Exposure Hazards in Oil and Gas Extraction Workers:
Flowback and Production Testing (Completions Operations)

Bradley King, PhD, MPH, CIH
NIOSH Western States Office

WestON
September 12, 2014
Golden, CO
Disclaimer

The findings and conclusions in this presentation are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health.
NIOSH Field Effort to Assess Chemical Exposure Risks to Oil and Gas Workers

BACKGROUND
There is a lack of existing information regarding the variety and magnitude of chemical exposure risks to oil and gas extraction workers. To determine if risks are present, NIOSH wants to develop partnerships with the oil and gas extraction industry to identify, characterize and (if needed) control workplace chemical exposures. This work will occur as part of the NIOSH Oil and Gas Extraction Safety and Health Program, which seeks to prevent injuries and illnesses among oil and gas extraction workers. Strategic objectives include identifying possible exposures, determining risk, and preventing chemical exposures to workers involved in oil and gas extraction industry.

PURPOSE
The goals of this NIOSH field effort include: 1) identifying processes and activities where chemical exposures could occur; 2) characterizing potential exposures to vapors, gases, particulates and fumes (e.g., solvents, diesel particulate, crystalline silica, acids, metals, aldehydes, and possibly other chemicals identified during the study); 3) depending on results of the field effort, recommending safe work practices and/or proposing and evaluating exposure controls (to include engineering controls, substitution, and personal protective equipment).

www.cdc.gov/niosh/docs/2010-130/
What is Flowback?

Process fluids from wellbore return to the surface and are collected after hydraulic fracturing is completed.

Returned fluids can contain volatile hydrocarbons from the formation and treatment chemicals used during hydraulic fracturing.

Risks for exposures: measuring flow, gauging tanks, working around tanks and process fluids.
Field Visits: Spring/Summer 2013

• Six sites in Colorado and Wyoming
 – Fields: Piceance, Jonah, DJ Basin
 – Worker activities: Flowback, Production watch, Water transport, Lease operations

1. Identify processes/activities that may pose exposure risks
2. Identify sources of exposures
3. Assess exposures
Workers Evaluated

- Flowback Tech
 - gauging/strapping flowback tanks
Workers Evaluated

- Flowback Leadman
 - monitoring/operating separator
Workers Evaluated

- Production Watch
 - gauging production tanks
Industrial Hygiene Methods

1. Full-shift and short-term samples for VOCs (e.g., benzene), PAHs, alcohols, glutaraldehyde, and silica/respirable dust

 - Sorbent media and filters
 - Personal breathing zone (PBZ) and area air samples
Industrial Hygiene Methods

1. Full-shift and short-term samples for VOCs (e.g., benzene), PAHs, alcohols, glutaraldehyde, and silica/respirable dust
 1. Sorbent media and filters
 2. Personal breathing zone (PBZ) and area air samples

2. Spot measurements for VOCs and benzene
 1. Real-time, direct reading instruments
 2. PBZ and area air samples
Industrial Hygiene Methods

1. Full-shift and short-term samples for VOCs (e.g., benzene), PAHs, alcohols, glutaraldehyde, and silica/respirable dust
 1. Sorbent media and filters
 2. Personal breathing zone (PBZ) and area air samples

2. Spot measurements for VOCs and benzene
 1. Real-time, direct reading instruments
 2. PBZ and area air samples

3. Lower explosive limits (LEL) monitoring
Occupational Exposure Limits*: Benzene

<table>
<thead>
<tr>
<th>Exposure Limit</th>
<th>Limit Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational Safety and Health Administration (OSHA)</td>
<td>1 part per million (ppm) time-weighted average (TWA)</td>
</tr>
<tr>
<td>Permissible Exposure Limit (PEL) - General Industry</td>
<td>5 ppm short-term exposure limit (STEL)</td>
</tr>
<tr>
<td>OSHA PEL – Sectors Excluded from General Industry</td>
<td>10 ppm TWA</td>
</tr>
<tr>
<td></td>
<td>25 ppm Ceiling</td>
</tr>
<tr>
<td></td>
<td>50 ppm Maximum peak above ceiling (10 minutes)</td>
</tr>
<tr>
<td>National Institute for Occupational Safety and Health (NIOSH)</td>
<td>0.1 ppm TWA</td>
</tr>
<tr>
<td>Recommended Exposure Limit (REL)</td>
<td>1 ppm STEL</td>
</tr>
<tr>
<td></td>
<td>500 ppm immediately dangerous to life or health (IDLH)</td>
</tr>
<tr>
<td>American Conference of Governmental Industrial Hygienists (ACGIH)</td>
<td>0.5 ppm TWA</td>
</tr>
<tr>
<td>Threshold Limit Value (TLV) (2013)</td>
<td>2.5 ppm STEL</td>
</tr>
<tr>
<td></td>
<td>A1 (confirmed human carcinogen); Skin; BEI (Biological Exposure Index)</td>
</tr>
</tbody>
</table>

*based on an 8-hour TWA, 40 hour work week
Spot Measurement, Headspace of Tanks

- Flowback tank (no controls)
 - VOCs: 10–2000 ppm
 - Benzene: 0–>250 ppm

- Flowback tanks (with controls)
 - Reduced Emissions Completions (REC)
 - VOCs: 10–400 ppm
 - Benzene: 0–30 ppm
Spot Measurements, Headspace of Tanks

- Production tanks
 - VOCs: 10→2000 ppm
 - Benzene: 0→300 ppm

- Water tanks
 - VOCs: 10→200 ppm
 - Benzene: 0→40 ppm
Full-shift Personal Breathing Zone Benzene Measurements

TWA Range: Not Detected–0.65 ppm

- \(p < 0.05 \) (Student’s t test), for gaugers vs. non-gaugers
Worker Benzene Biomonitoring

- s-PMA Range: 0–20.9 µg creatinine

- Summary stats:
 - Average for workers gauging tanks:
 6.1 ± 5.3 µg creatinine (n=17)
 - Average for workers not gauging tanks:
 2.5 ± 3.9 µg creatinine (n=18)
Example 1: Patterns of Exposure during Gauging (temporal and spatial)

Worker gauging once per hour vs. Worker not gauging

- Peak VOC = 537 ppm
- TWA VOC = 5.89 ppm
- TWA Benzene = 0.23 ppm

Peak VOC = 23.5 ppm
TWA VOC = 0.203 ppm
TWA Benzene = 0.01 ppm
Q. Why were the gauging worker’s peak exposures so high?

A. This worker did not consistently gauge standing on top of the tank. Gauging from ladder reduces distance to source resulting in higher exposures.

- 149 ppm Benzene at 18 inches above hatch
- 1.2 ppm Benzene at 54 inches above hatch
Example 2: Patterns of Exposure during Gauging (temporal and spatial)

Worker gauging 2x each hour vs. Worker not gauging

- Peak VOC = 523 ppm
 Peak VOC = 42.9 ppm
- TWA VOC = 20.2 ppm
 TWA VOC = 1.87 ppm
- TWA Benzene = 0.45 ppm
 TWA Benzene = 0.05 ppm
Q. Why were the gauging worker’s exposures so high?

A. Worker was very careful to sample at his full height above hatches. However, he spent the entire shift on top of the tank in hydrocarbon plume.
Example 4: Patterns of Exposure Downwind of Tanks
(temporal and spatial)

Immediately downwind of flowback tank (10 meters)

- Very early stage of flowback
- PBZ Peak VOC = 220 ppm
- PBZ TWA VOC = 46.8 ppm
Q. Why were these exposures elevated?

A. Sampling location was less than 10 meters from tank, while plugs were being drilled. Potential for very high release of hydrocarbons.

- Area Peak VOC = 200 ppm
- Area TWA VOC = 17.1 ppm
- Area TWA Benzene = 1.1 ppm
Other Compounds Monitored

• Glutaraldehyde:
 – All PBZ and area samples below limit of detection (LOD), except for one
 – one PBZ sample returned a trace concentration

• Propargyl Alcohol:
 – All area samples below LOD, except for one
 – one area sample returned result of 0.0043 ppm

• Methanol:
 – All area samples below LOD
Other Compounds Monitored

- **PAHs:**
 - Napthalene detected in multiple samples at parts per billion (ppb) range

- **Silica and respirable dust:**
 - All PBZ samples below NIOSH, OSHA, ACGIH OELs, except for one
 - This one sample was invalid due to accidental contamination
Flammable/Explosive Hazards

- Direct reading instruments showed many instances of short term excursions measuring as high as 40% of the Lower Explosive Limit (LEL)
 - especially while drilling plugs and during snubbing
 - measured near areas of flowback tanks, separators, and tank batteries
Conclusions

- Risks for VOC, benzene exposures:
 - spatial and temporal variables
 - intermittent, task-based

- Gauging tanks:
 - highest risk for exposures, contributes to highest TWAs
 - only few minutes, repeated throughout day
Conclusions (cont’d.)

• Potential for exposures:
 – dependent on proximity to sources
 • pad perimeter monitoring, very low levels of total VOCs

• Potential for exposure varies:
 – formation, basin
 – “Age” of well, notable factor for exposures
Conclusions (cont’d.)

• Controls are available
 – Reduced Emissions Completions (i.e., ‘green completions’): appears to reduce potential for exposures through containment
Conclusions (cont’d.)

• Potential for exposures to other analytes measured during flowback appeared to be low.

• Flammable/explosive hazards can exist due to the presence of combustible gas peaks detected.
Request for Assistance

• Additional field research required
• Requesting additional industry partners to assist in further evaluating sites, locations, and activities
• These results are preliminary
• Communication of initial research results: NIOSH Science Blog, journal article, conference presentations
Questions?

Email:
bradley.king@cdc.hhs.gov

Alice Hamilton, M.D.
Mother of U.S. Occupational Medicine
1869–1970