linked to lymphocytic alveolitis in HIV-1–infected individuals.

The influx of HIV-1–specific T cells into the lung is presumably caused by the continued presence of HIV-1. This is supported by the finding that HIV-1 viral copies per milliliter BAL directly correlates with the percentage of BAL lymphocytes, especially when peripheral CD4+ T-cell count is less than 200 cells per microliter (5). After initiation of HAART, HIV-1 viral load and BAL CD8+ lymphocytes decrease, suggesting that viral burden is a direct cause of increased CD8+ lymphocytes in the lung (29). It has been shown that alveolar macrophages, CD4+ and CD8+ T cells, and fibroblasts (30, 31) in the lung can harbor HIV-1. Although the frequency of infected CD4+ T cells in BAL is not higher than in blood (32), alveolar macrophages, particularly small ones, are preferentially infected, providing a focus of HIV-1 infection in the lung that drives the influx of HIV-1–specific T cells (33). Alveolar macrophages are long-lived and resistant to apoptosis so it is plausible that they can serve as cellular reservoirs of HIV-1 (34). Furthermore, in ART-treated macaques, the second largest burden of simian immunodeficiency virus RNA in the body after lymphatic tissues was the lung (35). Taken together, our findings suggest that elevated levels of HIV-1–specific T cells in the lung are likely caused by an active focus of HIV-1 infection.

HIV-1–specific T cells in the blood are functionally impaired during chronic HIV-1 infection (21–23, 36), which is in part caused by exhaustion and overexpression of inhibitory receptors (11–13). These exhausted T cells lose effector functions and exhibit antigen-independent homeostatic proliferation (37). The severity of T-cell dysfunction directly correlates with expression of inhibitory receptors, particularly PD-1. However, it is unknown if these findings from circulating T cells translate to those residing in the lung. For example, circulating hepatitis C virus–specific CD8+ T cells responded to PD-1 pathway blockade in vitro, whereas those from the liver were unresponsive (38). We have shown that HIV-1–specific T cells in lymph nodes express higher levels...
of PD-1 compared with blood (12). These findings, although from liver and lymph node, illustrate that differences in immune regulation of T cells exist in different body compartments. Beryllium-specific CD4+ T cells in BAL of patients with chronic beryllium disease have significantly higher PD-1 expression than their counterparts in blood, and blockade of the PD-1 pathway augmented beryllium-induced T-cell proliferation (19).

Here, we found a similar PD-1 expression pattern on HIV-1-specific T cells, and blockade of the PD-1 pathway also augmented proliferative capacity. This was especially true for HIV-1-specific CD8+ T cells in BAL. These findings show that PD-1 is a marker of exhaustion as opposed to activation. We also found that when incubated with gag peptides alone there was a higher percentage of proliferating HIV-1–specific CD4+ and CD8+ T cells in BAL compared with blood, which is a direct reflection of the 18.2- and 4.5-fold higher frequencies of HIV-1–specific CD4+ and CD8+ T cells, respectively, in the lung compared with blood. In addition, an inverse correlation between PD-1 and Ki67 on HIV-1–specific T cells was seen, suggesting that the PD-1 pathway plays the predominant role in regulating proliferation in the lung.

Before development of advanced HIV-1–induced CD4+ T-cell depletion, our data indicate that HIV-1–induced lymphocytic alveolitis is driven by accumulation of dysfunctional HIV-1–specific T cells in the lung, suggesting that these cells are recruited to the lung rather than undergoing in vivo expansion. Although our cohort consisted of untreated HIV-1–infected subjects, which may not translate with treated patients, these findings could shed light into other lung complications that persist with treatment. Finally, our findings provide insight into mucosal T-cell responses to HIV-1 infection, the role of T-cell exhaustion in lung disease, and their implications for therapeutic coinhibitory blockade during chronic infection.

Author disclosures are available with the text of this article at www.atsjournals.org.
26. Autran B, Mayaud CM, Raphael M, Plata F, Denis M, Bourquin A,
Guillon JM, Debre P, Akoun G. Evidence for a cytotoxic T-
lymphocyte alveolitis in human immunodeficiency virus-infected
27. Agostini C, Facco M, Siviero M, Carollo D, Galvan S, Cattelan AM,
Zambello R, Trentin L, Semenzato G. CXC chemokines IP-10 and
mig expression and direct migration of pulmonary CD8+ /CXCR3+
t cells in the lungs of patients with HIV infection and T-cell alveolitis.
28. Denis M, Ghadirian E. Alveolar macrophages from subjects infected
with HIV-1 express macrophage inflammatory protein-1 alpha (MIP-1
29. Twigg HL III, Knox KS. Impact of antiretroviral therapy on lung
30. Semenzato G, Agostini C, Chieco-Bianchi L, De Rossi A. HIV load in
highly purified CD8+ T cells retrieved from pulmonary and blood
31. Costinuk CT, Jenabian MA. The lungs as anatomical reservoirs of HIV
HIV-specific T cells are associated with preservation of mucosal CD4
33. Jambo KC, Banda DH, Kankwata AM, Sukumar N, Allain TJ,
Heyderman RS, Russell DG, Mwandumba HC. Small alveolar
macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol 2014;7:
1116–1126.
34. Tan J, Sattentau QJ. The HIV-1-containing macrophage
405–412.
35. Horike M, Iwami S, Kodama M, Sato A, Watanabe Y, Yasui M, Ishida Y,
Kobayashi T, Miura T, Igarashi T. Lymph nodes harbor viral
reservoirs that cause rebound of plasma viremia in SIV-infected
macaques upon cessation of combined antiretroviral therapy.
36. Migueles SA, Weeks KA, Nok E, Berkley AM, Rood JE, Osborne CM,
Defective human immunodeficiency virus-specific CD8+ T-cell
polyfunctionality, proliferation, and cytotoxicity are not restored by
37. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V,
Subramaniam S, Blattman JN, Barber DL, Ahmed R. Molecular
signature of CD8+ T cell exhaustion during chronic viral infection.
38. Nakamoto N, Kaplan DE, Coleclough J, Li Y, Valiga ME, Kaminiski M,
of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1
expression and compartmentalization. Gastroenterology 2008;134: