PROGRAM IN REPRODUCTIVE SCIENCES

STUDENT HANDBOOK
Message from the Program Director: We are entering an exciting era in Reproductive Science because we can now bring all the molecular knowledge and tools developed over the past two decades to bear on the complex problems of reproductive development and function. Our new knowledge will in turn provide the foundation for research into the pathogenesis and treatment of reproductive problems in areas such as **pregnancy, placental development, fertility** and **cancer** including breast, ovary, uterus and prostate. The Program in Reproductive Sciences is designed to train scientists to deal comprehensively with the role of hormones, signal transduction, the immune system and regulation of gene expression in the development, physiology and pathology of the reproductive system. It leads to the Ph.D. degree in Cell and Developmental Biology, Reproductive Sciences.

This program is unique among graduate programs associated with schools of medicine in its focus on the mechanisms that govern human reproductive development and disease from molecules to the organism. Our goal is to provide the fundamental knowledge and technologies necessary for research into the complex processes that lead to the development of reproductive organs, their maintenance, function and pathology in the adult and, in the female, the development and birth of the infant. To do this we must integrate knowledge from several disciplines including molecular and cellular biology, developmental biology, physiology epidemiology, pathology, endocrinology, immunology, and cancer biology. Our faculty is drawn from all these disciplines and is utilizing new technologies such as nuclear magnetic resonance, X-ray crystallography, genomics, proteomics and metabolomics for identification and characterization of the interacting molecules that govern reproductive processes. New imaging modalities such as confocal and multiphoton microscopy, magnetic resonance spectroscopy, and small animal fluorescent whole body imaging allow visualization of developmental and pathological processes *in vivo.*

Both basic and clinical scientists are part of the faculty of this program, offering students a real opportunity to learn how fundamental research can be translated to the clinic and how to identify clinical problems that will benefit by targeted fundamental research. Seminars and journal clubs help us to develop approaches that go from the bench to the bedside and back again. This interdisciplinary program interfaces with the strong programs on this campus in cell and developmental biology, clinical endocrinology, immunology, molecular biology, pathology and physiology as they relate to reproductive systems. In addition, our institutional culture of amicable interdisciplinary collaborations offers many opportunities for students and their mentors to explore and expand the boundaries of their knowledge.

Contact Information:

Barb Morgan, Program Administrator
UCHSC at Fitzsimons, Mail Stop 8309
P.O. Box 6511,
Aurora, CO 80045

Phone: 303-724-3506
Fax: 303-724-3512
E.mail: Repro.Sci@uchsc.edu
www.uchsc.edu/reproductive-sciences
Program Contact Information

Program Director
Andrew Bradford
Associate Professor of Obstetrics & Gynecology
Section of Basic Reproductive Sciences
Andy.Bradford@ucdenver.edu
303 724 3507

Student Advisor
Heide Ford
Assistant Professor of Obstetrics and Gynecology
Heide.Ford@ucdenver.edu
303 724 3509

Admissions Director
Jim McManaman
Associate Professor of Obstetrics and Gynecology
Jim.McManaman@ucdenver.edu
303 724 3500

Administrator
Barb Morgan
Barb.Morgan@ucdenver.edu
303 724 3506

Fax
303 724 3512

Office
MS 8309
RC1 North Room P18-5103
12800 E. 19th Ave
Aurora CO 80045

Web Site
http://www.uchsc.edu/reproductive-sciences

"If we knew what it was we were doing, it would not be called research, would it?"
- Albert Einstein
Program Faculty and Research Interests:

<table>
<thead>
<tr>
<th>Full Faculty:</th>
<th>Pathology</th>
<th>Prolactin Receptor Signaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Anderson, Ph.D.</td>
<td>Perinatal Research Center</td>
<td>Placental Development</td>
</tr>
<tr>
<td>Russell Anthony, Ph.D.</td>
<td>Molecular Biophysics</td>
<td>Progesterone Receptor Interactions</td>
</tr>
<tr>
<td>David Bain, Ph.D.</td>
<td>Obstetrics & Gynecology</td>
<td>Cell Signaling, Endometrial Cancer</td>
</tr>
<tr>
<td>Andrew P. Bradford, Ph.D.</td>
<td>Immunology, NJMRC</td>
<td>Autoimmunity, Immunodeficiency</td>
</tr>
<tr>
<td>John Cambier, Ph.D.</td>
<td>Obstetrics & Gynecology</td>
<td>Homeobox Genes, Breast Cancer</td>
</tr>
<tr>
<td>Heide Ford, Ph.D.</td>
<td>Endocrinology</td>
<td>Gestational Diabetes</td>
</tr>
<tr>
<td>Jed Friedman, Ph.D.</td>
<td>Endocrinology</td>
<td>Pituitary hormones, Breast Cancer</td>
</tr>
<tr>
<td>Arthur Gutierrez-Hartmann, M.D.</td>
<td>Pediatrics, Neonatology</td>
<td>Fetal and Neonatal Nutrition</td>
</tr>
<tr>
<td>William Hay, M.D.</td>
<td>Pathology, NJMRC</td>
<td>Inflammation, Apoptosis</td>
</tr>
<tr>
<td>Peter Henson, D.V.M., Ph.D.</td>
<td>Immunology</td>
<td>Complement Receptors</td>
</tr>
<tr>
<td>Michael Holers, M.D.</td>
<td>Cell & Developmental Biol.</td>
<td>Molecular Genetics of Patterning</td>
</tr>
<tr>
<td>Joan Hooper, Ph.D.</td>
<td>Endocrinology</td>
<td>Steroid Hormones, Breast Cancer</td>
</tr>
<tr>
<td>Kathryn Horwitz, Ph.D.</td>
<td>Immunology, NJMRC</td>
<td>Host-Pathogen Interactions</td>
</tr>
<tr>
<td>Laurel Lenz, Ph.D.</td>
<td>Pharmacology</td>
<td>Progesterone and Oocyte Development</td>
</tr>
<tr>
<td>James Maller, Ph.D.</td>
<td>Physiology, Cell Biology</td>
<td>Mammary Gland Biology</td>
</tr>
<tr>
<td>James McManaman, Ph.D.</td>
<td>Cardio-Pulmonary Research</td>
<td>High Altitude Pregnancy</td>
</tr>
<tr>
<td>Jennifer Richer, Ph.D.</td>
<td>Physiology</td>
<td>Mammary Gland Development</td>
</tr>
<tr>
<td>Bill Schiemann, Ph.D.</td>
<td>Pathology</td>
<td>Glucocorticoid Receptors</td>
</tr>
<tr>
<td>Pepper Schedin, Ph.D.</td>
<td>Pathology</td>
<td>Breast Cancer, Leiomyoma</td>
</tr>
<tr>
<td>Natalie Serkova, Ph.D.</td>
<td>Pharmacology</td>
<td>TGF-β signaling in Cancer</td>
</tr>
<tr>
<td>Celia Sladek, Ph.D.</td>
<td>Medical Oncology</td>
<td>Breast Cancer Risk Factors</td>
</tr>
<tr>
<td>Ann Thor, Ph.D.</td>
<td>Anesthesiology</td>
<td>Molecular Imaging, Metabonomics</td>
</tr>
<tr>
<td>Andrew M. Thorburn, Ph.D.</td>
<td>Pathology</td>
<td>Hypothalamic Gene Regulation</td>
</tr>
<tr>
<td>Margaret Wierman, M.D.</td>
<td>Pharmacology</td>
<td>Signaling, Breast & Ovarian Cancer</td>
</tr>
<tr>
<td>Trevor Williams, Ph.D.</td>
<td>Endocrinology</td>
<td>Apoptosis Regulation in Cancer</td>
</tr>
<tr>
<td>Virginia D. Winn M.D., Ph.D.</td>
<td>Craniofacial Biology</td>
<td>Regulation of GnRH Transcription</td>
</tr>
<tr>
<td></td>
<td>Obstetrics & Gynecology</td>
<td>Transgens, Placental Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human Placental Development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjunct Faculty:</th>
<th>Obstetrics & Gynecology</th>
<th>Assisted Reproductive Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruben Alvero, M.D.</td>
<td>Obstetrics & Gynecology</td>
<td>Ovarian Cancer, Therapeutics</td>
</tr>
<tr>
<td>Kian Behbakht, M.D.</td>
<td>Obstetrics & Gynecology</td>
<td>Intrauterine Growth Restriction</td>
</tr>
<tr>
<td>Henry Galan, M.D.</td>
<td>Obstetrics & Gynecology</td>
<td>Prostate Cancer</td>
</tr>
<tr>
<td>Michael Glode, M.D.</td>
<td>Medical Oncology</td>
<td>Prostate Cancer</td>
</tr>
<tr>
<td>Scott Lucia, M.D.</td>
<td>Pathology</td>
<td>Epidemiology of Pregnancy</td>
</tr>
<tr>
<td>Anne Lynch, M.D., MSPH</td>
<td>Obstetrics & Gynecology</td>
<td>Transgens, Development</td>
</tr>
<tr>
<td>Brian Parr, Ph.D.</td>
<td>Craniofacial Biology</td>
<td>Ovarian Cancer</td>
</tr>
<tr>
<td>Monique Spillman, M.D., Ph.D.</td>
<td>Obstetrics and Gynecology</td>
<td></td>
</tr>
</tbody>
</table>

“There are in fact two things, science and opinion; the former begets knowledge, the latter ignorance.”
-Hippocrates
Program In Reproductive Sciences 2009

UC Denver AMC Campus GRADUATE SCHOOL

Dean’s Office
John H. Freed, Ph.D., Dean
Academic Office 1 Building, Room 2615
303-724-3911

Milinda Walker, Administrative Assistant
303-724-3911

Graduate Student Affairs Office
Fran Osterberg, M.S., Director, Student Admissions and Support
303-724-2915

Teresa Bauer-Sogi, Administrative Assistant/Main Phone Line for Information
303-724-2913

Office
Bookstore 303-724-2665
Bursar’s Office 303-556-2710
Classroom Scheduling 303-724-8114
Dental Clinics 303-724-6900
Diversity Office 303-724-8003
E-mail Coordinator 303-724-2171
Escort Service 303-724-2000
Financial Aid 303-556-2886
Graduate School 303-724-2915
Health Services/Insurance 303-724-7674
ID Cards 303-724-0399
International Student Office 303-315-2230
Library 303-724-2152
Malpractice Insurance 303-315-6617
Ombuds Office 303-724-2950
Parking Office 303-724-2555
Registrar’s Office 303-724-8059
Student Health Clinic (AF Williams) 720-848-9000
Student Assistance Office 303-724-7684
Univ Hospital Pharmacy 720-848-6869

Emergency Numbers
Police-AMC 303-724-4444
Fire 303-724-4444
Emergency 303-724-4444
Non-emergency 303-724-2000
Univ Hospital Emergency 720-848-9111

“There’s no system foolproof enough to defeat a sufficiently great fool.” - Edward Teller
ACADEMIC INFORMATION

In-state Residency Status
New students must immediately obtain documentation to support the petition for State Residency. This is a very important priority for first year students. After the first full year, funding will be available (assuming satisfactory academic progress) only if the student qualifies as an in-state resident. * The documents that must be obtained include local checking account, driver’s license or State ID, and voter’s registration, as well as proof of Colorado domicile. Further information will be provided during the Graduate School Orientation.

Checking Account
It is important to establish a checking account as soon as possible. The University issues all paychecks, including student stipends, as automatic deposits. Students should be sure they have a voided check or savings account deposit slip available when filling out payroll forms. Students are also required to produce a Social Security card for payroll purposes.

UCDenver Identification Card
Everyone on campus must carry a UCDenver picture ID. This ID serves many purposes including enabling students to access the library, obtain parking, gain access to buildings after hours, and attend special University functions. ID photos and paperwork are completed during Graduate School Orientation.

E-mail Access
Graduate students will have an account in the electronic mail and World Wide Web access system by contacting the Student E-mail Coordinator, Mary Mauck (mary.mauck@ucdenver.edu). You will need to know both your nine-digit Student Identification Number and your four-digit Personal Identification Number (PIN) to obtain an account in the system. If you do not know your PIN, you may obtain it at the AMC Registrar’s Office in Admissions & Records by going there in person with a picture ID.

*International students cannot gain residency and will remain at an out-of-state tuition rate; they are NOT personally responsible for the tuition differential.
FINANCIAL SUPPORT

During the first academic year, the Reproductive Science Program will support students with a stipend of $25,000 per year, paid monthly by 8:00 AM on the last working day of each month. Monthly checks are automatically deposited into the bank account specified by the student. The Program also pays tuition, fees, and health insurance for the first year; thereafter, the chosen thesis mentor pays these expenses. Students are responsible for books, housing, etc. Please bring tuition bills immediately to the Program office when received. Not registering and paying a tuition bill by the deadlines set by Admission and Records will result in a late fee. Students are personally responsible for paying all late fees and fines.

Student expenses, including stipend, will be paid until graduation contingent on the student meeting the following conditions:

1) Satisfactory academic progress.
2) Eligibility for in-state tuition after the first year. Students who fail to qualify for in-state residency will be personally responsible for the difference between in-state and out-of-state tuition (international students excepted).
3) Preliminary examination is passed at the end of the first year.
4) Comprehensive examination completed and passed by end of fall semester of 3rd academic year.
5) Chosen research advisor will provide financial support to the student beginning in the second year and continuing to graduation. Support includes stipend, tuition, fees, and health insurance. Back up funding is available from the mentor’s department in case of financial problems with the laboratory.

FINANCIAL AID

Information regarding financial assistance is available at the Financial Aid office on the third floor of ED2 North (303-556-2886). You should plan to fill out all forms early. Short-term emergency loans are available. Types of financial aid include: grants, loans, work-study, and scholarships. Students should explore the possibility of obtaining grant support whenever possible; information regarding potential grant funding is available in the Program office.

OTHER RULES & REGULATIONS

Rules and regulations, as well as information that pertains to all students on campus, can be found in the Graduate School Student Handbook and the UCDenver AMC Course Book. When using these tools, be sure to refer only to the Graduate School Basic Sciences calendar and sections.
STUDENT GUIDELINES

First Year Requirements:

Colorado Residency: First year students who are U.S. citizens must take proper steps at time of arrival on the UC Denver campus to begin the process of establishing Colorado residency, so that this is complete by July 1 of the second year. If residency has not been established by this deadline, the student is responsible for the non-resident portion of tuition that exceeds the resident assessment.

Course Work During the first year, students are required to take the “Biomedical Sciences Core Course”, IDPT7811-15 (Fall, 10 hours total). This is a required course for all first year Ph.D. graduate students in biomedical programs at UCHSC, and covers the fundamentals of biochemistry, cell biology, molecular biology, and physiology. One additional required course in Reproductive Endocrinology (RPSC 7801- 3h) is taken in the Spring semester of the first or second year. This course provides an introduction to reproductive endocrinology from both a clinical and basic science perspective and students will review and discuss current literature. One additional elective course is taken in the Spring semester. An extensive list of electives is available in other departments of the University of Colorado Health Sciences Center Graduate School. Electives should be chosen to meet the research interests of the student and should be made in consultation with the program student advisor. The elective courses suggested for reproductive science students are: Developmental Biology, Receptors and Cell Signaling, Cancer Cell Biology, Histology for Graduate Students. An immunology course is highly recommended.

1st year students take three laboratory rotations over the first year for 1 hr. credit each (RPSC 7650 Research). Registration for courses in the first year must be approved by the program student advisor.

Reproductive Science students must take Ethics in Research (PHCL 7605) in the fall semester of either their first or second year, with the stipulation that the course must be completed prior to taking the Comprehensive exam.

Students are required to maintain a 3.0 grade point average throughout the program. Additionally, the Program requires students to make a grade of B (3.0) or better in all required courses, regardless of the overall grade point average. If a student receives a B- in any required course, he/she may be allowed, at the discretion of the program faculty, to either retake the course or perform remedial work acceptable to Program faculty. Should the student be allowed to retake a required course in which they have received a grade of less than a B (3.0), it must be completed by the end of the next academic year. Students are placed on probation by the Graduate School if their grade point average falls below 3.0 and are dismissed from the program if the grade point average is not raised to 3.0 within one semester.

No summer coursework is required.

Research Rotations: Students are required to take research rotations in the laboratory of three different faculty members of the program. Each rotation lasts for approximately twelve weeks and they are generally taken over the Fall and Spring semesters. Selection of laboratories for
research rotations should be a decision made mutually by the student and the participating faculty. However, students are encouraged to consult with the program student advisor before making a selection. Factors such as space, number of students in a laboratory and how much time and effort a faculty member can spend should be taken into account. Projects are selected to challenge the student, but are adjusted in scope so that a logical conclusion can be reached within a one-rotation period. These rotations are used to introduce students to the techniques of molecular research, facilitate the development of the logic required for conducting research and give the student an opportunity to view, first-hand, laboratories in which she or he may choose to perform their thesis research. Students are required to give an oral presentation at the weekly program seminar upon completion of each laboratory rotation. These are brief 10-15 minute slide talks that cover the work done during the rotation. Students should consult with the director of the rotation laboratory in putting together their talks.

Students take research rotations for 1 hour of credit (RPSC 7650, Research) and are evaluated, on the basis of their performance, by their rotation lab mentor. These evaluations are used as one criterion for advancement to the second year of the program. Evaluations will be two-fold. The director of the rotation laboratory will not only grade the student for 1 credit hour of research, but will provide a written critique of the student's understanding of the material, ability to design experiments, bench and organizational skills, and quality of laboratory notebook. Evaluations are co-signed by the faculty and student, and placed in the student’s file.

Seminar Program: The program holds a weekly seminar in which faculty, postdoctoral fellows, students and invited outside speakers present talks on their research. The seminar series is a major focus for the program in that it draws everyone together weekly, keeps individuals abreast of research in progress as well as scientific techniques and expertise present within the program. This seminar series is beneficial to all participants in the program, both faculty and students. It helps students practice the presentation skills that will be important in their careers, provides examples from faculty presentations, and helps enormously in finding the appropriate colleague to consult when problems arise in individual research efforts. Outside faculty speakers are scheduled to maximize interactions between both students and faculty. Students do not register for this course the first year but are required to attend.

Preliminary Examination: At the completion of the first year, students take a written preliminary examination, which is given in early June. The subject matter covers the first year course work, but questions are constructed to test conceptual and problem solving skills. The examination consists of questions that require written answers and it is put together each year by the Student Advisor in cooperation with other departments and programs. The steering committee, in consultation with the Student Advisor, establishes the guidelines for pass/fail, reviews the exam results, and makes its recommendation to the program faculty. Students who fail the exam may be dismissed from the program or given the chance to retake the exam, depending on their performance in laboratory rotations and course work. Students who are allowed to retake the preliminary exam will do so in the next academic year when the exam is typically administered and the entire examination must be retaken.

Evaluation and Selection of Thesis Advisor: The program faculty will evaluate the overall performance of the student based on three areas: course work, laboratory rotations and the written preliminary examination. This evaluation will take place at a general faculty meeting in late June. Upon successful completion of this evaluation, students then select a thesis advisor.
and a project. Selection of the thesis advisor should be the mutual decision of the student and the program faculty member. At the completion of the third laboratory rotation (by June 1), students are asked to submit in writing (to the program student advisor), the name of the potential thesis advisor and a brief description of the proposed research project so that this request can be presented at the general faculty meeting in late June. The program faculty will review written requests and make final approvals. Every effort will be made to accommodate a student's first choice. However, factors such as the number of other students in a laboratory, space, and financial resources of the potential thesis advisor must be considered. Therefore, a student may be asked to make an alternate selection.

Graduate Student Advisor: Students in their first year should consult on a regular basis with the program student advisor. This provides a mechanism for continuous rapport to be established between one faculty member and students throughout the critical first year. This permits continuous monitoring of potential problems and a useful way for students to have input into the program. The program student advisor consults regularly with program faculty regarding student questions and concerns. The Program advisor approves registration for all first-year students.

Second Year Requirements:

Course Work: In consultation with the program student advisor and the thesis advisor, students may choose additional elective courses to round out their expertise in selected areas and to provide general knowledge in others. Students must register for Ethics in Research (PHCL7605, 1 hour) in the fall semester if they have not completed it previously. Continued participation in the Research Seminar Program is required and students must now register for this as a course for credit (1 hour). The seminar course will be graded based on participation, and the spring semester grade will in part be based on the student's research seminar presentation (see below). Additionally, students must register for RPSC 7650 (Research) each semester during their second year. Graduate school requirements stipulate that students must accumulate or be registered for 30 semester credit hours prior to taking the comprehensive exam, scheduled no later than the end of fall semester of the third year. Thus, students are urged to transfer credits for any graduate level courses taken from their previous universities. Registration forms for courses in the second year must be signed by the program student advisor.

No summer course work is required.

Research Seminar: In the Spring, second year students present a seminar on their research in progress. This is given as part of the program's weekly research seminar series. This serves to focus the student's research project and to provide training in oral presentation skills. Students should meet with their thesis advisory committee (see below) immediately following the Spring seminar presentation.

Journal Clubs: Beginning in the second year and throughout the remainder of the training program, all students are expected to participate and help organize a journal club. All faculty are invited to participate, but two faculty are assigned as moderators each semester. The journal club meets every other week.
Selection of Thesis Advisory Committee: Students are expected to form a thesis advisory committee by March 1 of their second year. This should be done in consultation with the program student advisor and the thesis advisor. The committee will have its first meeting with the student on the afternoon following the Spring seminar presentation. The first charge of the thesis advisory committee will be to guide and evaluate the student's research progress to this point, to set the guidelines for the upcoming comprehensive examination and to set a tentative date for the comprehensive examination. This committee (five members) is composed of a minimum of three Program faculty and at least one external member. The Chair must be a Reproductive Science faculty member. After the Comprehensive Exam is completed and the student advances to Ph.D. candidacy, the student’s mentor will become an additional member of his/her committee. All committee members must have faculty appointments in the Graduate School. It is the duty of the committee to advise the student and to monitor the student's progress, and report to the student advisor. Students must meet with their committee at least annually; more frequently is advisable. This committee is also charged with administering the comprehensive examination and guiding the student throughout their thesis project. It is the responsibility of the student to form the committee, submit the names of all members to the Program office, arrange annual committee meetings (to take place after the seminar), inform the members and the Reproductive Sciences office in writing of the date and place of the meetings (at least two weeks in advance), and prepare a written progress report of their research.

It is the responsibility of the committee chair to write a brief summary of each committee meeting and submit this to the program administrator, who places this in the student’s file, distributing a copy to the Student Advisor. This summary should include: 1) the student's progress since the last committee meeting; 2) planned studies for the immediate future; 3) indication of how student's progress relates to the specific aims of the thesis proposal presented in the comprehensive exam; 4) manuscripts published, in press, or in preparation; and 5) number of years in the program as well as anticipated date of completion. Written summaries are signed by the student and the committee chair, and turned in to the office within one week following the committee meeting.
Third Year Requirements:

Course Work: In the fall semester of the third year, students register for RPSC 7650 (Research 5 hours) if they still need research hours to complete the required 30 hours prior to the comprehensive exams. If the student has taken additional electives or has transferred credits from other schools, the 30 hours may already be fulfilled. Upon successful completion of the Comprehensive Exam (see below), students will register for RPSC 8990 (Doctoral Thesis 5 hours) throughout the remainder of their time in the program.

No summer course work is required.

Comprehensive Examination: Students are expected to have demonstrated competence in research during their second year and to have generated preliminary data to prepare for the comprehensive examination. This exam requires the written submission of a research proposal that describes the actual thesis project planned by the student. The proposal should be written in an NIH grant format and should contain the following sections: specific aims, background and significance, preliminary data, experimental design and approach, and a supporting bibliography. Students should consult with their committee chair and NIH guidelines for how to format the written portion of the exam. The proposal should be written to be as close as possible to the realistic goals of the thesis project and should not be an overly ambitious proposal for an entire laboratory group. The student defends the proposal orally at the examination. The oral portion of the exam will also test general knowledge through questioning related to the proposals.

To schedule the exam, students must have completed or be registered to have 30 credit hours. A packet of appropriate forms and instructions must be picked up from the Graduate School office, and returned with all signatures at least two (2) weeks prior to the date of exam. Students should submit their completed written portion to committee members at least 2 weeks in advance of the exam date. Students must obtain written approval of the topics of their proposals from the chair of their advisory committee and submit this to the Reproductive Sciences Office before beginning preparation of the written portion of the exam. The format of the oral portion of the exam will be set by the committee chair. Students are required to take the exam no later than the end of the fall semester, though earlier in the fall is preferable. Upon successful completion of this exam, the student is advanced to the Ph.D. candidacy.

Research Seminar: In the third year, students present a seminar on their research progress at the weekly program seminar series. Students must meet with their thesis advisory committee immediately following their seminar presentation.

“Research is to see what everybody else has seen, and to think what nobody else has thought.”
- Albert Szent-Györgi.
Fourth Year and Beyond:

Course Work: It is the goal of the program for students to complete their thesis research and to successfully defend their thesis by the end of their fifth year. The fourth years and beyond are devoted almost entirely to research. Students during this period continue to participate in the weekly seminar series and journal clubs. Students also participate in individual research group meetings during this period. Students are strongly encouraged to make presentations at national meetings during their final two years. The program makes efforts to aid the students in developing independence and leadership skills during this period and to devote considerable thought to their career and postdoctoral research plans. Students are required to continue to meet at least annually with the thesis advisory committee during their final year(s). Again, it is often advisable to meet more frequently than this as the student nears completion of the thesis work. Students continue to register for RPSC8990 (Doctoral Thesis in Reproductive Sciences, 5 hours) during their fourth year and beyond, keeping in mind the necessity to complete 30 hours of thesis credit prior to thesis defense and graduation.

No summer course work is required.

Research Seminar: In the Fall of the fourth year, students present a seminar on their research progress, as part of the program's weekly research seminar series. This seminar should serve to focus the student's research project and to provide training in oral presentation skills. Students must meet with their committee immediately following seminar presentation.

“The great tragedy of Science - the slaying of a beautiful hypothesis by an ugly fact.”
-Thomas H. Huxley
GRADUATE STUDENT EXPECTATIONS

It is our intention to train students so that they can function as independent, imaginative, productive scientists in a research capacity in academia or other challenging environments. It should be understood by all students that their productivity during their tenure as graduate students will strongly influence the opportunities that are available when they seek employment. The Program thus requires considerable investment of time in developing experimental, critical thinking and organizational skills. Although the output expected can be influenced by a variety of factors including the importance and thoroughness of publications, most successful students graduate with the equivalent of two or more principal-author papers. Students should be prepared to invest a substantial amount of time above and beyond the normal workweek during their training to place themselves in a competitive position upon graduation.

The success of each student admitted to the Program is our goal. During the first two years of graduate school, there are clear and tangible milestones every graduate student must meet. In the first year, students must obtain passing grades in their coursework, successfully complete three research rotations, and pass the year-end preliminary exam. In the second year, they must begin thesis research and successfully pass the comprehensive exam. In the subsequent years of thesis research, the milestones become much more nebulous and success relies on a student’s own self-motivation, intellectual drive and hard work. Graduate school is not a job – it is training for a challenging career. A student’s success at this stage of his/her training and in subsequent steps will depend on the student’s own efforts. The thesis advisor and thesis committee are in place to provide scientific and professional guidance and support. It is the student’s responsibility to take the initiative to work with his/her advisor and committee to achieve success in research and in a career. Ultimately, a student’s success lies with the student!

The Program has the following expectations for a student’s thesis career:

1. A student must be self-motivated. Motivation should come from within and not determined by the mentor or arbitrary deadlines.

2. A student should work the necessary hours in the lab to complete the experiments. Graduate school is not a five-day a week, 9-5 job. The effort each student puts in will be reflected in the level of success and the timetable for graduation.

3. A student should be intellectually engaged in the research project. Initially, the project is often conceived by the mentor; however by the comprehensive exam, the student should be actively participating in experimental decisions and research directions. In subsequent years, the student should take progressively more control in the execution and direction of the research.

4. A student must take initiative for his/her own career and take responsibility for research successes and failures. If things are not working out in the lab or with the advisor, in addition to the advisor’s responsibilities, the student should initiate actions to correct the problem. The thesis committee and student advisor exist to help, but the student must seek out that help.

"Only two things are infinite, the universe and human stupidity, and I'm not sure about the former." -Albert Einstein
PROGRAM POLICY FOR VACATION AND LEAVE

Graduate school is a privilege; obtaining a Ph.D. and working in the biomedical research/academic field is a time-honored and challenging profession that requires a high level of commitment and responsibility. Students in the Reproductive Sciences Program are required to pursue their training on a full-time basis, devoting each day of the normal work week, plus any additional time required of their research projects and academic courses. Additionally, for a student to maintain full-time student status, the Graduate School has established the following guidelines for leave time. These represent the leaves to which a graduate student is entitled; however, research demands and commitment to studies often result in students using less than the allotted leave. The Reproductive Sciences Program does not have a formalized system for accounting for vacation and sick leave; the accounting falls under the honor system and is the responsibility of the student.

Leave of Absence: Leaves of absence are arranged with and approved by Program Directors; the Graduate School should be informed by the student. A leave of absence may be approved for a maximum of one year. Students who fail to register or submit a Statement of Academic Intent after an absence of one academic year will be withdrawn and required to reapply for admission to the Graduate School through their program and be considered with all other applicants. A leave of absence does not automatically extend the time limit set forth for graduation. Doctoral students who have passed their Comprehensive Examination are required to be registered continually for the Fall and Spring semesters. Failure to do so will result in the student being required to retake the Comprehensive Examination or reapply to the Graduate School. An official leave of absence may modify this registration requirement during the leave period.

Vacation/Holiday Leave - (Stipended PhD Students). Graduate students shall receive all University holidays and no more than 14 calendar days (counting all days Monday through Sunday) of vacation per annum, with no year-to-year accrual. Students shall continue to receive stipends during vacations and holidays. In the Graduate School at UCDAMC, the times between academic terms and the summers are considered active parts of the training period and are not necessarily free times. Students taking courses are expected to attend all classes and take all exams as scheduled. Vacations should not be scheduled when classes or exams are in session. For advanced students, vacation time should be arranged with the dissertation advisor.

Sick Leave and Other Leave - (Stipended PhD Students). Graduate students may continue to receive stipends for up to 15 calendar days (counting all days Monday through Sunday) of sick leave per annum, with no year-to-year accrual. Under exceptional circumstances, additional sick days may be granted following a written request and approval by the student’s Program Director. Sick leave may be used for the medical conditions related to pregnancy and childbirth.

Parental Leave. Graduate students may also receive stipends for up to 30 calendar days (counting all days Monday through Sunday) of parental leave per annum for the adoption or the birth of a child. Either parent is eligible for parental leave. Parental leave must be approved by the student’s Program Director. Sick leave may not be used to supplement parental leave, except as noted above.
Unpaid Leave. Individuals requiring more than 15 calendar days of sick leave or more than 30 calendar days of parental leave, must seek approval from their program for an unpaid leave of absence. Approval for a leave of absence must be requested in advance by the student and approved by the program. The leave period and conditions must be documented, both at the time of leave and at the time of re-entry into the program. A copy of this agreement must be submitted to the Graduate School.

Termination. Upon graduation or termination a graduate student forfeits all unused annual and sick leave; payment may not be made from grant funds (training grants or research grants) for leave not taken.

“Reality is that which, when you stop believing in it, doesn't go away. -Philip K. Dick”

“If all else fails..............read the instructions”
GRADUATE SCHOOL CALENDAR 2009-2010

Basic Sciences Programs

FALL SEMESTER 2009

Registration for Fall 2009 begins for Basic Sciences continuing students: Monday, August 10
Fall Semester begins: Monday, August 31
Rotation 1: August 31 - November 13
Labor Day Holiday: Monday, September 7
Last day to drop/add: Friday, September 11
Rotation 2: (Holiday Break: November 26-27 & December 21-January 1) November 16-February 26
Thanksgiving Break: November 26-27
Fall Semester ends: Friday, December 18
Final grades due (noon): Wednesday, December 23

SPRING SEMESTER 2010

Registration begins for Spring 2010: Monday, December 7
Spring Semester begins: Monday, January 25
Last day to drop/add: Friday, February 5
Presidents’ Day (classes not in session): Monday, February 15
Rotation 3: March 1 – May 21
Spring Break: March 22-26
Spring Semester ends: Friday, May 21
Final grades due (noon): Wednesday, May 26
Graduate School Convocation: Friday, May 28

“There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.........
There is another theory which states that this has already happened.” -Douglas Adams