Name: __

Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!

1. __________ 5. __________
2. __________ 6. __________
3. __________ 7. __________
4. __________

Total __________

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:
Joshua French (Chair), Julien Langou, Anatolii Puhalskii.
1. Assume the following general definition for a real positive semidefinite matrix: an \(n \times n \) real matrix \(A \) is said to be **positive semidefinite** if and only if, for all vector \(x \) in \(\mathbb{R}^n \), \(x^T A x \geq 0 \). In particular, this definition allows real matrices which are **not symmetric** to be **positive semidefinite**.

(a) Prove that if \(A \) and \(B \) are real symmetric positive semidefinite matrices and matrix \(A \) is nonsingular, then \(AB \) has only real nonnegative eigenvalues. (10 pts)

(b) Provide a counterexample showing that the requirement that the matrices are symmetric cannot be dropped. (10 pts)

Solution

(a) Since \(A \) is symmetric positive definite, \(A^{1/2} \) and \(A^{-1/2} \) are well defined. The matrix \(AB \) has the same eigenvalues as the matrix \(A^{-1/2}ABA^{1/2} = A^{1/2}BA^{1/2} \). The latter matrix is selfadjoint and positive semidefinite, so it has real nonnegative eigenvalues.

Note: The result also holds if we remove the assumption of \(A \) to be nonsingular. In other words, \(A \) and \(B \) only need to be two \(n \)-by-\(n \) symmetric positive semidefinite matrices. The proof gets a little trickier though.

(b) One needs to provide positive semidefinite matrices \(A \) and \(B \), \(A \) nonsingular, such that \(AB \) has an eigenvalue which is not “real and nonnegative”. Given question (a) we understand that either \(A \) or \(B \) (or both) have to be nonsymmetric. To create a positive semidefinite matrix \(A \), one simply takes a symmetric positive definite matrix \(H \) and then add an antisymmetric matrix \(S \), then \(A = H + S \) is positive semidefinite matrix.

In our case, we can take \(A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) and \(B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

In this case \(A \) is positive semidefinite nonsingular, \(B \) is positive semidefinite, and \(AB \) does not have real nonnegative eigenvalues.
2. (a) Suppose A and B are real-valued symmetric $n \times n$ matrices. Show that $|\text{trace}(AB)| \leq \sqrt{\text{trace}(A^2)\text{trace}(B^2)}$. What are the conditions for equality to hold? (10 pts)

(b) Let A be a real $m \times n$ matrix. Show that

$$\sqrt{\text{trace}(AA^T)} \leq \text{trace}\left(\sqrt{AA^T}\right).$$

When does equality hold? (10 pts)

Solution

(a) By the Cauchy-Schwarz Theorem,

$$|\text{trace}(AB)| = \sum_{i,j} a_{ij} b_{ij} \leq \sqrt{\sum_{i,j} a_{ij}^2} \sqrt{\sum_{i,j} b_{ij}^2} = \sqrt{\text{trace}(A^2)\text{trace}(B^2)}.$$

For equality to hold, one of the matrices has to be a scalar multiple of the other.

(b) Let $AA^T = P^TDP$, where D represents a nonnegative diagonal matrix and P represents an orthogonal matrix. Then

$$\text{trace}(AA^T) = \text{trace}(D) = \sum_{i} \lambda_i \leq \left(\sum_{i} \sqrt{\lambda_i}\right)^2 = (\text{trace}(D^{1/2}))^2 = (\text{trace}((AA^T)^{1/2}))^2.$$

The fact that $\sum_{i} \lambda_i \leq (\sum_{i} \sqrt{\lambda_i})^2$ comes from developing the square on the right side. Equality holds if and only if D has at most one nonzero entry, so AA^T has at most one nonzero eigenvalue, so A has at most one nonzero singular value.
3. Let
\[f : \mathcal{M}_n(\mathbb{R}) \rightarrow \mathcal{M}_n(\mathbb{R}) \]
\[A \mapsto A^T \]

(a) What are the eigenvalues of \(f \)? (10 pts)
(b) Is \(f \) diagonalizable? If yes, give a basis of eigenvectors. If no, give as many linearly independent eigenvectors as possible. (10 pts)

Solution

It is clear that \(f^2 = I \), therefore \(p(x) = (x - 1)(x + 1) \) is such that \(p(f) = 0 \). This implies that the eigenvalues of \(f \) are part of the set \(\{1, -1\} \). Also \(p(f) = 0 \) implies that \(f \) is diagonalizable since \(p \) only has single roots.

Now it is clear that any symmetric matrix is eigenvector associated with eigenvalue 1, and that an eigenvector associated with eigenvalue 1 is a symmetric matrix. If we call the subspace of symmetric matrices, \(S_n \), and \(E_1 \) the eigenspace of \(f \) associated with eigenvalue 1, we have \(S_n = E_1 \).

It is also clear that any antisymmetric matrix is eigenvector associated with eigenvalue -1, and that an eigenvector associated with eigenvalue -1 is an antisymmetric matrix. If we call the subspace of antisymmetric matrices, \(A_n \), and \(E_{-1} \) the eigenspace of \(f \) associated with eigenvalue -1, we have \(A_n = E_{-1} \).

We know that
\[\mathcal{M}_n = S_n \oplus A_n. \]

Therefore we can diagonalize \(f \) by taking a basis of \(S_n \) and a basis of \(A_n \) to form a basis of \(\mathcal{M}_n \).
4. Define the $n \times n$ matrix

$$A_n = \begin{bmatrix}
a + b & b & b & \ldots & b & b \\
a & a + b & b & \ddots & b & b \\
a & a & a + b & \ddots & b & b \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
a & a & a & \ddots & a + b & b \\
a & a & a & \ldots & a & a + b
\end{bmatrix}$$

(a) Compute $D_n = \det(A_n)$. (10 pts)

(b) Give the value of D_n for $n = 10$, $a = 2$, and $b = -1$. (10 pts)

Solution

We perform (in this order) $L_n \leftarrow L_n - L_{n-1}$, then $L_{n-1} \leftarrow L_{n-1} - L_{n-2}$, ... and finally $L_2 \leftarrow L_2 - L_1$. (These transformations do not change the value of the determinant.) We get

$$D_n = \begin{vmatrix}
a + b & b & b & \ldots & b & b \\
-b & a & 0 & \ddots & 0 & 0 \\
0 & -b & a & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & a & 0 \\
0 & 0 & 0 & \ldots & -b & a
\end{vmatrix}$$

We develop with respect to last column and get

$$D_n = (-1)^{n-1}b + aD_{n-1}.$$

And so, we get

$$D_n = b^n + aD_{n-1}.$$

We have

$$D_1 = a + b.$$

(Note: We could get D_1 from $D_1 = b + aD_0$ if we define D_0 to be 1.)
So we get
\[D_2 = b^2 + aD_1 = b^2 + ab + a^2. \]

Quick check:
\[D_2 = \begin{vmatrix} a + b & b \\ a & a + b \end{vmatrix} = (a + b)^2 - ab = b^2 + ab + a^2. \]

So we get
\[D_3 = b^3 + aD_2 = b^3 + ab^2 + a^2b + a^3 \]

Pursuing in an identical manner, we get
\[D_n = b^n + ab^{n-1} + \ldots + a^{n-1}b + a^n = \sum_{k=0}^{n} a^k b^{n-k}. \]

We can simplify by noticing that
\[(a - b)(b^n + ab^{n-1} + \ldots + a^{n-1}b + a^n) = a^{n+1} - b^{n+1}.\]

So, if \(a \neq b \), we have
\[D_n = \frac{a^{n+1} - b^{n+1}}{a - b}. \]

And, if \(a = b \), we get
\[D_n = (n + 1)a^n. \]

(And we check that the latter expression for \(a = b \) is the limit of the expression for \(a \neq b \) when \(b \) goes to \(a \).)

For \(n = 10, a = -1, \) and \(b = 2, \) we get
\[\frac{(-1)^{11} - (2)^{11}}{(-1) - 2} = \frac{2049}{3} = 683. \]
5. Suppose that \(u \) and \(v \) are vectors in a real inner product space \(V \).

(a) Prove that
\[
||u|| + ||v|| \frac{\langle u, v \rangle}{||u|| ||v||} \leq ||u + v||. \quad (10 \text{ pts})
\]

(b) Prove or disprove the following identity:
\[
(||u|| + ||v||) \frac{||u\rangle \langle v||}{||u|| ||v||} \leq ||u + v||. \quad (10 \text{ pts})
\]

Solution

(a) Case 1: \(\langle u, v \rangle \leq 0 \). The inequality follows trivially since a norm is nonnegative. Thus, the leftside is no more than 0 while the right side is no less than 0.

Case 2: \(\langle u, v \rangle > 0 \). Squaring the left side we have
\[
(||u|| + ||v||)^2 \frac{\langle u, v \rangle}{||u||^2 ||v||^2} \leq (||u||^2 + ||v||^2 + 2||u|| ||v||) \frac{\langle u, v \rangle ||u|| ||v||}{||u||^2 ||v||^2} \]
\[
= \frac{||u||}{||v||} \langle u, v \rangle + \frac{||v||}{||u||} \langle u, v \rangle + 2\langle u, v \rangle \quad (1)
\]
\[
= \frac{||u||}{||v||} ||u|| ||v|| + \frac{||v||}{||u||} ||u|| ||v|| + 2\langle u, v \rangle \quad (2)
\]
\[
= ||u + v||^2. \quad (3)
\]

Both (1) and (3) are obtained by applying the Cauchy-Schwarz inequality to \(\langle u, v \rangle \), while (2) and (4) are obtained by simplifying.

(b) Let \(u = (1, 0) \), \(v = (-1, 0) \), and use a Euclidean inner product (dot product).
Then the left side of the inequality becomes \((1 + 1) \frac{1}{1(1)} = 1 \) while the right side is 0. (Note: one can also use one-dimensional vector: \(u = (1), v = (-1) \).)
6. Let V be a vector space. Let $f \in \mathcal{L}(V)$. Let p be a projection (so $p \in \mathcal{L}(V)$ and is such that $p^2 = p$). Prove that

$$\text{Null}(f \circ p) = \text{Null}(p) \oplus (\text{Null}(f) \cap \text{Range}(p)).$$

(20 pts)

Solution

Firstly, we would like to prove that

$$\text{Null}(p) \oplus (\text{Null}(f) \cap \text{Range}(p)) \subset \text{Null}(f \circ p).$$

Note: We recall that if A, B and C are subspaces, to prove that $A + B \subset C$, we just need to prove that $A \subset C$ and $B \subset C$.

Let $x \in \text{Null}(p)$, then $p(x) = 0$, so $(f \circ p)(x) = 0$, so $x \in \text{Null}(f \circ p)$.

Let $x \in \text{Null}(f) \cap \text{Range}(p)$. Since $x \in \text{Range}(p)$, there exists y such that $x = p(y)$. Since $x \in \text{Null}(f)$, we have $f(x) = 0$. Now let us look at $(f \circ p)(x)$. (Note: we want to prove that $(f \circ p)(x) = 0$.) We have $(f \circ p)(x) = (f \circ p)(p(y)) = f(p^2(y)) = f(p(y)) = f(x) = 0$, We have used the facts that $1 \rightarrow 2$: $x = p(y)$, $3 \rightarrow 4$: $p^2 = p$, $4 \rightarrow 5$: $p(y) = x$, $5 \rightarrow 6$: $f(x) = 0$. This proves that $x \in \text{Null}(f \circ p)$.

We proved that

$$(\text{Null}(p) + (\text{Null}(f) \cap \text{Range}(p))) \subset \text{Null}(f \circ p).$$

Secondly, we would like to prove that

$$\text{Null}(f \circ p) \subset \text{Null}(p) \oplus (\text{Null}(f) \cap \text{Range}(p)).$$

Let $x \in \text{Null}(f \circ p)$, we can write x as

$$x = (x - p(x)) + p(x),$$

where

(a) $$(x - p(x)) \in \text{Null}(p).$$ Indeed, $p(x - p(x)) = p(x) - p^2(x)$, but $p = p^2$ so $p(x - p(x)) = 0$, so $(x - p(x)) \in \text{Null}(p)$.

(b) $$p(x) \in \text{Null}(f) \cap \text{Range}(p).$$ It is a fact that $p(x) \in \text{Range}(p)$. Moreover, since $x \in \text{Null}(f \circ p)$, we have that $(f \circ p)(x) = 0$, which proves that $p(x) \in \text{Null}(f)$. So $p(x) \in \text{Null}(f) \cap \text{Range}(p)$.

Therefore we have that

$$\text{Null}(f \circ p) \subset \text{Null}(p) + (\text{Null}(f) \cap \text{Range}(p)) .$$

At this point, we proved that

$$\text{Null}(f \circ p) = \text{Null}(p) + (\text{Null}(f) \cap \text{Range}(p)) .$$

It remains to prove that the sum is direct. Let $x \in \text{Null}(p) \cap (\text{Null}(f) \cap \text{Range}(p))$, then $x \in \text{Range}(p)$, so there exists $u \in V$ such that $x = p(u)$, but $x \in \text{Null}(p)$, so $p(x) = 0$, so $p^2(u) = 0$, but $p^2 = p$, so $p(u) = 0$, so $x = 0$. We proved that $\text{Null}(p) \cap (\text{Null}(f) \cap \text{Range}(p)) = \{0\}$ so the sum in the previous paragraph is direct.

We are done and we can conclude that

$$\text{Null}(f \circ p) = \text{Null}(p) \oplus (\text{Null}(f) \cap \text{Range}(p)) .$$
7. (a) Let $n \in \mathbb{N}\setminus\{0,1\}$ (so $n \geq 2$) and $A \in \mathcal{M}_n(\mathbb{C})$ such that $\text{rank}(A) = 1$. Prove that A is diagonalizable if and only if $\text{trace}(A) \neq 0$. (10 pts)

(b) Let $a_1, \ldots, a_n \in \mathbb{C}\setminus\{0\}$, (so the a_i’s are nonzero complex numbers,) and A such that $A = \left(\frac{a_i}{a_j} \right)_{1 \leq i,j \leq n}$. (This means that the entry (i,j) of A is $\frac{a_i}{a_j}$.) Show that A is diagonalizable. Give a basis of eigenvectors (with the associated eigenvalues) for A. (10 pts)

Solution

(a) First we note that $\text{rank}(A) = 1 \iff \text{dim}(\text{Null}(A)) = n - 1$ (by the rank theorem). So, if $\text{rank}(A) = 1$ and $n \geq 2$, then $\text{dim}(\text{Null}(A)) \geq 1$ and so 0 is an eigenvalue of A. We call ν_0 the geometric multiplicity of the eigenvalue 0, and μ_0 the algebraic multiplicity of the eigenvalue 0. We call E_0 the eigenspace associated with the eigenvalue 0. Now, since $\text{dim}(\text{Null}(A)) = n - 1$, we have that $\text{dim}(E_0) = n - 1$, or in other words, the geometric multiplicity of the eigenvalue 0, ν_0, is $n - 1$. We know that, for a given eigenvalue, the algebraic multiplicity is always greater than or equal to the geometric multiplicity. For the eigenvalue 0, this reads: $\nu_0 \leq \mu_0$. For a rank–1 matrix, there are therefore only two cases: either $\nu_0 = \mu_0 = n - 1$, or $\nu_0 = n - 1$, $\mu_0 = n$.

[case $\nu_0 = \mu_0 = n - 1$] In this case, since $\mu_0 = n - 1$, there has to exist another eigenvalue λ different from zero. (Because the sum of the algebraic multiplicities of the eigenvalues has to sum to n.) For that eigenvalue λ, the geometric multiplicity, ν_λ, is at least 1, but can be no more than 1 (because $\nu_0 = n - 1$ and the sum of the algebraic multiplicities of two distinct eigenvalues has to be less than n). So $\nu_\lambda = 1$. So we have $\nu_\lambda = 1$ and $\nu_0 = n - 1$, so A is diagonalizable. We also note that, in this case, $\text{trace}(A) = \lambda$, (the trace is the sum of the eigenvalues counted with their multiplicities,) and so, in this case, $\text{trace}(A) \neq 0$.

[case $\nu_0 = n - 1, \mu_0 = n$] In this case, since $\mu_0 = n$, A only has the eigenvalue 0. We also have that A is not diagonalizable and that $\text{trace}(A) = 0$.

Starting from a rank–1 matrix, we found two possibilities. Either $\nu_0 = \mu_0 = n - 1$, in which case, A is diagonalizable and $\text{trace}(A) \neq 0$. Or $\nu_0 = n - 1, \mu_0 = n$, in which case, A is not diagonalizable and $\text{trace}(A) = 0$.

This enables us to conclude that for a rank–1 matrix

A is diagonalizable \iff $\text{trace}(A) \neq 0$.

(b) We observe that the matrix is of rank 1. Indeed

\[
A = \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_{n-1} \\
a_n
\end{pmatrix}
\begin{pmatrix}
\frac{1}{a_1} & \frac{1}{a_2} & \cdots & \frac{1}{a_{n-1}} & \frac{1}{a_n} \\
\end{pmatrix}.
\]

We also have \(\text{trace}(A) = n\). So by the previous question, we see that \(A\) is diagonalizable (since \(\text{trace}(A) \neq 0\)). We also see that \(A\) has eigenvalue 0 with geometric multiplicity \(n-1\) and eigenvalue \(n\) with geometric multiplicity 1.

eigenvalue 0 To find \(n-1\) linearly independent eigenvectors associated with eigenvalue 0, we want to find a basis for the null space of \(A\), which is same as null space of

\[
\begin{pmatrix}
\frac{1}{a_1} & \frac{1}{a_2} & \cdots & \frac{1}{a_{n-1}} & \frac{1}{a_n} \\
\end{pmatrix}.
\]

We have (for example) that \(x_1\) is a leading variable, and that \(x_2, x_3, \ldots, x_n\) are free variables. This gives for a general solution:

\[
\begin{pmatrix}
-a_1 x_2 - \frac{a_1}{a_3} x_3 - \cdots - \frac{a_1}{a_{n-1}} x_{n-1} - \frac{a_1}{a_n} x_n \\
x_2 \\
x_3 \\
\vdots \\
x_{n-1} \\
x_n
\end{pmatrix} =
\begin{pmatrix}
-a_1 \\
1 \\
0 \\
\vdots \\
0 \\
0
\end{pmatrix} x_2 +
\begin{pmatrix}
-a_1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{pmatrix} x_3 + \cdots +
\begin{pmatrix}
-a_1 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{pmatrix} x_{n-1} +
\begin{pmatrix}
-a_1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{pmatrix} x_n.
\]

So a basis for \(E_0\) is for example

\[
v_1 = \begin{pmatrix}
-a_1 \\
a_2 \\
0 \\
\vdots \\
0 \\
0
\end{pmatrix}, \ v_2 = \begin{pmatrix}
-a_1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{pmatrix}, \ \ldots \ v_{n-2} = \begin{pmatrix}
-a_1 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{pmatrix}, \ v_{n-1} = \begin{pmatrix}
-a_1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{pmatrix}.
\]

eigenvalue n We see that an eigenvector for eigenvalue \(n\) is for example

\[
v_n = \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_{n-1} \\
a_n
\end{pmatrix}.
\]

Answer: The above given \((v_1, \ldots, v_n)\) is a basis of \(\mathbb{C}^n\) made of eigenvectors of \(A\).