UNIVERSITY OF COLORADO DENVER  
Electrical Engineering Department  
GRADUATE STUDY in ELECTRICAL ENGINEERING  

INTRODUCTORY SUMMARY

The University of Colorado Denver, College of Engineering and Applied Science (CEAS), offers undergraduate and graduate degrees in electrical engineering, computer science, civil engineering, mechanical engineering, and applied mathematics. The College is a major educational support center in the metropolitan area, where traditional students and working individuals can earn a degree through both daytime and evening classes.

The electrical engineering M.S.E.E. degree and the CEAS’ multidisciplinary Ph.D. degree, the EASPhD, offer exciting opportunities to pursue graduate degrees in a number of traditional as well as new areas of emphasis. The electrical engineering web site can be accessed at: http://www.ucdenver.edu/academics/colleges/Engineering/Programs/Electrical-Engineering/Pages/ElectricalEngineering.aspx

Practicing engineers can extend and update their professional capabilities through credit and/or non-credit courses, as well as earn graduate education in management, public policy, environmental science, computer science, or other areas of engineering through complimentary multi-disciplinary Master of Engineering programs offered by the College.

The Electrical Engineering Department offers graduate programs in electrical engineering with the following areas of concentration:

- Communications and Signal Processing
- Controls and Signal Processing
- Microelectronics and VLSI
- Fields, Waves and Optics
- Computer Engineering and Embedded System Design
- Energy and Power Systems

The Department offers graduate programs leading to the following degrees:

* Master of Science in Electrical Engineering (M.S.E.E.)
* Master of Engineering (M.Engr.)
* Doctor of Philosophy (Ph.D.) in Engineering and Applied Science

All graduate degrees are awarded and administered by the College of Engineering and Applied Science, and the Vice-Chancellor of the Graduate School of University of Colorado Denver in cooperation with the Electrical Engineering Department.
Table of Contents

I. MASTER’S PROGRAM IN ELECTRICAL ENGINEERING ........................................ 1
   I.1 Admission Requirements ............................................................................. 1
   I.2 Master of Science (MSEE) Program ............................................................ 1
       Typical Degree Construct – Thesis Option .................................................... 2
       Typical Degree Construct – Course Only Option .......................................... 2
   I.3 Master of Engineering (M.Eng.) Program .................................................... 3
II. DOCTOR OF PHILOSOPHY (Ph.D.) PROGRAM .................................................. 3
   II.1 Admission Requirements .......................................................................... 3
   II.2 Rules and Regulations ............................................................................. 5
   II.3 Guide to PhD Preliminary Exam ................................................................. 7
   II.4 Guide to PhD Comprehensive Exam .......................................................... 9
   II.5 Guidelines on How to Write the Comprehensive Exam Report (Thesis Proposal)........ 9

APPENDIX 1 ........................................................................................................ 12
ELECTRICAL ENGINEERING GRADUATE COURSES AT UCD ........................................ 12
   Selected Math Courses ................................................................................... 14

APPENDIX 2 ........................................................................................................ 15
FACULTY ADVISORS AND AREAS OF SPECIALTY .................................................. 15
   2.1 Full Time Faculty ...................................................................................... 15
   2.2 Other Faculty ............................................................................................ 16

Appendix 3 ........................................................................................................ 17
Rubrics for Scoring PhD Comprehensive Exam and Annual Reviews ......................... 17
I. MASTER’S PROGRAM IN ELECTRICAL ENGINEERING

I.1 Admission Requirements

Interested students with questions may contact members of the Electrical Engineering Department Graduate Committee by calling the department office at (303) 556 2872 or visiting the web site. Application forms for all graduate degrees may be accessed on-line at the web site: https://soa.prod.cu.edu/degreeprog/applyDEGREEPROG_CUDEN/login.action. All applicants for admission need to submit complete credentials as are outlined in the instructions included in the on-line application.

To be considered for “regular” admission to the Master’s program, candidates must meet the following minimum requirements: a BS degree from a reputable institution, either in Electrical Engineering, or in equivalent Math, Physics and other engineering disciplines and with Grade Point Average (GPA) at least 3.0, on a 4.0 scale. Applicants must also submit evidence of adequate preparation for graduate study by either (a) submitting official GRE scores, or (b) documenting an earned bachelor’s degree with a GPA of 3.00 or higher from an institution accredited by a U.S. accreditation body, or an earned master’s degree with a GPA of 3.50 or higher from an institution accredited by a U.S. accreditation body. Satisfaction of minimum requirements does not guarantee admission. The substance of the student’s curriculum and the grades obtained in the student’s area of concentration are important factors in the consideration, and so are possible multiple repetitions of fundamental courses.

For those undergraduate students with degrees in science and non-electrical engineering wishing to pursue graduate study in the Electrical Engineering Department there is no restriction or constraint in being admitted into the M.S.E.E. graduate program. However, they must fulfill any pre-requisite course requirements assigned to any graduate course in the department. Students with an undergraduate degree in areas other than electrical engineering must also see their graduate instructor to receive approval before registering for a class in electrical engineering.

Students must plan a program of study in consultation with their departmental advisor(s), during the first semester of study, and submit for approval to the Department.

I.2 Master of Science (MSEE) Program

Upon acceptance to the MSEE program, each student will be assigned a faculty advisor to help him/her with selecting their courses for the first semester. Subsequently, it is required that a MSEE candidate select a graduate advisor within the first semester of his/her graduate studies at the Electrical Engineering (EE) Department, UC Denver and sign an agreement with this advisor regarding the rules and regulations pertinent to the MSEE degree. The student’s graduate advisor will approve the student’s curriculum, as complying with the rules and conditions in this document, and will supervise the student’s thesis or when applicable (see below for thesis versus course only option). The list of graduate advisors in the EE Department is included in Section IV of this document.

To fulfill the requirements for the MSEE degree, the EE Department at UC Denver requires that, within a five-year period, a candidate complete an approved program in one of two options: (a) a thesis option consisting of at least 30 semester hours or (b) a course only option consisting of at least 30 semester hours. It is also required that the MSEE candidate maintain a grade point average of 3.0 or higher. In compliance with the Graduate School Rules, the minimum grade required for a unit to count towards the required semester hours is “B minus” (2.7). For the students in the thesis option, it is recommended that they attend the CEAS seminar series. For the students in the courses only option, it is required that they take the ENGR5150 seminar course for 1 semester and 0 credits. The ENGR5150 seminar course is a pass/fail; for passing a 75% minimum attendance plus a report on one of the seminars are required.
The EE department offers six areas of concentration at the Master level: Controls and Signal Processing; Communications and Signal Processing; Microelectronics and VLSI; Fields, Waves and Optics; Computer Engineering and Embedded Design; and Energy and Power Systems. The courses offered in each concentration area are listed in Section III of this document.

For both thesis and course only MSEE options, it is required that a student select a primary area of concentration and a secondary area of concentration among the seven areas listed above, in agreement with the student’s graduate advisor (the list of graduate advisors is included in Section IV of this document). The student must take at least four (4) 3-unit courses in the primary area of concentration and at least two (2) 3-unit courses in the secondary area of concentration, all these six (6) courses being selected from those listed in Section III and being offered by the UCD EE Department. Additional courses may be selected from any area of concentration among those in Section III that are offered by the UCD EE Department, where one (1) 3-credit course may be an independent study with one of the graduate faculty at the UCD EE Department. It is emphasized that a student may take no more than one independent study courses. At least 21 course units must be taken from the UCD EE Department. At the discretion of the EE graduate committee, a maximum of nine (9) credits may be transferred from other programs. To register in any course, the student must first obtain the signed approval of his/her graduate advisor. The additional requirements dictated by each one of the two, thesis versus courses only, options are stated below.

- The thesis option allocates six units to the Master’s thesis, completed under the auspices of the student’s graduate advisor. In addition to the six (6) courses in primary and secondary concentration areas mentioned above, this option also requires two additional 3-unit graduate courses. The latter courses may be selected via signed pre-agreement with the student’s graduate advisor.

**Typical Degree Construct – Thesis Option**

<table>
<thead>
<tr>
<th>Primary Area (required)</th>
<th>minimum four courses, Section III, UCD EE Dept.</th>
<th>12 SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Area (required)</td>
<td>minimum two courses, Section III, UCD EE Dept.</td>
<td>6 SH</td>
</tr>
<tr>
<td>One additional course (required)</td>
<td>Section III, UCD EE Dept.</td>
<td>3 SH</td>
</tr>
<tr>
<td>Thesis (required)</td>
<td>6 SH</td>
<td></td>
</tr>
<tr>
<td>Other course (required)</td>
<td>pre-approved by advisor</td>
<td>3 SH</td>
</tr>
<tr>
<td>Total (minimum)</td>
<td></td>
<td>30 SH</td>
</tr>
</tbody>
</table>

- It is required by the Graduate School Rules that the student defend his/her Thesis in front of a three-member committee of graduate faculty.

**Typical Degree Construct – Course Only Option**

<table>
<thead>
<tr>
<th>Primary Area (required)</th>
<th>minimum four courses Section III, UCD EE Dept.</th>
<th>12 SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Area (required)</td>
<td>minimum two courses Section III, UCD EE Dept.</td>
<td>6 SH</td>
</tr>
<tr>
<td>Other courses (required)</td>
<td>can include one additional seminar or graduate labs</td>
<td>12 SH</td>
</tr>
<tr>
<td>CEAS Seminar (required)</td>
<td>must be officially enrolled and submit a report</td>
<td>0 SH</td>
</tr>
<tr>
<td>Total (minimum)</td>
<td></td>
<td>30 SH</td>
</tr>
</tbody>
</table>

- The course only option requires a total of 30 credits, including a mandatory 1 semester - 0 credit of the CEAS seminar. Additional graduate courses are selected with the signed pre-agreement of the student’s graduate advisor.

- Starting in Fall of 2017, each new non-thesis EE MS students will be required to take at least three classes with a research project.

- The advisors will be responsible for making the notation of the classes that meet this requirement.

- The M.S.E.E. major advisor must be a full-time, UCD Electrical Engineering Department, graduate faculty member. Those currently satisfying these requirements are listed in Section IV of this document.
Candidates with a B.S.E.E. degree from UCD Electrical Engineering Department can count 6 electrical engineering UCD graduate credits toward both undergraduate and graduate degrees, if their undergraduate GPA was at least 3.0. Double-counting applies only to credits earned at 5000-level or higher, and with a “B minus” (2.7) or higher grade.

I.3 Master of Engineering (M.Eng.) Program

A qualified student may enroll in the graduate program of the Department of Electrical Engineering to pursue the degree of Master of Engineering. This program is broad-based and is designed especially for that person who wants to further his/her education in more than just one discipline. An example might be in engineering administration where course work in business management would logically supplement engineering studies.

A minimum of 30 credit semester hours of academic work acceptable to the Advisory Committee (within the rules established by the College of Engineering and Applied Science) will be required for the degree Master of Engineering. In compliance with the Graduate School Rules, the minimum grade required for a unit to count towards the 30 semester hours is “B minus” (2.7). To couple this degree with electrical engineering, at least 15 of these hours must be 5000 level or above in electrical engineering courses, and must be taken in UCD Electrical Engineering Department. As many as 15 credit hours can be taken outside of engineering, including 3 credit hours of Master of Engineering project. The project should cover some area of creative investigation performed by the student and may relate directly to his/her professional work and must be defended orally before the Advisory Committee.

Students may earn up to a maximum of 9 credit hours required for the degree through the Center for Advanced Training in Engineering and Technology Education, CAETE, videotape program or from another accredited institution including CATETE. These credit hours cannot be part of the 15 credit hours required from the UCD Electrical Engineering Department.

II. DOCTOR OF PHILOSOPHY (Ph.D.) PROGRAM

The College of Engineering and Applied Science (CEAS) at the University of Colorado Denver (UCD) admits students into the program in Engineering and Applied Science (EASPhD). Under the EASPhD program, a successful doctoral student receives the degree “Doctor of Philosophy in Engineering and Applied Science”. The program is multidisciplinary with four departments of the College serving as host departments (Civil (CE), Computer Science and Engineering (CSE), Electrical (EE) and Mechanical (ME)) and all five departments (Bioengineering (BIOE), CE, CSE, EE and ME) offering secondary disciplines of concentration. The secondary concentration may also be chosen from another College/School at UC Denver. While the degree is conferred by the Graduate School, applicants to this program apply to and enter the program through one of four departments of the College: CE, CSE, EE, or ME, called the host department. The BIOE department participates as a secondary concentration choice. A CEAS committee appointed by the Dean oversees the fulfillment of the curriculum requirements, including the multidisciplinary component. This committee is comprised of one faculty representative from each of the five CEAS departments. All applicants for admission need to submit complete credentials as are outlined in the instructions included in the on-line application. The web site for the on-line application is: http://www.ucdenver.edu/admissions/doctoral/pages/index.aspx. For students whose primary concentration is Electrical Engineering, Engineering and Applied Science-PhD should be selected under Field of Study. Then, Electrical Engineering should be selected as the applicant’s host department in the Background Information field.

II.1 Admission Requirements

Following are the admission requirements for the EASPhD degree. This document should be used by the department Graduate Committees in making admission decisions.

Materials to be Submitted by the Applicant

- Application for admission
- GRE scores (required for all applicants)
- Three letters of recommendation
- Two copies of all transcripts
- Processing fee
• Personal statement of academic and research interests, including intended primary concentration within the host department
• International applicants whose native language is not English are required to submit TOEFL scores

Application Process
A student will apply to and enter the program through one of the four host departments of the College: Civil Engineering (CE), Computer Science and Engineering (CSE), Electrical Engineering (EE) or Mechanical Engineering (ME).

The Admissions Committee of the Electrical Engineering Department consists of the entire graduate faculty. When an application is received, the Admission Committee chair alone or with the aid of other faculty members performs a preliminary review of the application documenting strengths and weaknesses of the applicant. The application is then presented by the Admission Committee chair at the next faculty meeting. An admission decision is made by a majority vote of the present graduate faculty members with voting rules as stipulated in the Department bylaws. Acceptance and rejection letters are sent out by the Department Chair. Letters describing any financial support that is offered to an accepted candidate are sent by the faculty member that is the PI of the financial source and the letter becomes part of the student file. The Electrical Engineering Department requires all applicants to report their GRE scores before an application is evaluated.

Application Deadlines
The application deadlines for fall admission are March 1 for international applicants and April 1 for domestic applicants. The application deadlines for spring admission are September 15 for international applicants and October 1 for domestic applicants. No summer applications for admission will be considered. Applicants must submit all required application materials (including GRE scores) to their host department by the relevant deadline to be guaranteed full consideration for admission.

Consideration for the merit-based fellowships from the Department of Electrical Engineering requires submitting a complete application for admission by the first fall semester admission deadline of March 1. No extra materials are required beyond those of the application for admission.

Prior Degree and GPA Requirements
A student does not need to possess a Master’s degree before applying to the EASPhD program. The minimum requirements for admission to the EASPhD program are a B.S. in one of the corresponding engineering disciplines, or an equivalent degree in Mathematics, Physics, Chemistry or Biology, from a reputable institution, with Grade Point Average (GPA) at least 3.0, based upon a 4.0 scale. Satisfaction of minimum requirements will not guarantee admission. The grades obtained in the student’s area of concentration will be an important factor in the consideration, as will possible multiple repetitions of fundamental courses.

Prerequisites for Courses
Students with undergraduate degrees in mathematics, science, or other engineering or non-engineering fields are eligible to apply for admission into the EASPhD program through one of the engineering host departments. However, all students must fulfill any prerequisite course requirements assigned to any graduate course in the corresponding department. Students with an undergraduate degree in areas other than engineering must also see their graduate advisor to receive approval before registering for a class in engineering.

GRE Requirements
Preferred minimum GRE scores are 150 Verbal, 153 Quantitative, and 3.5 for Analytical Writing for tests taken August 1, 2011 or later. For tests taken prior to August 1, 2011, preferred minimum GRE scores are 450 Verbal, 680 Quantitative, and 3.5 for Analytical Writing.

TOEFL Requirements
An international student whose undergraduate language of instruction was not English, should have a minimum TOEFL score of 600 (paper-based test) or 250 (computer-based test). A student with TOEFL score below 550 (paper-based test) or 213 (computer-based test) may be required to enroll in English classes. An applicant who does not meet these requirements can petition the University of Colorado Denver Graduate School for admittance, as either a Regular or Provisional degree student.

Provisional Acceptance
A student who meets the minimum requirements for admission, as dictated by the graduate school, but is not deemed qualified for direct admission to this program, may be admitted “provisionally;” that is, he/she may be required to take or repeat certain undergraduate courses before his/her admission to the program is official.

**Transfer Credit**

Request for transfer of credit will be considered on a case-by-case basis. This includes students possessing a Master’s degree. In keeping with the Rules of the Graduate School, doctoral students may transfer in a maximum of 21 credit hours, including graduate courses completed at the University of Colorado. Students possessing a Master’s degree, including those that obtained the degree from the University of Colorado, will be required to take a minimum of 9 additional course credit hours. Additional imposed course credit requirements will be considered on a case-by-case basis. All requests for transfer of credit must be made upon enrollment and will be granted solely at the discretion of the Graduate Committee of the pertinent CEAS host department. The Electrical Engineering department adheres to the following guidelines on transfer credit for PhD candidates in addition to rules at the College level.

- University of Colorado Denver ELEC Graduate Courses - Allow transfer for all 5000 level lecture courses with grades B and above up to 21 credits.
- Non University of Colorado Denver Graduate Courses – Allow transfer of up to 15 credits of courses with grades A- and above. We defer to the international office in assessment of grades from non-USA institutions.
- Online Courses will not be taken into account for transfer credit.
- Independent study courses taken as part of the BS or MS degree will not be taken into account for transfer credit.
- Courses not taken with the last 5 years will in general not be transferred as per CEAS rules. Transfer of any courses taken more than 5 years ago requires special validation to ensure that both the course content is still current and the student still retains sufficient knowledge of the content.
- Credit will only be transferred after the student has completed 1 semester of enrollment at UCD and earned minimum 3.00 GPA as per Graduate School Rules

**Required Signatures**

After the host department Graduate Committee Chair has signed to accept a candidate, the file should be passed to the Department Chair for his/her signature indicating that the Department Chair agrees that everything is in order for acceptance of the candidate.

**II.2 Rules and Regulations**

Following are the Rules and Regulations for the EASPhD degree. The document is useful to candidates and their faculty advisors in making sure that the requirements are met for completion of the Ph.D. degree. Each doctoral candidate should read and understand this document. He/she should sign the document signifying that he/she understands the document and has a curriculum plan complying with it.

**Host Department**

Applicants to the EASPhD program apply to and enter the program through one of four departments, called the host department, of the College: CE, CSE, EE, or ME. The student chooses the host department whose course offerings match with his/her desired primary area of concentration. As this Ph.D. program is multidisciplinary, a student must take courses from both a primary and secondary concentration.

**Selection of Primary and Secondary Discipline**

For his/her research and study area and with the assistance and approval of his/her advisor, a Ph.D. candidate will select a primary area of concentration within his/her host department, or discipline. With the agreement of his/her faculty advisor, the student will also select a secondary discipline outside of the student’s host department, which could be any one of the remaining CEAS departments, including the BIOE department. The secondary discipline may also be chosen from another College/School at UC Denver (e.g., the Mathematics department in CLAS). The student’s advisor(s) will be instrumental in the selection of a secondary discipline that supports and complements the
primary area of concentration in his/her primary discipline. At least one of the student’s research committee members must be from the department that supports the student’s secondary discipline concentration.

**Graduate Advisor and Research Committee**

Upon acceptance to the EASPhD program, each student will be assigned a temporary graduate faculty advisor from the ranks of full-time, CEAS host-department graduate faculty who possesses a Ph.D. degree in Engineering, Mathematics or Sciences to help the student select courses for the first semester. During the first semester, this advisor will also help the student plan a long-term program of study, which will be submitted to the respective host department for approval. In the first year of graduate studies, each EASPhD candidate must select and have an agreement from a permanent graduate faculty member from the ranks of the full-time, CEAS host-department graduate faculty who possesses a Ph.D. in Engineering, Mathematics or Sciences to be the student’s research advisor or the student will be discontinued from the program. The student will sign an agreement that outlines the rules and regulations pertinent to the Ph.D. degree and the student’s curriculum plan as complying with the rules and conditions in this document. The advisor will assist the student with the design of his/her course curriculum, will supervise the student’s dissertation, will help the student form a five-member research committee that will approve the student’s plan of study and will help mentor the student’s research. The research committee must include at least two faculty outside the student’s home department, at least one of whom from the department that supports the student’s secondary discipline concentration and at least one of whom outside of CEAS, while all members of the committee must possess a Ph.D. degree in Engineering, Mathematics or Sciences.

**Coursework Requirements**

The coursework requirement is 30 units (i.e., 10 courses each of which is 3 units) for all students. Students must take at least five courses in the primary area of concentration in the host department and at least three courses in the candidate’s secondary discipline. The two additional courses may be selected from any discipline or areas of concentration within disciplines among those listed in the graduate documents of the CEAS departments or other colleges in the University. Other courses may be recommended by the student’s advisor. As already stated above, to maintain the multidisciplinary feature of the program, the three courses in the secondary discipline of concentration must come from outside the student’s host department; from any of the remaining four departments of the College. The secondary discipline may also be chosen from another College/School at UC Denver. For students with more than 15 units of transfer credits, the course distribution will be decided on a case-by-case basis. To register for any of these required courses, the student must first obtain the signed approval of his/her graduate advisor(s).

**Independent Study Courses**

A student may take one, but no more than one, independent study course from one of the CEAS graduate faculty.

<table>
<thead>
<tr>
<th>Required (24 credit hours)</th>
<th>Primary Discipline (Electrical Engineering)</th>
<th>Secondary Discipline (Non-Electrical Engineering)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 graduate credit hours of coursework (ELEC 5XXX). (Must include required courses in chosen area of concentration (e.g., Electromagnetics))</td>
<td>9 graduate credit hours (5XXX) in a single secondary discipline (non-ELEC) approved by PhD committee</td>
</tr>
</tbody>
</table>

**Research Requirements**

For the research/dissertation requirement, an additional 30 dissertation units are required with supervision by the student’s graduate advisor(s). A student who successfully completes the 30-unit course requirement, but decides to not pursue the 30-unit dissertation requirement, may graduate with a Master’s degree in the discipline of his/her primary concentration provided he/she has met the degree requirements of the host department.
Seminar and GPA Requirements
The candidate must maintain a grade point average of 3.0 or higher. In compliance with the Graduate School Rules, the minimum grade required for a unit to count toward the 30 semester hours of coursework is “B minus” (2.7). The College of Engineering and Applied Science (CEAS) will require that all EASPhD candidates take at least two semesters of the ENGR7150 seminar course, at 0.5 credits per each semester. The class is a pass/fail; for passing a 75% minimum attendance plus a report on one of the seminars are required.

Transfer Credit
Requests for transfer of credit will be considered on a case-by-case basis. This includes students possessing a Master’s degree. In keeping with the Rules of the Graduate School, doctoral students may transfer in a maximum of 21 credit hours, including graduate courses completed at the University of Colorado. Students possessing a Master’s degree, including those that obtained the degree from the University of Colorado, will be required to take a minimum of 9 additional course credit hours. Additional imposed course credit requirements will be considered on a case-by-case basis. All requests for transfer of credit must be made at the time of application for admission and will be granted solely at the discretion of the Graduate Committee of the pertinent CEAS host department. Furthermore, no coursework completed five or more years prior to the commencement of study in the EASPhD program will be considered for transfer of credit and all transfer students must meet the same requirements for admission as non-transfer students.

Timing of Coursework
Each EASPhD candidate will be expected to successfully complete at least fifteen credit hours of coursework during the first year of study. Exceptions to this will be considered on a case-by-case basis, especially for working students. Candidates with more than fifteen granted transfer course credit hours will be expected to complete all required course work the first year of study.

Preliminary Examination
Each PhD candidate is required to take the Preliminary Examination prepared by the full-time faculty of the EE department. The Preliminary Examination consists of two parts: (a) A general mathematics part (only written exam) and (b) an area exam (both written and oral exam). Each candidate is required to successfully complete the Preliminary Examination requirement by the end of his/her third year in the program, while he/she is allowed a maximum of two attempts. A candidate who fails to fulfill the Preliminary Examination requirements will be expelled from the program.

Comprehensive Examination and Doctoral Dissertation Defense
After successful completion of the Preliminary Examination, students will be required to successfully complete two additional examinations: the Comprehensive Examination and the Doctoral Dissertation Defense Examination. The Comprehensive Examination will be prepared by the candidate’s dissertation committee and will be taken by the end of the candidate’s third year of doctoral studies. Consisting of written and oral parts, its purpose is to evaluate the candidate’s proficiency in his/her primary and secondary areas of concentration. A guide to the Ph.D. Comprehensive Exam is included in Section III.3 of this document. The Doctoral Dissertation Defense is the final examination and is designed to evaluate the originality and quality of the candidate’s research. Upon successful completion of the Doctoral Dissertation Defense Examination, the Doctoral Dissertation will be submitted to the Graduate School.

Degree Conferred
Upon satisfactory completion of all requirements, the candidate receives the degree “Doctor of Philosophy in Engineering and Applied Science.”

II.3 Guide to PhD Preliminary Exam
In the Electrical Engineering Department, the preliminary examination consists of an applied mathematics exam and two electrical engineering area exams (c.f., Figure 1). The applied mathematics exam is a written exam. The area exams have written and oral components and are focused on two graduate areas within the field of electrical engineering. Passing the written part of the area examination is a prerequisite for the oral portion. The preliminary examination is offered twice a year at the beginning of the semester. Each Ph.D. candidate can attempt each exam no more than twice. A PhD candidate is required to have passed all components of the preliminary exam within two years of enrollment as a PhD student (before beginning the 5th semester of enrollment).
• **Applied Mathematics Written Exam**

The exam consists of 10 problems of which the candidate must answer 8. Each graduate faculty member submits a problem for the exam that should take a well prepared student 20 minutes to complete. Students have 4 hours to complete the entire exam. The problems submitted by faculty for the exam must be newly created problems. Each faculty member submits two problems for the exam of which ten are chosen for the exam. The question content for the exam should be at the advanced undergraduate level that students would be exposed to in completing a BS in electrical engineering. Specifically, the exam covers the following topics:

- Calculus I-III material (real analysis, series, multivariate calculus, vector calculus)
- Differential Equations
- Linear Algebra
- Theory of Linear Systems
- Probability and Statistics
- Fourier, Laplace, and Z Transforms
- Numerical Analysis

The following four textbooks encompass the exam scope and should be used by students for preparation. These textbooks are used in the UCD undergraduate curriculum. Exam Questions can also cover the underlying mathematical background of the material in these texts.

- *Calculus Early Transcendentals* 1st Edition by Briggs and Cochran (MATH 2411, MATH 2421)
- *Linear Systems & Signals* 2nd, Edition by B. P. Lathi (ELEC 3316)

Candidates are expected to receive a cumulative score of 70% or higher to pass the exam. The exam is offered on the Friday of the first week of classes.

• **Concentration Area Written Exam**

The candidate will choose two areas within the field of electrical engineering in which to be examined and select one to be the primary area and the other as the secondary area. The exam will consist of problems contributed by faculty members who have expertise in one of the two chosen areas (at least two faculty members are involved in administering each area exam). Students will have four hours to complete two exams from both areas. The content for the exam for the secondary area is at the advanced undergraduate level that students would be exposed to in completing a BS in electrical engineering. The content for the secondary area exam can additionally include graduate level material that is covered in courses at the MS level. Candidates must receive a cumulative score of 70% or higher to pass each area exam. The exam is offered on the Friday of the third week of classes of the semester. The list of concentration areas is:

- Communications and Signal Processing
- Controls and Signal Processing
- Microelectronics and VLSI
- Fields, Waves and Optics
- Computer Engineering and Embedded System Design
- Energy and Power Systems

• **Concentration Area Oral Exam**

If the candidate has passed a written area exam described above, then he/she will be eligible for the oral exam in that area. The exam will be conducted by the faculty members that conducted the written concentration area exam (at least two faculty members are involved in administering the exam). All members of the graduate faculty have the right to attend the oral exam and participate even if they did not
The exam is offered on the Friday of the fifth week of classes of the semester.

Figure 1 Illustration of the structure of the CEAS PhD Preliminary Exam in Electrical Engineering

II.4 Guide to PhD Comprehensive Exam

The PhD Comprehensive Exam is intended to test the candidate’s ability to perform, present and discuss one’s research. The following is an overall guide to be used by students when preparing for the exam.

The student will first prepare a written document, entitled Thesis Proposal, which describes his/her research objectives. The Thesis Proposal will subsequently be defended in the presence of the members of the student’s Comprehensive Exam Committee. The proposal should give clear evidence of knowledge of the research topic and understanding of the research problem and related work. It should also include indication of the research methodology, expected results, and a (timeline) schedule up to the completion of the thesis writing and the doctoral defense. Upon successfully passing the comprehensive exam, the student is officially admitted into (PhD) candidacy.

- The Comprehensive Exam should be held within a year of passing the qualifying Preliminary Exam and by the third year of the student’s enrollment in the PhD program.
- The Thesis Proposal must be submitted to the PhD Committee at least three weeks prior to the exam. This gives the committee sufficient time to carefully read the proposal and evaluate it. Failure to submit the proposal on time may result in having to reschedule the exam.
- The Comprehensive Exam Committee should be the same as the 5 member research committee described in the EASPhD Rules and Regulations. As such, the committee must include at least two faculty outside the student’s home department (EE in the case of this document), one of whom must be outside of CEAS. The successful candidate will be expected to defend his/her dissertation before the same committee, which is referred to as the Ph.D. Committee in the remainder of this document.
- In compliance with the Graduate School rules, the application for candidacy form and the permission to take the exam form must be completed at least two weeks prior to the exam.

II.5 Guidelines on How to Write the Comprehensive Exam Report (Thesis Proposal)

- The Thesis Proposal should be between 15 and 25 pages (single-spaced format). Bibliographic references are not included in this page count (having more references is encouraged). While the page limits or formatting requirements are not strictly enforced, the Ph.D. Committee may question the reasons for a proposal length outside the norm. A template for writing the Thesis Proposal will be provided by the Department.
• A balance must be struck between satisfying space limitations and providing the most critical details. The proposal is not a binding agreement between the student and the Ph.D. Committee on the precise tasks that must be accomplished. Through frequent interactions with Ph.D. Committee members, the student may adapt specific elements of the research objectives.

• Three main criteria are usually applied in evaluating a proposal:
  - Intellectual merit: What is the importance of the activity to advancing knowledge or understanding?
  - Expected impact: How the proposed research may impact specific research communities or society as a whole.
  - Feasibility: Are the stated objectives achievable within reasonable time constraints?

• Based on the above evaluation criteria, the Thesis Proposal should contain:
  - **Executive Summary**: An executive summary of the thesis proposal (1 or 2 paragraphs, and less than 1/2 page).
  - **Background**: An overview of the state of the art, which helps to show that the candidate has a good grasp of the relevant research fields.
  - **Objectives**: The overall objectives of the proposed research.
  - **Impact**: Clear arguments as to why the work is interesting and novel in terms of intellectual merit and expected impact.
  - **Technical Approach**: This section should outline the general technical component of the research, including an outline of the research and a clear description of theoretical or experimental methods that will be used to accomplish the research. In effect, this section should address what will be done, why it should be done, how it will be done, and how metrics will be used to measure success.
  - **Accomplishments to Date**: A brief summary of research results obtained so far by the candidate. This includes citing prior publications and current submissions produced by the student.
  - **Milestones**: A clear description of the remaining tasks and goals with a time table and an explanation of how the goals can be accomplished within the expected amount of time.

• The Thesis Proposal should **not** be
  - A preliminary draft of the thesis.
  - Particular chapters or parts of the thesis.
  - A survey of the candidate's research field.
  - An existing publication or technical report.

**Oral Examination**
The student is required to prepare a 40 minute research presentation to be presented to his/her Ph.D. committee. The presentation should include the topics in the student’s Thesis Proposal and should cover a description of the problem, related background work, the proposed research objectives and approach, and research work completed by the student up to the time of the exam. The future work being proposed as part of the Comprehensive Exam is essential and must be included albeit the discussion of future work should be concise and brief. The student should be prepared to answer any questions from their committee, both during and following the presentation, on topics directly related and indirectly related to their proposed research. While different research advisors may have a slightly different perspective on what is important, the student will need to demonstrate that they are knowledgeable in the area of their research proposal and are able to apply their knowledge to new problems. The Ph.D. committee will also evaluate whether the research topic is appropriate and satisfies the requirements for a Ph.D. dissertation. The student’s presentation portion of the oral examination can be attended by the public, but the Ph.D. committee reserves the right to a private question and answer session that is open only to the committee, the candidate and other faculty with graduate appointments.
I understand the Rules and Regulations, and my faculty advisor and I have devised a curriculum plan complying with them.

_____________________________________________________   Date _______________
Student

_____________________________________________________   Date _______________
Faculty Advisor
APPENDIX 1

ELECTRICAL ENGINEERING GRADUATE COURSES AT UCD

(a) Communications and Signal Processing
Courses required for all majoring in the area
ELEC5617, Random Processes for Engineers
ELEC5248, Digital Communication Systems

Courses offered every Fall semester
ELEC5617, Random Processes for Engineers
ELEC5667, Wavelets Theory and Applications
ELEC5638, Digital Image Processing

Courses offered every Spring semester
ELEC5637, Digital Signal Processing
ELEC5248, Digital Communication Systems
ELEC 5648, Blind Signal Processing

Courses offered every other Fall semester
ELEC5657, Detection and Estimation Theory
ELEC5250, Information Theory

Courses offered every other Spring semester
ELEC5252, Computer Communication Networks
ELEC5xxx, Special Topics

(b) Controls and Signal Processing
Courses required for all majoring in the area
ELEC5617, Random Processes for Engineers
ELEC5276, Digital Control Systems

Courses offered every Fall semester
ELEC5617, Random Processes for Engineers
ELEC5638, Digital Image Processing
ELEC 5466, Adaptive Control System Design
ELEC5667, Wavelets Theory and Applications

Courses offered every Spring semester
ELEC5637, Digital Signal Processing
ELEC 5648, Blind Signal Processing
ELEC5276, Digital Control Systems

Courses offered every other Fall semester
ELEC5486, Modeling and System Identification

Courses offered every other Spring semester
ELEC5486, Modeling and System Identification
ELEC 5436, Nonlinear Control Systems
ELEC 5446 Introduction to Modern Control Theory

Courses offered occasionally upon demand
ELEC6000, Statistical Signal Processing
c) Microelectronics and VLSI:
Courses required for all majoring in the area
ELEC 5025-3 Device Electronics

Courses offered every Fall semester
ELEC 5025-3 Device Electronics

Courses offered every Spring semester
ELEC 5555-3 VLSI Circuit Simulation

Courses offered every other Fall semester
ELEC 5005-3 IC Design

Courses offered every other Spring semester
ELEC 5455-3 Computer Method for Device Electronics

Courses offered occasionally
ELEC 5800-3 Special Topic: IC Fabrication

(d) Fields, Waves and Optics
Courses required for all majoring in the area
ELEC 5033-3 Advanced Electromagnetic Fields

Courses offered every Fall semester
ELEC 5133-3 Electromagnetic Radiation and Antenna
ELEC 5333-3 Introduction to Computational Electromagnetics

Courses offered every Spring semester
ELEC 5033-3 Advanced Electromagnetic Fields

Courses offered occasionally
ELEC 5134-3 Introduction to Microwave Circuit Design
ELEC 5334-3 Advanced Computational Electromagnetics
ELEC 5373-3 Optical Engineering
ELEC 5433-3 Applications and Fundamentals of Plasmas
ELEC 5644-3 Medical Imaging
ELEC 5551-3 Pattern Recognition
ELEC 5688-3 Nondestructive Testing & Evaluation
ELEC 5xxx-3 Waves in Plasmas

(e) Computer Engineering and Embedded System Design
Courses required for all majoring in the area

Courses offered every Fall semester
ELEC 5501-3 Microprocessor-based Design
ELEC 5723-3 High Performance Computer Architecture
ELEC 4343 Engineering Neuro-Science

Courses offered every Spring semester
ELEC 5511-3 Hardware-Software Interface
ELEC 5727-3 Computer Vision

Courses offered occasionally upon demand
ELEC 5000-3 Special Topics
(f) **Energy and Power Systems:**

*Courses required for all majoring in the area*

**Courses offered every Fall semester**
- ELEC 5164-3 Electric Drive Systems
- ELEC 5174-3 Power Electronic Systems
- ELEC 5444-1 Power Systems Laboratory

**Courses offered every Spring semester**
- ELEC 5184-3 Power Systems Analysis
- ELEC 5170-1 Electric Drive Laboratory
- ELEC 5474-1 Power Electronics Laboratory

**Courses offered every other Fall semester**
- ELEC 5194-3 Power Systems Operation and Control

**Courses offered every other Spring semester**
- ELEC 5755-3 Renewable Energy Systems
- ELEC 5821-3 Advanced Power Electronics
- ELEC 5710-3 Advanced Electric Drive Systems
- ELEC 5725-3 Advanced Electric Machinery

**Selected Math Courses**
- ELEC 5210-3 Optimization Methods in Engineering
- ELEC 5220-3 Methods of Engineering Analysis
- ELEC 5230-3 Advanced Linear Systems

**Remark:** The EE department occasionally offers special topics courses, numbered EE58xx, which may count towards the satisfaction of the M.S.E.E.major/minor area requirements, as advised by the candidate’s major advisor.
APPENDIX 2

FACULTY ADVISORS AND AREAS OF SPECIALTY

2.1 Full Time Faculty

Atkinson, Brian, M.S. Electrical Engineering, University of Colorado Denver.
System design methodology, microprocessor-based systems, electronic and digital system design, digital
and embedded systems and their application to robotic systems.

Bialasiewicz, Jan, Ph.D. and D.Sc. Electrical Engineering, Silesian University of Technology, Poland.

Connors, Daniel, Ph.D. Electrical and Computer Engineering, University of Illinois at Urbana-Champaign.
Systems (computer architecture, embedded system design and fault tolerance), Software (programming
languages, parallel processing, compilers), Scientific Computation (high performance computing).

Deng, Yiming (Jerry), Ph.D., Electrical Engineering, Michigan State University.
Biomedical imaging and medical physics, applied electromagnetic and electromagnetic imaging, signal and
image processing, mathematical modeling and simulation, pattern recognition and nondestructive
evaluation.

Dey, Satadru, Ph.D., Electrical Engineering, University of California, Berkeley
Linear Systems, Nonlinear control, fault diagnosis of Dynamic Systems.

Fardi, Hamid, Ph.D. Electrical Engineering, University of Colorado at Boulder.
Solid State Electronics: device modeling, VLSI, measurements and characterization.

Gedney, Stephen, Ph.D. Electrical Engineering, University of Illinois at Urbana-Champaign
Computational electromagnetics, electromagnetic scattering, antenna modeling and design, magnetic
signature modeling, microwave and millimeter wave circuit modeling and design.

Golkowski, Mark, Ph.D. Electrical Engineering, Stanford University.
Electromagnetic waves, interactions of fields and matter, plasma discharges, waves in plasmas, phenomena
of the ionosphere and magnetosphere.

Harid, Vijay, Ph.D., Electrical Engineering, Stanford University
Numerical electromagnetics, VLF underground detection, waves in the magnetosphere, earth Ionosphere
waveguide, wave particle interactions, digital signal processing, optimization methods, student mentoring,
journal publication writing, grant and proposal writing.

Lei,, Tim C., Ph.D., Electrical Engineering, University of Michigan, Ann Arbor.
Ultrafast and nonlinear optics, biophotonics, advanced spectroscopic and microscopic techniques for
biomedical applications, disease diagnostics and treatments with optical techniques

Mancilla-David, Fernando A., Ph.D. Electrical Engineering, University of Wisconsin Madison.
Power system engineering, advanced power electronics.

Park, Jae-Do, Ph.D., Electrical Engineering, Pennsylvania State University.
Electric machine modeling and control, drive system design, energy conversion system applications.

Radenkovic, Miloje, Ph.D. Electrical Engineering, Belgrade University, Yugoslavia.
Systems and Control Theory: robust control systems, stochastic control and system identification, adaptive
systems in control and signal processing, control of large-scale systems, intelligent control.
Vahid, Alireza, Ph.D., Electrical Engineering, Duke University
Network information theory and wireless communications, coding theory and its applications in computer and memory systems.

2.2 Other Faculty

Malmedal, Keith, Ph.D., P.E., Colorado School of Mines, Engineering Systems, M.S. University of Colorado Denver, Civil Engineering; President and Chief Engineering, NEI Engineering.
Commercial and industrial power distribution design at low and medium voltages, renewable energy design and integration, short circuit studies, harmonic studies, protection design, commercial lighting design, and fire alarm system design.
Proano, C. Julio, Ph.D, Electrical Engineering, University of Colorado Boulder
Control systems, numerical analysis, optimization.
Appendix 3
Rubrics for Scoring PhD Comprehensive Exam and Annual Reviews

These Rubrics are to serve as a guide for the PhD Comprehensive Examination, Subsequent Annual Reviews, and the Final Defense. Scoring should be between 1 – 4, with 4 being Exceptional, and 1 being Unsatisfactory. Each committee member should provide an independent score. The average score of all committee members is to be entered on the PhD students checklist.

<table>
<thead>
<tr>
<th>Quality of Writing</th>
<th>Excellent 4</th>
<th>Good 3</th>
<th>Satisfactory 2</th>
<th>Unsatisfactory 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to Field Technical Questions</td>
<td>Clear understanding of questions and their context. Coherently and succinctly provides answers to the understanding of audience with strong technical evidence backing response.</td>
<td>Understands questions and has a satisfactory understanding of their context. Coherently provides answers with sufficient technical evidence backing response.</td>
<td>Mostly understands questions. Has the ability to communicate answers to a majority of questions.</td>
<td>Often misunderstands questions. Poor ability to communicate a clear answer or solution to questions.</td>
</tr>
<tr>
<td>Level of Scholarship</td>
<td>Complete knowledge of technical field and previous work. Understands context of area of research with respect to other research and broad contemporary issues.</td>
<td>Strong knowledge of technical field and previous work.</td>
<td>Mostly understands technical field and has some knowledge of previous work.</td>
<td>Shallow comprehension of the technical field or research area.</td>
</tr>
<tr>
<td>Ability to Perform Independent</td>
<td>Has the aptitude and ability to think independently and discuss</td>
<td>Has the ability to think independently and pose approaches to</td>
<td>Some ability to think independently and contrive new</td>
<td>Inability to independently contrive new</td>
</tr>
<tr>
<td>Research approaches to find solutions to challenging problems. Exhibits creativity in thought and intellectual depth. Excellent ability to pose strong arguments in support of their solution methodologies. Excellent ability to design new experiments and develop novel ways to build evidence supporting arguments. Excellent ability to be critical of their own arguments. Complete knowledge of previous work.</td>
<td>Research approaches to find solutions to existing problems. Exhibits creativity in thought. Ability to pose strong arguments in support of their solution methodologies. Good ability to design new experiments and develop ways to build evidence supporting arguments. Ability to be critical of their own arguments.</td>
<td>Research approaches to find solutions to existing problems. Has some creativity in thought. Poses adequate arguments in support of their solution methodologies. Some ability to design new experiments and develop ways to build evidence supporting arguments. Ability to be critical of their own arguments.</td>
<td>Research approaches to find solutions or approaches. Lacks coherence, confidence, and understanding of the theory previous work. Presents work that is not original. Lacks ability to pose strong arguments.</td>
<td></td>
</tr>
</tbody>
</table>