Name: _______________________________________

Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your six best solutions.
- Each problem is worth 20 points.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Ask the proctor if you have any questions.

 Good luck!

1. __________ 5. __________
2. __________ 6. __________
3. __________ 7. __________
4. __________ 8. __________

 Total __________

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:
Steve Billups (Chair), Alexander Engau, Julien Langou.
1. Find an orthogonal basis for the space P_2 of quadratic polynomials with the inner product $\langle f, g \rangle = f(-1)g(-1) + f(0)g(0) + f(1)g(1)$.

Solution

Two ways.

First way. Take a first nonzero quadratic polynomial, $x(x + 1)$, whose value is 0 in -1 and 0, and nonzero in 1; a second polynomial, $(x - 1)(x + 1)$, whose value is 0 in -1 and 1, and nonzero in 0; and a third polynomial, $x(x - 1)$, whose value is 0 in 0 and 1, and nonzero in -1. Then it is easy to see that these three polynomials are orthogonal with respect to the given scalar product. We just need to normalize accordingly. We find:

$$\frac{\sqrt{2}}{2}x(x + 1), \quad (x - 1)(x + 1), \quad \frac{\sqrt{2}}{2}x(x - 1).$$

Second way. We can use the Gram-Schmidt process on three linearly independent vectors in P_2, for example: 1, x, and x^2.
2. A real \(n \times n \) matrix \(A \) is an isometry if it preserves length: \(\|Ax\| = \|x\| \) for all vectors \(x \in \mathbb{R}^n \). Show that the following are equivalent.

(a) \(A \) is an isometry (preserves length).
(b) \(\langle Ax, Ay \rangle = \langle x, y \rangle \) for all vectors \(x, y \), so \(A \) preserves inner products.
(c) \(A^{-1} = A^* \).
(d) The columns of \(A \) are unit vectors that are mutually orthogonal.

Solution

(b)\(\Rightarrow \) (a). Trivial since \(\|x\| \) is defined as \(\sqrt{\langle x, x \rangle} \). So if an application preserves inner products, it preserves length.

(a)\(\Rightarrow \) (b). Assume that \(A \) preserves lengths. Let \(x \) and \(y \in \mathbb{R}^n \). We have \(\|A(x + y)\|^2 = \|(x + y)\|^2 \). Let us consider \(\|A(x + y)\|^2 - \|(x + y)\|^2 = \langle A(x + y), A(x + y) \rangle - \langle x + y, x + y \rangle = \langle Ax, Ax \rangle + \langle Ax, Ay \rangle + \langle Ay, Ax \rangle - \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle - \langle y, y \rangle \). We note that \(\langle Ax, Ay \rangle = \langle Ay, Ax \rangle \) (symmetry of the inner product) and that \(\langle Ay, Ay \rangle = \|y\|^2 \). All in all, we obtain that \(\|A(x + y)\|^2 - \|(x + y)\|^2 = 2\langle Ax, Ay \rangle - 2\langle x, y \rangle \). Setting this to zero implies: \(\langle Ax, Ay \rangle = \langle x, y \rangle \). Therefore \(A \) preserves inner products.

We proved that (a)\(\iff \) (b).

(c)\(\Rightarrow \) (b). Assume \(A^{-1} = A^* \). Let \(x \) and \(y \in \mathbb{R}^n \). \(\langle Ax, Ay \rangle = \langle A^*Ax, y \rangle = \langle A^{-1}Ax, y \rangle = \langle x, y \rangle \). So \(A \) preserves inner products.

(b)\(\Rightarrow \) (d). Assume \(A \) preserves inner products. Let \(a_j \) be the \(j \)th column of \(A \). Then \(\langle a_i, a_j \rangle = \langle Ae_i, Ae_j \rangle = \langle e_i, e_j \rangle \). This proves that the columns of \(A \) are unit vectors that are mutually orthogonal.

(d)\(\Rightarrow \) (c). Assume that the columns of \(A \) are unit vectors that are mutually orthogonal. Let \(a_j \) be the \(j \)th column of \(A \). This means that \(\langle a_j, a_j \rangle = 1 \) and for \(i \neq j \), \(\langle a_i, a_j \rangle = 0 \). We know that \(A^* = A^H \), we know that \((A^H A)_{ij} = a_i^H a_j = \langle a_i, a_j \rangle \), so \(A^* A = A^H A = I \). So \(A^* = A^{-1} \).

We proved that (b)\(\iff \) (c)\(\iff \) (d).
3. Let \(p \geq q \). Let \(A \) be a real \(p \times q \) matrix with rank \(q \). Prove that the QR-decomposition \(A = QR \) is unique if \(R \) is forced to have positive entries on its main diagonal, \(Q \) is \(p \times q \) and \(R \) is \(q \times q \).

Solution

Assume that \(A = Q_1R_1 \) and \(A = Q_2R_2 \) with \(R_1, R_2 \) upper triangular with positive entries on the diagonal and \(Q_1^TQ_1 = I_q \) and \(Q_2^TQ_2 = I_q \).

We first note that since \(A \) is full rank, \(R_1 \) and \(R_2 \) are invertible. We have \(Q_1R_1 = Q_2R_2 \), multiplying by \(Q_1^T \) and \(R_2^{-1} \), this gives

\[
R_1R_2^{-1} = Q_1^TQ_2.
\]

This means that \(Q_1^TQ_2 \) is upper triangular. Now multiplying by \(Q_2^T \) and \(R_1^{-1} \), this gives

\[
R_2R_1^{-1} = Q_2^TQ_1.
\]

This means that \(Q_2^TQ_1 \) is upper triangular. So \(Q_1^TQ_2 \) is lower triangular. \(Q_1^TQ_2 \) is upper and lower triangular. So it is diagonal (and invertible).

Let us call \(D = Q_1^TQ_2 \), (from \(R_1R_2^{-1} = Q_1^TQ_2 \),) we see that \(R_1 = DR_2 \). From \(Q_1R_1 = Q_2R_2 \), we see that \(Q_1 = Q_2D^{-1} \). So now \(Q_1^TQ_1 = I \) and \(Q_2^TQ_2 = I \) give \(D^2 = I \). \(D \) has therefore \(\pm 1 \) on the diagonal.

We come back to the relation \(R_1 = DR_2 \). Since the diagonal entry of \(R_1 \) are given by \((R_1)_{ii} = D_{ii}(R_2)_{ii} \) and that \((R_1)_{ii} \) and \((R_2)_{ii} \) are both positive, and that \(D_{ii} = \pm 1 \), we see that this implies: \(D_{ii} = 1 \). Finally \(D = I \) and so:

\[
Q_1 = Q_2 \quad \text{and} \quad R_1 = R_2.
\]
4. Let \(A \) and \(B \) be \(n \times n \) complex matrices such that \(AB = BA \). Show that if \(A \) has \(n \) distinct eigenvalues, then \(A, B, \) and \(AB \) are all diagonalizable.

Solution

Let \(\lambda_1, \ldots, \lambda_n \) be the \(n \) distinct eigenvalues of \(A \) with corresponding (nonzero) eigenvectors \(v_1, \ldots, v_n \). We know that a list of eigenvectors belonging to distinct eigenvalues must be a linearly independent list. Hence \(\mathcal{B} = (v_1, \ldots, v_n) \) is a basis of \(\mathbb{C}^n \) consisting of eigenvectors of \(A \), so that \(A \) is similar to the diagonal matrix \(\text{diag}(\lambda_1, \ldots, \lambda_n) \). Then \(ABv_i = BA v_i = B(\lambda_i)v_i = \lambda_i(Bv_i) \). So \(Bv_i \) belongs to the 1-dimensional eigenspace of \(A \) associated with the eigenvalue \(\lambda_i \). This means that \(Bv_i = \mu_i v_i \). Hence the basis \(\mathcal{B} \) is also a basis of eigenvectors of \(B \) so that \(v_i \) is associated with the eigenvalue \(\mu_i \) (which might be equal to 0). Then clearly \(AB \) is similar to the matrix \(\text{diag}(\mu_1 \lambda_1, \ldots, \mu_n \lambda_n) \).
5. In this problem, \(\mathbb{R} \) is the field of real numbers. Let \((u_1, u_2, \ldots, u_m)\) be an orthonormal basis for subspace \(W \neq \{0\} \) of the vector space \(V = \mathbb{R}^{n \times 1} \) (under the standard inner product), let \(U \) be the \(n \times m \) matrix defined by \(U = [u_1, u_2, \ldots, u_m] \), and let \(P \) be the \(n \times n \) matrix defined by \(A = UU^T \).

(a) First it is clear that \(v - w \perp W \) since for all \(x \in W \),
\[
\langle v - w, x \rangle = \langle (v - \langle v, u_1 \rangle u_1 - \ldots - \langle v, u_m \rangle u_m), x \rangle \\
= \langle v, x \rangle - \langle v, u_1 \rangle \langle u_1, x \rangle - \ldots - \langle v, u_m \rangle \langle u_m, x \rangle = 0.
\]
The last equality comes from the fact that since \(x \in W \), \(x = \langle x u_1 \rangle u_1 + \ldots + \langle x, u_m \rangle u_m \).

Now consider \(x \in W \). We define
\[
\|v - x\|^2 = \|(v - w) + (w - x)\|^2 \\
= \|v - w\|^2 + 2(v - w) \bullet (w - x) + \|w - x\|^2
\]
Since \(v - w \perp W \) and \(w - x \in W \), we have that \((v - w) \bullet (w - x) = 0\), so that
\[
\|v - x\|^2 = \|v - w\|^2 + \|w - x\|^2
\]
We see that the minimum for \(\|v - x\| \) is \(\|v - w\|^2 \) and is realized when \(x = w \).

(b)
\[
w = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + \ldots + \langle v, u_m \rangle u_m \\
= u_1(u_1^Tv) + u_2(u_2^Tv) + \ldots + u_m(u_m^Tv) \\
= (u_1u_1^T + u_2u_2^T + \ldots + u_mu_m^T)v \\
= UU^Tv = Pv.
\]

(c) First, \(P^T = (UU^T)^T = UU^T = P \), second, \(P^2 = (UU^T)^2 = U(U^TU)U^T = UU^T = P \) where we have used the fact that \(U^TU = I \).
(d) An orthogonal basis for W is for example

$$(u_1, u_2) = \left(\begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}, \begin{pmatrix} 2/3 \\ -2/3 \\ 1/3 \end{pmatrix} \right).$$

We get

Finally

$$w = Px = \begin{pmatrix} 14/9 \\ 16/9 \\ 22/9 \end{pmatrix}.$$
6. Let $V = \mathbb{R}^5$ and let $T \in \mathcal{L}(V)$ be defined by $T(a, b, c, d, e) = (2a, 2b, 2c + d, a + 2d, b + 2e)$.

(a) (8 points) Find the characteristic and minimal polynomial of T.

(b) (8 points) Determine a basis of \mathbb{R}^5 consisting of eigenvectors and generalized eigenvectors of T.

(c) (4 points) Find the Jordan form of T with respect to your basis.

Solution

The matrix of T in the standard basis $(e_1, e_2, e_3, e_4, e_5)$ is

$$
\begin{pmatrix}
2 & 0 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}.
$$

We can reorder the basis in $(e_3, e_4, e_1, e_5, e_2)$, the matrix of T in this basis is:

$$
\begin{pmatrix}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}.
$$

This answers questions (b) and (c). To answer (a), we readily see that the characteristic polynomial of T is $(x - 2)^5$ and the minimal polynomial of T is $(x - 2)^3$.

7. Suppose that W is finite dimensional and $T \in \mathcal{L}(V,W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W,V)$ such that ST is the identity map on V.

Solution

First suppose that there exists $S \in \mathcal{L}(W,V)$ such that ST is the identity map on V. Let x and y in V such that $Tx = Ty$. Multiplying by S, this means $STx = STy$, but ST is the identity so $STx = x$ and $STy = y$, so we get $x = y$, which means T is injective.

Now suppose that T is injective. Consider w_1, \ldots, w_m a basis of $\text{Range}(T)$. (We use the fact that W is finite dimensional.) Since w_1, \ldots, w_m belongs to $\text{Range}(T)$, there exists v_1, \ldots, v_m in V such that $w_1 = Tv_1$, $w_2 = Tv_2$, ... Moreover since T is injective, v_1, \ldots, v_m are linearly independent. Finally since w_1, \ldots, w_m span $\text{Range}(T)$, we get that v_1, \ldots, v_m span V. We conclude that v_1, \ldots, v_m is a basis of V. (So V is itself finite dimensional.)

Now we use the incomplete basis theorem to extend w_1, \ldots, w_m with w_{m+1}, \ldots, w_n so as w_1, \ldots, w_n is a basis of W. Now we define $S : W \to V$ (on the basis w_1, \ldots, w_n) such that

$$Sw_1 = v_1, \quad Sw_2 = v_2, \quad \ldots, \quad Sw_m = v_m.$$

and

$$Sw_{m+1} = Sw_{m+2} = \ldots = Sw_n = 0.$$

It is clear that $S \in \mathcal{L}(W,V)$ and that ST is the identity map on V.

8. (a) Prove that a normal operator on a finite dimensional complex inner product space with real eigenvalues is self-adjoint.

(b) Let V be a finite dimensional real inner product space and let $T : V \rightarrow V$ be a self-adjoint operator. Is it true that T must have a cube root? Explain. (A cube root of T is an operator $S : V \rightarrow V$ such that $S^3 = T$.)

Solution

(a) Let V be a finite dimensional complex inner product space and $T : V \rightarrow V$ be a normal operator with real eigenvalues. Let A be the matrix of T in an orthonormal basis. Since T is normal, T is diagonalizable in an orthonormal basis. Therefore there exists a unitary matrix U ($U^H U = I$) such that $A = UDU^H$ with D diagonal. We also know that the eigenvalues of T are real, so D is a real matrix; in particular, this implies $D = D^H$. In this case: $A^H = (UDU^H)^H = U(D^HU^H) = UDU^H = A$.

(b) T has a cube root. The proof of existence is by construction. Let A be the matrix of T in an orthonormal basis. Since T is a self-adjoint operator, then T is diagonalizable in an orthonormal basis with real eigenvalues. Therefore there exists a unitary matrix U ($U^H U = I$) such that $A = UDU^H$ with D real and diagonal. Define $S = U D^{1/3} U^H$, (the cube root of D is simply the cube root of the diagonal entries,) then it is clear that $S^3 = T$.