University of Colorado Denver
Department of Mathematical and Statistical Sciences
Applied Linear Algebra Ph.D. Preliminary Exam
January 13, 2014

Name: ___

Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!

1. ___________ 5. ___________
2. ___________ 6. ___________
3. ___________ 7. ___________
4. ___________ 8. ___________

Total ___________

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:
Joshua French, Julien Langou (Chair), Anatolii Puhalskii.
Let A be a full column rank n-by-k matrix (so $k \leq n$) and b to be a column vector of size n. We want to minimize the squared Euclidean norm $L(x) := ||Ax - b||_2^2$ with respect to x.

(a) Prove that, if rank(A) = k, then $A^T A$ is invertible.

(b) Compute the gradient of $L(x)$.

(c) Directly derive the normal equations by minimizing $L(x)$, and then provide the closed-form expression for x that minimizes $L(x)$.

(d) We consider a QR factorization of A where Q is n-by-k and R is k-by-k. Show that an equivalent solution for x is $x = R^{-1}Q^T b$.

Solution

(a) Let x such that $A^T Ax = 0$, then $x^T A^T Ax = 0$ so that $||Ax||^2 = 0$ so that $Ax = 0$. But, since A is full column rank, Null(A) = $\{0\}$, so that $Ax = 0 \Rightarrow x = 0$. We proved that $A^T Ax = 0 \Rightarrow x = 0$. Since $A^T A$ is square, this means that $A^T A$ is invertible.

(b) The gradient of $L(x) = (Ax - b)^T (Ax - b) = x^T A^T Ax - 2x^T bA^T b + b^T b$ is $\nabla L(x) = 2A^T Ax - 2A^T b$.

(c) Setting the gradient to zero, we get the normal equations $A^T Ax = A^T b$, by question (a), we know that $A^T A$ is invertible, the unique solution of the normal equations is obtained as $x = (A^T A)^{-1} A^T b$.

(d) The QR factorization of A has the property $A = QR$, with $Q^T Q = I$. (We note that R is upper triangular but this does not matter here.) Starting from the normal equations in (a), we have $R^T Q^T Q Rx = R^T Q^T b$, which simplifies to $R^T Rx = R^T Q^T b$ since $Q^T Q = I$. We note that, since A has full column rank, this means that R is invertible. (Proof. By contrapositive. Assume R is not invertible, then there exists x nonzero such that $Rx = 0$, so that $Q Rx = 0$ so that $Ax = 0$ (with x nonzero) so dim(Null(A)) > 0 so Rank(A) < k so A is not full column rank.) Since R is invertible, (so is R^T,) from $R^T Rx = R^T Q^T b$, we get $x = R^{-1}Q^T b$.

2. Let V be a real vector space.

(a) Give the definition of a real inner product $\langle \cdot, \cdot \rangle$ over the vector space V. (That is the set of properties from the definition of a real inner product.)

We define $\|x\|$ as $\|x\| = \sqrt{\langle x, x \rangle}$.

(b) From these two definitions, state and prove the Cauchy-Schwarz inequality.

(c) Now, state and prove the triangular inequality.

(d) Now, prove that $\|x\|$ is a norm.

Solution

(a) A real inner product on V is a function from V^2 to \mathbb{R} with the following properties:

i. for all x in V, $\langle x, x \rangle \geq 0$,
ii. $\langle x, x \rangle = 0$ if and only if $x = 0$,
iii. for all x in V, for all y in V, $\langle x, y \rangle = \langle y, x \rangle$,
iv. for all x in V, for all y in V, for all z in V, $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$,
v. for all α in \mathbb{R}, for all x in V, for all y in V, $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$.

(b) We note that by property (i) above, for all x in V, $\langle x, x \rangle \geq 0$, and so $\|x\| = \sqrt{\langle x, x \rangle}$ is well defined for x in V.

The Cauchy-Schwarz inequality states that, for all u and all v, we have

$$|\langle u, v \rangle| \leq \|u\| \|v\|.$$

Now we write that

$$0 \leq \langle \|u\|v - \|v\|u, \|u\|v - \|v\|u \rangle$$

$$= \|u\|^2 \langle v, v \rangle - 2 \|u\| \|v\| \langle u, v \rangle + \|v\|^2 \langle u, u \rangle$$

$$= 2 \|u\|^2 \|v\|^2 - 2 \|u\| \|v\| \langle u, v \rangle.$$

Rearranging yields

$$2 \|u\| \|v\| \langle u, v \rangle \leq 2 \|u\|^2 \|v\|^2$$

$$\langle u, v \rangle \leq \|u\| \|v\|.$$

We can apply the same reasoning to $-u$ instead of u and we obtain the Cauchy-Schwarz inequality.

(c) The triangle inequality states that, for all u and all v, we have

$$\|u + v\| \leq \|u\| + \|v\|.$$
Note that
\[\|u + v\|^2 = \langle u + v, u + v \rangle = \|u\|^2 + 2\langle u, v \rangle + \|v\|^2 \leq \|u\|^2 + 2\|u\|\|v\| + \|v\|^2 \]
by Cauchy-Schwarz inequality
\[= (\|u\| + \|v\|)^2 \]
and the inequality follows by taking the square root of both sides.

(d) A norm is a function from \(V \) to \(\mathbb{R} \) with the following properties:

i. for all \(x \) in \(V \), \(\|x\| = 0 \Rightarrow x = 0 \),
ii. for all \(x \) in \(V \), for all \(\alpha \) in \(\mathbb{R} \), \(\|\alpha x\| = |\alpha|\|x\| \),
iii. for all \(x \) in \(V \), for all \(y \) in \(V \), \(\|x + y\| \leq \|x\| + \|y\| \).

Property (2.d.i) comes from property (2.a.ii). Property (2.d.ii) comes from property (2.a.iii) and property (2.a.v). Property (2.d.iii) is the triangular inequality which we prove in (2.c).
3. Suppose A is a positive definite symmetric real n–by–n matrix and B is a real m–by–n matrix such that BB^T is positive definite. Prove that the matrix $B^T(BA^{-1}B^T)^{-1}B$ is symmetric positive definite.

Solution
Since A is positive definite, A^{-1} is positive definite. For $x \in \mathbb{R}^m$, $B^T x = 0 \in \mathbb{R}^n$ if and only if $x = 0$. (If $B^T x = 0$ for $x \neq 0$, then $BB^T x = 0$ which is impossible by BB^T being positive definite.) Hence, $x^TBA^{-1}B^T x = 0$ if and only if $x = 0$, so $BA^{-1}B^T$ is positive definite. Therefore, $(BA^{-1}B^T)^{-1}$ is positive definite which implies, as before that $B^T(BA^{-1}B^T)^{-1}B$ is positive definite.
4. Suppose A is a positive definite symmetric square real matrix and B is a symmetric square real matrix. Show that there exists a square real matrix C such that C^TAC is the identity matrix and C^TBC is a diagonal matrix.

Solution

Let $C_1 = A^{1/2}$. Then $C_1^{-1}AC_1^{-1}$ is the identity matrix and $C_1^{-1}BC_1^{-1}$ is symmetric. We can write $C_1^{-1}BC_1^{-1} = PD^P^T$, where D is diagonal and P is orthogonal. Then $D = (P^T C_1^{-1}) B (C_1^{-1} P)$ and $(P^T C_1^{-1}) A (C_1^{-1} P) = P^T (C_1^{-1} AC_1^{-1}) P$ is the identity matrix. Thus, one can take $C = C_1^{-1} P$.

5. Let \mathcal{P}_n represent the real vector space of polynomials in x of degree less than or equal to n defined on $[0, 1]$. Given a real number a, we define $Q_n(a)$ the subset of \mathcal{P}_n of polynomials that have the real number a as a root.

(a) Let a be a real number. Show that $Q_n(a)$ is a subspace of \mathcal{P}_n. Determine the dimension of that subspace and exhibit a basis.

(b) Let the inner product in \mathcal{P}_n be defined by $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$. Determine the orthogonal complement of the subspace $Q_2(1)$ of \mathcal{P}_2.

Solution

(a) Polynomials in $Q_n(a)$ can be written as $p(x) = (x - a)q(x)$ where $q(x)$ is a polynomial of degree less than or equal to $n - 1$. The definition of a subspace is verified routinely. Since $Q_n(a)$ is isomorphic with \mathcal{P}_{n-1}, its dimension is n, $\{(x - a), (x - a)^2, \ldots, (x - a)^n\}$ is a basis.

(b) We can write a polynomial in \mathcal{P}_2 as $a_0 + a_1(x - 1) + a_2(x - 1)^2$. We need a polynomial orthogonal to $x - 1$ and $(x - 1)^2$, so

\[
\int_0^1 (a_0 + a_1(x - 1) + a_2(x - 1)^2)(x - 1)dx = 0,
\]

\[
\int_0^1 (a_0 + a_1(x - 1) + a_2(x - 1)^2)(x - 1)^2dx = 0,
\]

which yields

\[
\begin{align*}
-\frac{a_0}{2} + \frac{a_1}{3} - \frac{a_2}{4} &= 0, \\
\frac{a_0}{3} - \frac{a_1}{4} + \frac{a_2}{5} &= 0,
\end{align*}
\]

so

\[
\begin{pmatrix}
a_0 \\
a_1 \\
a_2
\end{pmatrix}
= a_2
\begin{pmatrix}
3/10 \\
6/5 \\
1
\end{pmatrix}
\]

Thus, $Q_2(a) \perp = \{3a_2 + 12a_2(x - 1) + 10a_2(x - 1)^2, a_2 \in \mathbb{R}\}$.
6. Let F be a commutative field, let $(V, +, \cdot)$ be a vector space over F, let A and B be two subspaces of V, let A' be a subspace such that $A' \oplus (A \cap B) = A$ and let B' be a subspace such that $B' \oplus (A \cap B) = B$. Show that $A + B = (A \cap B) \oplus A' \oplus B'$.

Solution

One can write

$$A + B = (A' + (A \cap B)) + (B' + (A \cap B)) = A' + B' + (A \cap B).$$

So the real question is not about the sum but about the direct sum of $(A \cap B)$, A', and B'.

Let $x \in (A \cap B)$, $a' \in A'$, $b' \in B'$ such that

$$x + a' + b' = 0.$$

Then, on the one hand, $b' \in B'$ but $B' \subset B$, so $b' \in B$, on the other hand, $b' = -x - a'$, but $x \in A$ (since $x \in (A \cap B)$), and $a' \in A$ (since $a' \in A'$ and $A' \subset A$), so $b' \in A$. We see that $b' \in (A \cap B))$. However, we also have that $b' \in B'$. Therefore $b' \in (A \cap B) \cap B'$. But $(A \cap B)$ and B' are in direct sum so $(A \cap B) \cap B' = \{0\}$, so $b' = 0$.

Now we have

$$x + a' = 0.$$

$x \in (A \cap B)$, $a' \in A'$, but, since $(A \cap B)$ and A' are in direct sum, $x = 0$ and $a' = 0$. We prove that $x = 0$, $a' = 0$, and $b' = 0$. Therefore $(A \cap B)$, A', and B' are in direct sum and

$$A + B = (A \cap B) \oplus A' \oplus B'.$$
7. Let \mathbb{F} be a commutative field, let $(V, +, \cdot)$ be a vector space over \mathbb{F}, let n be a natural number, let (e_1, \ldots, e_n) be a linear independent list in V, let $\lambda_1, \ldots, \lambda_n$ be n scalars in \mathbb{F}, let $u = \sum_{i=1}^{n} \lambda_i e_i$, and let, for all $i = 1, \ldots, n$, $v_i = u + e_i$. Show that (v_1, \ldots, v_n) is linearly dependent if and only if $\sum_{i=1}^{n} \lambda_i = -1$.

Solution

First, let us that assume (v_1, \ldots, v_n) is linearly dependent, then there exists n scalars $\alpha_1, \ldots, \alpha_n$, not all zeros such that,

$$\sum_{i=1}^{n} \alpha_i v_i = 0.$$

Since, for all $i = 1, \ldots, n$, $v_i = u + e_i$, we have

$$\sum_{i=1}^{n} \alpha_i (u + e_i) = 0.$$

We split the i sum in two sums:

$$\left(\sum_{i=1}^{n} \alpha_i u \right) + \left(\sum_{i=1}^{n} \alpha_i e_i \right) = 0.$$

Now, we use the fact that $u = \sum_{j=1}^{n} \lambda_j e_j$:

$$\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \lambda_j e_j \right) + \left(\sum_{i=1}^{n} \alpha_i e_i \right) = 0.$$

Now, we swap the i and the j sum on the left term and change the dummy index i to a j in the right term:

$$\left(\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_i \lambda_j e_j \right) + \left(\sum_{j=1}^{n} \alpha_j e_j \right) = 0.$$

We merge the two j sums and factor the e_j term:

$$\sum_{j=1}^{n} \left(\left(\sum_{i=1}^{n} \alpha_i \right) \lambda_j + \alpha_j \right) e_j = 0.$$

(1)

The latter expression reads now as a zero linear combination of the e_j. Since the e_j are linear independent, each of the coefficients in the linear combination has to be 0, this writes:

$$\left(\sum_{i=1}^{n} \alpha_i \right) \lambda_j + \alpha_j = 0, \text{ for } j = 1, \ldots, n.$$
We can take the sum for \(j = 1 \) to \(n \) of these \(n \) expressions and we get:

\[
\sum_{j=1}^{n} \left[(\sum_{i=1}^{n} \alpha_i) \lambda_j + \alpha_j \right] = 0.
\]

We break the sum in two:

\[
\sum_{j=1}^{n} \left[(\sum_{i=1}^{n} \alpha_i) \lambda_j \right] + \sum_{j=1}^{n} \alpha_j = 0.
\]

We factor the \(\sum_{i=1}^{n} \alpha_i \) on the left term:

\[
(\sum_{i=1}^{n} \alpha_i)(\sum_{j=1}^{n} \lambda_j) + \sum_{j=1}^{n} \alpha_j = 0.
\]

We get

\[
(\sum_{i=1}^{n} \alpha_i) \left(1 + \sum_{j=1}^{n} \lambda_j \right) = 0. \tag{2}
\]

Now we come back to Equation (1), it read

\[
\sum_{j=1}^{n} \left[(\sum_{i=1}^{n} \alpha_i) \lambda_j + \alpha_j \right] e_j = 0.
\]

We see that, if \(\sum_{i=1}^{n} \alpha_i = 0 \), then \(\sum_{j=1}^{n} \alpha_j e_j = 0 \), which would imply that the \(e_j \) are linearly dependent. Therefore, since the \(e_j \) are linearly independent, we have that \(\sum_{i=1}^{n} \alpha_i \neq 0 \). Now we see that \(\sum_{i=1}^{n} \alpha_i \neq 0 \) and Equation (2) implies

\[
\sum_{j=1}^{n} \lambda_j = -1.
\]

This proves that, if \((v_1, \ldots, v_n)\) is linearly dependent, then \(\sum_{j=1}^{n} \lambda_j = -1\).

Now, let us assume that \(\sum_{j=1}^{n} \lambda_j = -1\). We want to prove that \((v_1, \ldots, v_n)\) is linearly dependent. That is, we want to find \(\alpha_i, i = 1, \ldots, n\), not all zeros, such that

\[
\sum_{i=1}^{n} \alpha_i v_i = 0.
\]

We will prove that a correct choice for the \(\alpha_i\) is \(\alpha_i = \lambda_i\). First note that the \(\lambda_i\) are
not all zeros since $\sum_{i=1}^{n} \lambda_i = -1$. Second:

$$\sum_{i=1}^{n} \lambda_i v_i = \sum_{i=1}^{n} \lambda_i (u + e_i),$$

$$= \sum_{i=1}^{n} (\lambda_i u) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= \sum_{i=1}^{n} (\lambda_i (\sum_{j=1}^{n} \lambda_j e_j)) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (\lambda_i \lambda_j e_j) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (\lambda_i \lambda_j e_j) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= \sum_{j=1}^{n} \left((\sum_{i=1}^{n} \lambda_i) \lambda_j e_j \right) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= (\sum_{i=1}^{n} \lambda_i) \sum_{j=1}^{n} (\lambda_j e_j) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= (-1) \sum_{j=1}^{n} (\lambda_j e_j) + \sum_{i=1}^{n} (\lambda_i e_i),$$

$$= 0.$$

This proves that (v_1, \ldots, v_n) is linearly dependent.
8. What is the rank of
\[
\begin{pmatrix}
1 & a & 1 & b \\
1 & b & 1 & a \\
1 & b & 1 & a \\
1 & a & 1 & 1
\end{pmatrix}
\]?

The rank is a function of \(a\) and \(b\). You need to give the values of the rank for all values of \((a, b) \in \mathbb{R}^2\).

Solution

We perform some Gaussian elimination steps.

First, \(L_2 \leftarrow L_2 - aL_1, L_3 \leftarrow L_3 - L_1, L_4 \leftarrow L_4 - bL_1\) gives
\[
\begin{pmatrix}
1 & a & 1 & b \\
0 & 1 & 0 & -1 \\
0 & 1 - a^2 & b - a & 1 - ab \\
0 & 1 - ab & a - b & 1 - b^2
\end{pmatrix}
\]

We assume \(a \neq b\) so that we can simplify the third row with \(L_3 \leftarrow L_3/(b - a)\), after this we swap second and third row \(L_2 \leftrightarrow L_3\). This gives:
\[
\begin{pmatrix}
1 & a & 1 & b \\
0 & 1 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 1 - ab & a - b & 1 - b^2
\end{pmatrix}
\]

Now, \(L_3 \leftarrow L_3 - (1 - a^2)L_1, L_4 \leftarrow L_4 - (1 - ab)L_1\), gives
\[
\begin{pmatrix}
1 & a & 1 & b \\
0 & 1 & 0 & -1 \\
0 & 0 & b - a & 2 - a^2 - ab \\
0 & 0 & a - b & 2 - b^2 - ab
\end{pmatrix}
\]

Finally \(L_4 \leftarrow L_4 + L_3\), gives
\[
\begin{pmatrix}
1 & a & 1 & b \\
0 & 1 & 0 & -1 \\
0 & 0 & b - a & 2 - a^2 - ab \\
0 & 0 & 4 - (a + b)^2
\end{pmatrix}
\]

So we see that (1) if \(a \neq b\) and \(a + b \neq \pm 2\), then the rank is 4. (2) if \(a \neq b\), and \(a + b = \pm 2\), then the rank is 3.

Now let us see to the case when \(a = b\). In this case, the matrix is:
\[
\begin{pmatrix}
1 & a & 1 & a \\
1 & a & 1 & a \\
1 & a & 1 & a \\
1 & a & 1 & a
\end{pmatrix}
\].
It is clear that if $a = 1$ then the rank is 1, if $a \neq 1$, the rank is 2.

Let us repeat:

(a) If $a = b = 1$, then the rank is 1,
(b) If $a = b$ and $a \neq 1$, then the rank is 2,
(c) If $a \neq b$ and $a + b = \pm 2$, then the rank is 3,
(d) If $a \neq b$ and $a + b \neq \pm 2$, then the rank is 4.