Zika Virus Outbreak in the Americas

J. David Beckham MD
Associate Professor of Medicine
Division of Infectious diseases
University of Colorado SOM
Learning Objectives

• Understand the pathogenesis of West Nile virus infection in human cases of acute encephalitis.
• Obtain a basic understanding of the emerging field of Zika virus epidemiology and pathogenesis research.
• Describe the basic principles and interactions between viral life cycles, environment, and novel host interactions that drive the emergence of novel viral pathogens.
Outline

• Emerging Infections
 – Evolution of viruses
• Zika Virus history
• Zika Virus Clinical features
• Next steps for Zika virus
 – Vaccine development
West Nile Virus Transmission Cycle

West Nile virus

Mosquito vector

Bird reservoir hosts

Incidental infection

Incidental infection

University of Colorado
Anschutz Medical Campus
Zika Virus Transmission Cycles

Sylvatic (jungle) cycle

Epidemic (urban) cycle
Zika Forest, Uganda
Concept for EID

• RNA viruses are engineered by evolution to adapt to changing environments

• As humans continue to encroach on or change established RNA virus niches, the world of RNA viruses will continue to adapt to new niches that sometimes involve humans.
Zika virus

- **Arthropod-borne virus (arbovirus)**

- *Flavivirus* viral genus in *Flaviviridae* viral family
 - Includes dengue, West Nile, and yellow fever viruses
 - Positive-sense, single-stranded, enveloped, icosahedral, ribonucleic acid (RNA) viruses

- Transmitted primarily by certain *Aedes* spp. mosquitoes

- Zika virus “disease” is when infection with Zika virus causes clinical symptoms
A lot of viruses

Family Flaviviridae contains over 70 viruses!
Outline

- Emerging Infections
 - Evolution of viruses
- Zika Virus history
- Zika Virus Clinical features
- Next steps for Zika virus
 - Vaccine development
Origins of Zika virus

- Small forest between swamp and Kampala-Entebbe road
Zika Forest, Uganda
Zika Virus Identified

- Yellow fever virus researchers built tree platforms in canopy of Zika Forest.
- Put “sentinel” rhesus monkeys on platforms.
- Measured temperature of rhesus monkeys daily.
- Rhesus 766 had a temperature of 39.7 on April 18, 1947.
- Isolated a novel virus from serum which they named “Zika virus”.

FIG. 1

TEMPERATURE RECORD

Rhesus 766
Zika virus 1947-2006

- Only 14 human cases of Zika virus disease were documented
 - One Zika Forest worker in Uganda in 1964
 - Five children in Nigeria during 1968–1975
 - A laboratory accident infecting one researcher in 1973
 - Seven inpatients in Indonesia during 1977–1978

- All with self-limited, acute febrile illnesses

- Likely many more undiagnosed
Zika Virus Disease Outbreak-Yap State, 2007

- First documented human outbreak of Zika virus disease
- 185 with acute onset of rash, arthralgia, or conjunctivitis
 - 49 confirmed, 59 probable, 72 suspected Zika virus infections*

*Five people were ruled out for Zika virus infection
Zika Virus Disease Outbreak- Yap State 2007

- All age groups and both sexes were affected
- Household and seroprevalence survey performed
- Estimated 73% (95% CI: 68–77%) of Yap residents infected
- Estimated 19% of those infected had symptoms attributable to Zika virus infection
- No reports of microcephaly or other neurologic conditions

How the Zika virus spread

- **Active transmission**
- **Known previous transmission**
- **Antibodies also detected**

2013
Epidemic on French Polynesia

2014-16
Zika appears in northern Brazil and spreads through the Americas

1960
First human cases in Nigeria

1947
First documented in monkeys in Uganda

2007
Epidemic on island of Yap, Micronesia

1970s
Cases in Pakistan, India, Malaysia, and Indonesia

SOURCE: WHO and Lancaster University, Feb.1
Zika virus in Florida
Zika virus Disease

- **Cases in US (CDC)**
- Locally acquired mosquito-borne cases: 128
- Travel associated cases: 3,807
- All Cases: US and DC: 3,936
 - Sexually transmitted: 32
 - GBS: 13
 - Pregnant women: 878

- **US Territories**: Locally acquired cases: 25,871
 Pregnant Women: 1,806

- **Pregnancy Outcomes**: US- 23 birth defects, 5 pregnancy losses

Mosquito Transmission by *Aedes* sp.

- Most common method of Zika virus transmission
- Primarily *Aedes aegypti*; secondarily *Aedes albopictus*
- “Domesticated” mosquitoes; evolved to live near humans
Aedes aegypti Predicted Geographic Range

Aedes albopictus Predicted Geographic Range

Zika Virus-Mosquito Transmission Cycles

Zika Virus Transmission Cycles

Sylvatic (jungle) cycle

Epidemic (urban) cycle
Other Mechanisms of Transmission

• Sexual Transmission
• Maternal-Fetal Transmission (not breastfeeding)
• Blood Transfusion
Outline

• Emerging Infections
 – Evolution of viruses
• Zika Virus history
• Zika Virus Clinical features
• Next steps for Zika virus
 – Vaccine development
Symptomatic Rate and Incubation Period

- Symptomatic rate of 20% estimated from Yap outbreak
- May be higher in different settings with different populations
- Unknown incubation period, but likely a few days to up to two weeks

Zika virus Disease

- Cases in US (CDC)
- Locally acquired mosquito-borne cases: 43
- Travel associated cases: 3,314
- All Cases: US and DC: 3,358
 - Sexually transmitted: 28
 - GBS: 8
 - Pregnant women: 749

- US Territories: Locally acquired cases: 19,706
 - Pregnant Women: 1,348
- Pregnancy Outcomes: US-20 birth defects, 5 pregnancy losses
 - US Territories: unknown (only 1 reported)
Zika clinical features in Adults

- Only ~20% of infected adults develop symptoms
- Fever 101-103F
- Rash
- Conjunctivitis
- Body and joint aches
- Symptoms last about 1 week
- Complications: Guillain-Barre Syndrome, sexual transmission, vertical transmission (Fetal infection)
CDC’s Response to Zika

PREGNANT and living in an area with Zika?

What we know about Zika

- Zika can be passed from a pregnant woman to her fetus.
- Infection with Zika during pregnancy is linked to birth defects in babies.
- Zika is spread mostly by the bite of an infected Aedes species mosquito.
 - These mosquitoes are aggressive daytime biters. They also bite at night.
- There is no vaccine to prevent or medicine to treat Zika.
- Zika can be spread by a man to his sex partners.

What we don’t know about Zika

- When during pregnancy Zika might cause harm to the fetus.
- How likely it is that Zika infection will affect your pregnancy.
- If your baby will develop birth defects from the infection.

Symptoms of Zika

Most people with Zika won’t even know they have it. The illness is usually mild with symptoms lasting for several days to a week.

The most common symptoms of Zika are

- Fever
- Rash
- Joint Pain
- Red eyes
Zika Virus and Microcephaly: Examples

Photos of microcephalic infants in Brazil courtesy of AP Photo/Felipe Dana and Ueslei Marcelino/Reuters
Zika Virus and Microcephaly: CT Findings

- Photos show CT images of microcephalic infants.
Zika Virus and Ophthalmologic Birth Defects

- Case series of infants born to mothers with presumed Zika virus infection

Zika Virus and Guillain-Barré Syndrome (GBS)

- Increase in GBS incidence in French Polynesia, Brazil, Colombia, and El Salvador during outbreaks

- Case-control series from French Polynesia showed 100% cases with Zika virus neutralizing antibodies versus 56% controls (odds ratio = 34)

- Study results based on antibody testing

- Predominantly acute axonal motor neuropathy (AMAN)

Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

- Zika virus nucleic acid usually detectable in serum 0–7 days post symptom onset by RT-PCR
- May be detected longer in urine, saliva, and semen
- RT-PCR can also be used on CSF and amniotic fluid
- Very specific test for Zika virus presence
- Trioplex RT-PCR for dengue, chikungunya, and Zika viruses

Antibody Testing and Limitations

- Zika virus infection usually results in IgM production by 7 days

- Flavivirus antigen cross-reactivity common with IgM tests
 - Positive Zika virus IgM = recent flavivirus infection (may not be Zika)

- Neutralizing antibody tests (e.g., PRNTs) more specific
 - Dilute patient’s serum to see how well it neutralizes each virus
 - Less useful in flavivirus endemic areas due to original antigenic sin

- Paired acute and convalescent samples recommended
 - Allows for detection of a 4-fold change in titers

Need for a Zika vaccine - 2016

The good

- There are licensed vaccines against other flaviviruses
 - Yellow fever
 - JE
 - Dengue
- Expertise on flavivirus research and vaccine development

Challenges

- Many unknowns
 - Animal models, assays
- Safety concerns
 - Possibility of GBS, enhancement and neurovirulence
- Fast moving epidemiology
- Small percentage of symptomatic infections
 - Efficacy endpoints

Adapted from C. Cassetti, NIAID
Acknowledgements

Laboratory
Katie Shives
Aaron Massey
Erica Beatman
Mastooreh (Massi) Chamanian
Karla Hedman

Collaborators
Greg Ebel – CSU
Mike Gale – UW
Mike Diamond – WashU
Aaron Brault – CDC
Jeff Kieft- UCO
Patrik Brundin - VAI
Pei-Yong Shi - UTMB

Funding:
CU SOM, DOM, Center for Neuroscience
UC AMC Light Microscopy & Imaging Core