TABLE OF CONTENTS

DIVISION 01 – GENERAL REQUIREMENTS

01 10 00 Summary
01 18 00 Project Utility Sources
01 22 00 Unit Prices
01 23 00 Alternates
01 25 00 Substitution Procedures
01 26 00 Contract Modification Procedures
01 29 00 Payment Procedures
01 31 00 Project Management and Coordination
01 32 00 Construction Progress Documentation
01 32 33 Photographic Documentation
01 33 00 Submittal Procedures
01 35 44 Special Procedures for Environmental Health and Safety and Fire and Life Safety
01 35 46 Indoor Air Quality Procedures
01 35 96 Special Procedures for Property Protection
01 40 00 Quality Requirements
01 41 00 Regulatory Requirements
01 42 00 References
01 60 00 Product Requirements
01 73 00 Execution
01 77 00 Closeout Procedures
01 78 23 Operation and Maintenance
01 78 39 Project Record Documents
01 78 46 Extra Stock Materials
01 79 00 Demonstration and Training

DIVISION 09 – FINISHES

09 22 16 Non-Structural Metal Framing
09 29 00 Gypsum Board
09 51 13 Acoustical Panel Ceilings
09 65 13 Resilient Base and Accessories
09 65 19 Resilient Tile Flooring
09 65 36 Static Control Resilient Flooring
09 91 23 Interior Painting

DIVISION 10 - SPECIALTIES

10 21 23 Cubicle Curtains and Track
10 26 00 Wall and Door Protection

DIVISION 12 – FURNISHINGS

12 24 13 Roller Window Shades

DIVISION 21 – FIRE SUPPRESSION

21 05 00 Common Work Results for Fire Suppression

DIVISION 22 – PLUMBING

22 30 00 Water Heaters
DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING

23 00 00 Plumbing, Heating, Ventilating and Air Conditioning
23 05 09 Mechanical Fire Stopping
23 05 19 Meters and Gauges for Mechanical Piping
23 05 23 General Duty Valves for Mechanical Piping
23 05 53 Mechanical Identification for HVAC Piping & Equipment
23 05 93 Testing, Adjusting and Balancing
23 07 00 Mechanical Insulation
23 09 00 Building Automation Systems
23 09 13 Instrumentation and Control Devices
23 09 93 Sequence of Operations
23 11 23 Facility Natural Gas Piping
23 20 00 Piping
23 21 16 Piping Specialties
23 30 00 HVAC Air Distribution
23 60 00 Laboratory Piping Systems

DIVISION 26 - ELECTRICAL

26 05 00 Common Work Results for Electrical
26 05 19 Low Voltage Electrical Power Conductors and Cables
26 05 26 Grounding and Bonding for Electrical Systems
26 05 29 Hangers and Supports for Electrical Systems
26 05 33 Raceways and Boxes for Electrical Systems
26 05 34 Cabinets, Boxes and Fittings
26 05 53 Identification for Electrical Systems
26 05 83 Wiring Connections
26 09 23 Lighting Control Devices
26 27 26 Wiring Devices

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

28 31 11 Fire Detection and Alarm
SECTION 01 10 00

SUMMARY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Project information.
2. Work covered by Contract Documents.
3. Work by University.
4. Work under separate contracts.
5. University-furnished and installed products.
7. Access to site.
8. Coordination with occupants.
10. Specification and drawing conventions.

B. Related Requirements:

1. Section 01 35 46 “Indoor Air Quality Procedures” for requirements and procedures related to maintaining air quality in adjacent occupied spaces and buildings.
2. Section 01 50 00 "Temporary Facilities and Controls" for limitations and procedures governing temporary use of University's facilities and for the provision of temporary construction barriers and dust partitions.

1.3 PROJECT INFORMATION

A. Project Identification: R1 N 7th Reno Rms 7102 & 7404C. UCD Project $17-268980.

1. Project Location: Research I Building UCD Anschutz Medical Campus.

B. Principal Representation: University of Colorado Denver.

1. University's Representative: David Wegener 303-724-1245. David.Wegener@UCDenver.edu

C. Architect/Engineer: Cator Ruma & Associates

Sean Convery
303-462-8472
sconvery@catorruma.com
D. Architect/Engineer's Consultants: The Architect/Engineer has retained the following design professionals who have prepared designated portions of the Contract Documents:

1. Hord Coplan Macht
 Gwen Gilley
 303-607-0977

E. Project Web Site: A project Web site administered by Contractor will be used for purposes of managing communication and documents during the construction stage.

1. See Section 01 31 00 "Project Management and Coordination." for requirements for establishing administering and using the Project Web site.

1.4 WORK COVERED BY CONTRACT DOCUMENTS

A. The Work of Project is defined by the Contract Documents and, in summary, briefly consists of the following:

1. Construction of 2 new walls to separate lab space into smaller rooms that can be isolated with black-out curtains. Revise MEP Systems to accommodate new spaces. Removal of a fume hood from adjacent alcove.

1.5 WORK BY UNIVERSITY

A. General: Cooperate fully with University so work may be carried out smoothly, without interfering with or delaying work under this Contract or work by University. Coordinate the Work of this Contract with work performed by University.

1.6 WORK UNDER SEPARATE CONTRACTS

A. General: Cooperate fully with separate contractors so work on those contracts may be carried out smoothly, without interfering with or delaying work under this Contract or other contracts. Coordinate the Work of this Contract with work performed under separate contracts.

1.7 UNIVERSITY-FURNISHED AND INSTALLED PRODUCTS

A. University will furnish certain items of equipment/furnishings as shown on the Drawings. Contractor will be responsible for coordinating their work to accommodate these items including, but not limited to, physical space fit, utility connections and rough-in, power wiring and electrical characteristics.

B. Include in Project scheduling the latest times when information for such items is required and so notify the University in writing.

1.8 UNIVERSITY-FURNISHED, CONTRACTOR-INSTALLED PRODUCTS

A. The University will furnish certain items delivered to the jobsite as shown on the drawings. Contractor will receive, unload, move, set in position, anchor and connect such items and put them into operating condition.
B. The Contractor will be responsible for coordinating their work to accommodate these items including, but not limited to, physical space fit, utility connections and rough-in, power wiring and electrical characteristics.

C. Include in Project scheduling the latest times when information for such items is required and so notify the University in writing.

D. Cooperate with University in scheduling the delivery of these items and be responsible for accommodating their storage and protection in the building and their replacement or repair due to damage as a result of Contractor’s operations.

1.9 ACCESS TO SITE

A. General: Contractor shall have limited and restricted use of Project site for construction operations as indicated on Drawings by the Contract limits and as indicated by requirements of this Section.

B. Use of Site: Limit use of Project site to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.

1. Adjust means and methods of construction based on site limits and restrictions.

2. Locate staging areas only where permitted by University.

3. As part of this Project, replace damaged lawns, sprinkler systems, sidewalks and any other existing site improvements within staging area and access ways.

C. Construction Access and Travel:

1. Use only those entrances, exits, and travel ways on campus roads and within the building designated by University. Contractor's personnel are not permitted in non-designated areas of University's existing facilities. Use only designated travel ways for transporting demolition materials, new construction materials, tools and equipment.

2. Use of other than designated travel ways on campus roads and within existing buildings requires a minimum of 20 business days prior approval by University.

 a. Request variations to traffic flow including temporary fire lane, parking lot, sidewalk and road closures, regulatory signage, and traffic control devices in accordance with City and County of Denver requirements.

3. Access to the site will be as permitted by the University. Prearrange delivery and use of cranes, heavy trucks and other heavy equipment at least 72 hours prior to need through the University’s Project Manager and University Police.

4. Maintain access to fire lanes and campus operations at all times. Provide flag personnel during the ingress or egress of large equipment.

 a. When fire lanes and/or access way must be temporarily disrupted notify University Police and University Parking and Transportation at least 20 business days in advance and reconfirm 72 hours in advance through the University’s Project Manager.

5. Arrange for and obtain all necessary permits from City and County of Denver for any disruption to or temporary closures of public city streets. Coordinate procurement of permits with University Project Manager.

D. Construction Parking:
1. General: Contractor parking will not be provided; make arrangements and pay for all required parking.

2. Provide temporary parking or use designated areas of University’s existing parking areas as applicable to the Project and in accordance with the following:

 a. All parking on University property, including parking on University owned streets, is under the exclusive control and authority of University Parking and Transportation Services. Direct policy question to the department at (303) 724-2555.

 b. There is no free parking on campus. Displacement or use of existing parking spaces by Contractor, either for parking or for staging, is a Contractor cost.

 c. Use of existing parking spaces or other areas outside of Contractor’s staging area must be approved in advance by University Parking and Transportation Services.

 d. University Parking and Transportation Services may require and issue parking permits through the University Project Manager. Permits must be displayed and visible at all times while parked on the campus. Failure to display a permit will result in citations being written and possible removal of the vehicle from University property.

 e. Keep all designated parking areas clean and free of litter and debris. University reserves the right to direct Contractor to clean areas not kept clean and orderly.

 f. University Parking and Transportation Services may change parking assignments as deemed necessary, restrict the use of any space(s) or lot(s) at any time, and determine the hours of control and mode of operations for any parking area at any time. University Parking and Transportation Services may deny or revoke parking privileges to any person when deemed necessary and/or considered to be in the best interests of the University.

3. Parking on University property is at the Contractor’s own risk. The University and any entity affiliated with it are not responsible for fire, theft, and damage to or loss of contractor’s or subcontractor’s vehicle or any article left therein. Only a license is granted to the user and no bailment is created.

E. Condition of Existing Building: Maintain portions of existing building affected by construction operations in a weathertight condition throughout construction period. Repair damage caused by construction operations.

1.10 COORDINATION WITH OCCUPANTS

A. University may occupy site and both existing and adjacent building(s) during entire construction period. Cooperate with University during construction and sequence operations to minimize conflicts and facilitate University usage. Perform the Work so as not to interfere with University's day-to-day operations.

 1. Maintain existing exits from existing and adjacent building, unless otherwise indicated.

 2. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from University and approval of authorities having jurisdiction.

 3. Limit construction operations to those methods and procedures which will not adversely and unduly affect the working environment of University’s occupied spaces, including noise, dust, odors, air pollution, ambient discomfort, poor lighting, hazards and other undesirable effects and conditions.

 4. Coordinate with University Project Manager to schedule jack hammering or activities producing dusty conditions, excessive fumes or odors during off-hours.

 5. When work must be accomplished in areas containing existing furniture, upon a minimum of 3 business days notification of the University Project Manager, University will remove or relocate existing furniture.

 6. Provide not less than 72 hours' notice to University Project Manager of activities that will affect University's operations. University Project Manager will coordinate with campus tenants.
a. Refer to “Work Restrictions” Article of this Section for procedures and notification requirements related to utility interruptions.

7. Provide temporary barriers and partitions, or other means as required to protect occupants of existing building and the general public from injury due to construction activities. Prevent the spread of dust and dirt to adjacent occupied areas and building.

1.11 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.
 1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.
 2. In planning and executing the Work, take into consideration the special needs of University patient care, teaching and research settings, for example, supply of critical utilities, noise and dust control, access to existing loading docks, occupied buildings, etc.

B. Normal Working Hours: Limit work to normal working hours of 7:00 a.m. to 7:00 p.m., Monday through Friday.
 1. Notify University Project Manager of all proposed work outside of normal working hours. Include dates, times, names and contact information for contractors and subcontractor performing the Work with notification. University Project Manager will notify, as appropriate, other University personnel and departments including, but not limited to, Building Maintenance and Operations (BMO) Directors, BMO assigned representative, Campus Police and Facilities Management.

C. Noise and Vibration: Coordinate operations that may result in high levels of noise and vibration, or other disruption to University occupancy with University.
 1. Noise during Normal Working Hours: Identify potentially disruptive construction activities at weekly Progress Meeting and adjust active time of day to reduce significant impacts on occupants.
 2. Noise outside Normal Working Hours: Schedule construction work or demolition work outside of normal working hours with University Project Manager at minimum of 24 hours in advance.
 a. The maximum permissible noise level is 75 decibels (dBA), measured at the adjacent property line.

D. Contractor Identification:
 1. Supervisory staff for the primary contractor must obtain an identification badge at the University Anschutz Medical Center (AMC) Building 500. Submit the University Access Control Badge Application form through University Project Manager. Submitted forms shall be complete with all required information including a letter on company letterhead confirming employee status with company and stating whether the company completes background testing and/or drug screening. Contractor supervision must display badge on site during construction activities.
 2. To the greatest extent possible, Contractor’s and subcontractor’s employees must wear a recognizable logo shirt or hardhat identifying them as members of the contractor’s work force.
 3. Work with University Project Manager and Building Maintenance and Operations staff to get identification badge activated.
 4. Work with University Project Manager and Building Maintenance and Operations staff to set up identification badge for access to construction areas secured by card reader.
Use of Existing Elevators: Use “freight” elevators only and protect finishes during transport. Elevators may not be used for transport of construction materials between 7:00am – 9:00am, 11:30am – 1:30pm, and from 3:00pm – 5:00pm.

1. Do not block corridors, aisles, passageways or doors leading to elevator except as, and only to the extent approved by University Project Manager.

F. Keys: Submit written request to University Project Manager on University Key Request Form.

1. To the extent the need for keys is demonstrated and required to complete the Work, University Project Manager will issue keys to Contractor.
2. Contractor is responsible for all costs related to lost or non-returned keys.
3. Electrical, mechanical and sensitive research space may require University escort in lieu of issuing keys.

G. Dock Deliveries: Notify University Project Manager and limit deliver time to a maximum of 20 minutes.

H. Existing Utility Interruptions: Do not interrupt water, sewer, plumbing, gas, steam, chilled water, oxygen, HVAC, electrical power, lighting, telephone and other related utilities serving facilities occupied by University without prior notice to and approval by the University. Coordinate and schedule interruptions in advance through the University Project Manager in strict conformance with University Utility Interruption/Outage Request Procedure.

1. Form of Notice: University Utility Interruption and Start-up Request form.
2. Time of Notice: Notice for major and minor outages as defined by the Utility Interruption/Outage Request Procedure is 8 business days for minor outages and 31 business days for major outages.

I. Fire Alarm and Fire Sprinkler Interruptions: When construction activities require interruption of fire alarm or fire sprinkler service, or when dust from construction activities is likely to cause accidental alarm, advise University Project Manager who will submit an interruption request.

1. Form of Notice: University Fire Alarm/Sprinkler Disable Request Form.
2. Time of Notice: Prior to noon on the day before the anticipated interruption.

J. Nonsmoking Campus: Smoking, chewing tobacco, and other related tobacco product use is not permitted at any location on campus except outside in designated areas.

K. University Policies Applying to All Contractors: Comply with University policies applying to contractors including drug policy, sexual harassment policy and tobacco free policy. Obtain copies of University policies from University Project Manager.

1. Controlled Substances: Use of tobacco products and other controlled substances on Project site and surrounding Campus is not permitted.

L. Designated Eating Areas: Restrict consumption of food on project site to designated eating areas as approved by University Project Manager.

1.12 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.

2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

3. Words in the singular number include the plural and those in the plural include the singular.

4. Words of any gender include any other gender.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:

1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.

2. Abbreviations: Materials and products are identified by abbreviations published as part of the U.S. National CAD Standard and scheduled on Drawings.

3. Keynoting: Materials and products may be identified by reference keynotes referencing Specification Section numbers found in this Project Manual.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 10 00
SECTION 01 18 00

PROJECT UTILITY SOURCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes matrix of utility sources applicable to Project.

1.3 QUALITY ASSURANCE
 A. Comply with utility company and regulatory agency codes, standards, and guidelines for the provision of new or extension of exiting utilities.

1.4 UTILITY SOURCE MATRIX
 A. The following matrix summarizes utility responsible for provision of utility service:
<table>
<thead>
<tr>
<th></th>
<th>AMC Trunk</th>
<th>AMC In Tract</th>
<th>DC Trunk</th>
<th>DC In Tract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam</td>
<td>University</td>
<td>Developer</td>
<td>Xcel</td>
<td>University</td>
</tr>
<tr>
<td>Chilled Water</td>
<td>University</td>
<td>Developer</td>
<td>NA</td>
<td>University</td>
</tr>
<tr>
<td>Electricity</td>
<td>Developer</td>
<td>Developer</td>
<td>Xcel</td>
<td>University</td>
</tr>
<tr>
<td>Storm Drainage</td>
<td>University</td>
<td>Developer</td>
<td>DW</td>
<td>University</td>
</tr>
<tr>
<td>Sanitary Sewer</td>
<td>COA</td>
<td>Developer</td>
<td>DW</td>
<td>University</td>
</tr>
<tr>
<td>Water</td>
<td>COA</td>
<td>Developer</td>
<td>University/ COA</td>
<td>University</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>University</td>
<td>Developer</td>
<td>University</td>
<td>University/ COA</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Xcel</td>
<td>Developer</td>
<td>University</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>University</td>
<td>University</td>
</tr>
</tbody>
</table>

University: University of Colorado Denver
Note 1: University owns Trunk steam and chilled water from CUP to vault.

COA: City of Aurora
Note 2: University owns Trunk electrical from switch gear to manhole.

DW: Denver Water
Note 3: University owns Trunk telecom ductbank from main switch to manhole.

Developer:
Note 4: Xcel has license agreement with University.

Note 5: University and COA jointly permit.

University, TCH, UCH. In Tract lines are owned by the building they are feeding.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 18 00
SECTION 01 22 00

UNIT PRICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. This section not applicable.

END OF SECTION 01 22 00
SECTION 01 23 00
ALTERNATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for alternates.

1.3 DEFINITIONS

A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the bidding requirements that may be added to or deducted from the base bid amount if University decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.

1. Alternates described in this Section are part of the Work only if enumerated in the Agreement.
2. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.
3. Selection of alternates described in this Section may be deferred for possible selection at a subsequent date if so indicated in the Agreement.

1.4 PROCEDURES

A. Coordination: Revise or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.

1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.

B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated revisions to alternates.

C. Execute accepted alternates under the same conditions as other work of the Contract.

D. Schedule: A schedule of alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate.

1. Alternate descriptions are recognized as abbreviated and incomplete. Correlate the descriptions with applicable Specification Sections and Drawings for the provision of complete and coordinated work.
PART 3 - EXECUTION

3.1 SCHEDULE OF ALTERNATES

A. Alternate No. TBD.

1. Base Bid: TBD
2. Alternate: TBD

END OF SECTION 01 23 00
SECTION 01 25 00

SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

B. Related Requirements:
 1. Section 01 21 00 "Allowances" for products selected under an allowance, if applicable.
 2. Section 01 23 00 "Alternates" for products selected under an alternate, if applicable.
 3. Section 01 60 00 "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.

1.3 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.

 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 2. Substitutions for Convenience: Changes proposed by Contractor or University that are not required in order to meet other Project requirements but may offer advantage to Contractor or University.

1.4 ACTION SUBMITTALS

A. Substitution Requests: Submit each request for consideration in format and quantities specified in Section 01 33 00 “Submittal Procedures”. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

 1. Substitution Request Form: Use CSI Form 13.1A or Contractor-generated form with substantially the same information.
 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:

 a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by University and separate contractors that will be necessary to accommodate proposed substitution.

c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.

d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.

e. Samples, where applicable or requested.

f. Certificates and qualification data, where applicable or requested.

g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.

h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.

i. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.

j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.

k. Cost information, including a proposal of change, if any, in the Contract Sum.

l. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.

m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

3. Architect/Engineer's Action: If necessary, Architect/Engineer in consultation with the University will request additional information or documentation for evaluation within seven calendar days of receipt of a request for substitution. Architect/Engineer in consultation with the University will notify Contractor of acceptance or rejection of proposed substitution within 14 calendar days of receipt of request, or seven calendar days of receipt of additional information or documentation, whichever is later.

a. Forms of Acceptance: Change Order.

b. Use product specified if Architect/Engineer does not issue a decision on use of a proposed substitution within time allocated.

1.5 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.6 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.
2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 14 calendar days prior to time required for preparation and review of related submittals.

1. Conditions: Architect/Engineer in consultation with the University will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect/Engineer will return requests without action, except to record noncompliance with these requirements:

 a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 b. Requested substitution provides sustainable design characteristics that specified product provided.
 c. Substitution request is fully documented and properly submitted.
 d. Requested substitution will not adversely affect Contractor's construction schedule.
 e. Requested substitution has received necessary approvals of authorities having jurisdiction.
 f. Requested substitution is compatible with other portions of the Work.
 g. Requested substitution has been coordinated with other portions of the Work.
 h. Requested substitution provides specified warranty.
 i. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Not allowed.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 25 00
SECTION 01 26 00

CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for handling and processing Contract modifications.

B. Related Requirements:
 1. Section 01 25 00 "Substitution Procedures" for administrative procedures for handling requests for substitutions made after the Contract award.
 2. Contractor’s Agreement Design/Bid/Build, State Form SC-6.21 and The General Conditions of the Construction Contract Design/Bid/Build, State Form SC-6.23 for definitions and contractual requirements related to contract modification procedures.

1.3 DEFINITIONS

A. Change Order: A written order in compliance with the requirements of the Contract authorizing changes in the Work. For the purposes of this Section a Change Order and a Contract Amendment shall have the same meaning.

1.4 INFORMATIONAL SUBMITTALS

A. Contractor’s Authorized Signatory: Submit name of individual authorized to accept changes and responsible for informing others employed by Contractor of changes in the Work.

1.5 MINOR CHANGES IN THE WORK

A. Architect/Engineer will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time.

1.6 CHANGE ORDER BULLETIN

A. University-Initiated Change Order Bulletin: Architect/Engineer will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications. It will also state the time period for which the request will remain valid.
1. **Change Order Bulletin Form**: State Form SC-6.311 available on the website of the Office of the State Architect.

2. Work Change Order Bulletins issued by Architect/Engineer are not instructions either to stop work in progress or to execute the proposed change.

B. Contractor-Initiated Change Order Bulletin: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect/Engineer.

1. **Change Order Bulletin Form**: State Form SC-6.311 available from the website of the Office of the State Architect.
2. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.

1.7 CHANGE ORDER PROPOSAL

A. Change Order Proposal: In response to a University-Initiated Change Order Bulletin or accompanying a Contractor-Initiated Change Order Bulletin, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change described.

1. **Change Order Proposal Form**: State Form SC-6.312 available from the website of the Office of the State Architect.
2. **Labor Rates**: Prior to submitting first Change Order Proposal, submit bare, unburdened hourly labor rates for all contractor and subcontractor labor categories; submit itemized breakdown of all applicable additional labor benefit costs to be added to the bare labor cost to arrive at the total burdened hourly labor cost.
3. **Equipment Costs**: Provide cost backup for all equipment clearly indicating equipment billing rates and sufficient to demonstrate, as determined by the University Project Manager, that proposed rates are competitive and reasonable in all cases. Submit completed Change Order Proposal Form within the requested timeframe. Include backup documentation to support calculations consistent with Contract provisions, including but not limited to, the following:
 a. Contractor and Subcontractor labor, material and equipment costs including:
 1) A list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 2) Applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 3) Costs of labor and supervision directly attributable to the change and as permitted by the terms and conditions of the General Contract for Construction.
 b. Contractor and Subcontractor overhead and profit.
 c. Contractor’s bond cost.
 d. **Justification for Change in Contract Time**: An updated Contractor’s construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
4. Maintain detailed records of work completed. Provide complete information for evaluation of proposed changes and to substantiate proposed changes in Contract Sum or Contract Time.
1.8 ADMINISTRATIVE CHANGE ORDERS

A. Allowance Adjustment: See Section 01 21 00 "Allowances" for administrative procedures for preparation of Change Order Proposal for adjusting the Contract Sum to reflect actual costs of allowances.

B. Unit-Price Adjustment: See Section 01 22 00 "Unit Prices" for administrative procedures for preparation of Change Order Proposal for adjusting the Contract Sum to reflect measured scope of unit-price work.

1.9 CHANGE ORDER PROCEDURES

A. Submit three signed copies of Change Order Proposal to Architect/Engineer for review.

1. University-Initiated Change Order Bulletins: University and Architect/Engineer will evaluate Contractor’s Change Order Proposal and either request additional information or suggest modifications. Based on this review and evaluation University will either accept or reject the proposal.

2. Contractor-Initiated Change Order Bulletins: Architect/Engineer will evaluate Contractor’s claim based on the terms and conditions of the Contractor Agreement and General Conditions of the Construction Contract, as applicable.

3. Architect/Engineer’s Action: When satisfied as to the accuracy and completeness of the Change Order Proposal, the Architect/Engineer will sign all three copies and forward to the University for consideration.

B. On University’s approval of a Change Order Proposal, Architect/Engineer will prepare, sign and forward three copies of a Change Order, State Form SC-6.31 available from the website of the Office of the State Architect, for signature by the Contractor. Contractor then forwards all three copies of signed Change Order to the University for signature and distribution of fully executed copies to Architect/Engineer and Contractor for record.

C. Upon receipt of a fully executed Change Order, promptly perform the following:

1. Revise Schedule of Values on the Application for Payment Form by indicating each authorized Change Order as a separate line item and adjusting the Contract Sum as shown on the Change Order.
 a. University will not pay for changes to the Work until authorized by a Change Order signed by all parties.

2. Revise the Progress Schedule to reflect any change in the Contract Time.

3. Enter changes in the Project Record Documents.

END OF SECTION 01 26 00
SECTION 01 29 00
PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements necessary to prepare and process Applications for Payment.
B. Related Requirements:
 1. Section 01 21 00 "Allowances" for procedural requirements governing the handling and processing of allowances.
 2. Section 01 22 00 "Unit Prices" for administrative requirements governing the use of unit prices.
 3. Section 01 26 00 "Contract Modification Procedures" for administrative procedures for handling changes to the Contract.
 4. Section 01 32 00 "Construction Progress Documentation" for administrative requirements governing the preparation and submittal of the Contractor's construction schedule.
 5. For projects required to obtain LEED certification, Division 01 Section "Sustainable Design Requirements" for administrative requirements governing submittal of cost breakdown information required for LEED documentation.

1.3 DEFINITIONS
A. Schedule of Values: A statement furnished by Contractor allocating portions of the Contract Sum to various portions of the Work and used as the basis for reviewing Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES
A. Coordination: Coordinate preparation of the schedule of values with preparation of Contractor’s construction schedule. Schedule of values report from cost-loaded Critical Path Method Schedule prepared in accordance with Section 01 32 00 “Construction Progress Documentation” may serve to satisfy requirements for the schedule of values.

1. Coordinate line items in the schedule of values with other required administrative forms and schedules, including the following:
 a. Application for Payment forms with continuation sheets.
 b. Submittal schedule.
 c. Items required to be indicated as separate activities in Contractor's construction schedule.

 1) Construction Manager’s Fee.
2) Estimated Project General Conditions Costs.

2. Submit schedule of values and hold a conference with the Architect/Engineer and University Project Manager to finalize the schedule of values at earliest possible date, but no later than 10 business days before the date scheduled for submittal of initial Certificates and Applications for Payment.

3. Subschedules for Separate Elements of Work: Where the Contractor's construction schedule defines separate elements of the Work, provide subschedules showing values coordinated with each element.

B. Format and Content: Use Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.

1. Identification: Include the following Project identification on the schedule of values:
 a. Project name and location.
 b. Name of Architect/Engineer.
 c. Architect/Engineer's project number.
 d. Contractor's name and address.
 e. Date of submittal.

2. Arrange schedule of values consistent with format of AIA Document G703.

3. Arrange the schedule of values in tabular form with separate columns to indicate the following for each item listed:
 a. Related Specification Section or Division.
 b. Description of the Work.
 c. Name of subcontractor.
 d. Name of manufacturer or fabricator.
 e. Name of supplier.
 f. Change Orders (numbers) that affect value.
 g. Dollar value of the following, as a percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent.

 1) Labor.
 2) Materials.
 3) Equipment.

 a. Include separate line items under Contractor and principal subcontracts for LEED documentation, where applicable, and other Project closeout requirements in an amount totaling five percent of the Contract Sum and subcontract amount.

5. Round amounts to nearest whole dollar; total shall equal the Contract Sum.

6. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 a. Differentiate between items stored on-site and items stored off-site. If required, include evidence of insurance.
7. Each item in the schedule of values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
 a. Temporary facilities and other major cost items that are not a direct cost of actual work-in-place shall be shown as separate line items in the schedule of values.

8. Schedule Updating: Update and resubmit the schedule of values before the next Applications for Payment when Change Orders result in a change in the Contract Sum.

1.5 APPLICATIONS FOR PAYMENT

A. Each Application for Payment following the initial Application for Payment shall be consistent with previous applications and payments as certified by Architect/Engineer and paid for by University.

 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.

B. Pay Application and Schedule Review Meetings: Conduct in accordance with Section 01 31 00 “Project Management and Coordination.” Provide draft application for payment and draft schedule update reflecting work accomplished during previous pay period. Review progress achieved; discuss and resolve issues affecting the progress; and review critical activities to be accomplished during the following 90 calendar days.

 1. Jobsite Walk: When required, conduct a walk of the jobsite to confirm progress related to any activity in question.

C. Monthly Schedule Reporting: Upon conclusion of the Pay Application and Schedule Review Meeting, but not later than the 28th of the month, update the Construction Schedule and submit the Pay Application.

D. Payment Application Times: Submit Application for Payment to Architect/Engineer by the first day of the month and no more than five (5) business days prior thereto. The period covered by each Application for Payment is per the date indicated in the Application.

E. Payment Application Review: The Architect/Engineer shall, within five (5) business days after the receipt of each Certificate and Application for Payment, review the Project Application for Payment and either execute a Project Certificate for Payment to the University or notify the Contractor in writing of the reasons for withholding a Certificate.

 1. All applications for payment, except the final application, and the payments there under, shall be subject to correction in the next application rendered following the discovery of any error.

F. Application for Payment Forms: Use State Form SBP-7.2 “Certification for Contractor Payment.”

G. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect/Engineer will return incomplete applications without action.

 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
 2. Include amounts for work completed following previous Application for Payment, whether or not payment has been received. Include only amounts for work completed at time of Application for Payment.
3. Include amounts of Change Orders issued before last day of construction period covered by application.

4. Indicate separate amounts for work being carried out under University-requested project acceleration.

H. Stored Materials: Include in Application for Payment amounts applied for materials or equipment purchased or fabricated and stored, but not yet installed. Differentiate between items stored on-site as approved in advance by the University Project Manager and items stored at an off-site location previously agreed upon in writing.

1. Provide certificate of insurance, evidence of transfer of title to University, and consent of surety to payment, for stored materials.

2. Provide supporting documentation that verifies amount requested, such as paid invoices. Match amount requested with amounts indicated on documentation; do not include overhead and profit on stored materials.

3. Provide summary documentation for stored materials indicating the following:
 a. Value of materials previously stored and remaining stored as of date of previous Applications for Payment.
 b. Value of previously stored materials put in place after date of previous Application for Payment and on or before date of current Application for Payment.
 c. Value of materials stored since date of previous Application for Payment and remaining stored as of date of current Application for Payment.

I. Transmittal: Submit three signed and notarized original copies of each Application for Payment to Architect/Engineer by a method ensuring receipt. One copy shall include waivers of lien and similar attachments if required.

1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.

J. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:

1. List of subcontractors.

2. Schedule of values.

3. For projects required to obtain LEED certification, LEED submittal for project materials cost data.

4. Contractor's construction schedule (preliminary if not final).

5. Products list (preliminary if not final).

6. For projects required to obtain LEED certification, LEED action plans.

7. Schedule of unit prices.

8. Submittal schedule (preliminary if not final).

9. List of Contractor's staff assignments.

10. List of Contractor's principal consultants.

13. Initial progress report.

K. Application for Payment at Substantial Completion: After Architect/Engineer issues the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.
1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
2. This application shall reflect Certificate(s) of Substantial Completion issued previously for University occupancy of designated portions of the Work.

L. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited to the following:

1. All items on Pre-acceptance Checklist (State Form SBP-05) have been completed.
2. Notice of Acceptance (State Form SBP-6.27) has been issued.
3. Statements to support local sales tax refunds, if any submitted.
4. Notice of Contractor’s settlement has been published.
5. Evidence of completion of Project closeout requirements, including but not limited to:
 a. Submittal of Record Documents.
 b. Submittal of all Operation and Maintenance Manuals.
 c. Completion of all required demonstration and training.
6. Updated final statement, accounting for final changes to the Contract Sum.
7. Evidence that claims have been settled.
8. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when University took possession of and assumed responsibility for corresponding elements of the Work.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 29 00
SECTION 01 31 00

PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:

1. General coordination procedures.
2. Coordination drawings.
3. Requests for Information (RFIs).
4. Project Web site.
5. Project meetings.

B. Related Requirements:

1. Section 01 32 00 "Construction Progress Documentation" for preparing and submitting Contractor's construction schedule.
2. Section 01 73 00 "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.
3. Section 01 77 00 "Closeout Procedures" for coordinating closeout of the Contract.

1.3 DEFINITIONS

A. RFI: Request from Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Within 21 calendar days of Notice of Award submit, as complete as possible, a preliminary list to include all major subcontractors. Augment, complete and submit the final subcontractor list within 60 calendar days of Notice of Award, unless a longer duration is approved by the Architect/Engineer. Include the following information in tabular form:

1. Name, address, and telephone number of entity performing subcontract or supplying products.
2. Number and title of related Specification Section(s) covered by subcontract.
3. Drawing number and detail references, as appropriate, covered by subcontract.
B. Key Personnel Names: Within 14 calendar days after Notice to Proceed, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers, including home, office, and cellular telephone numbers and e-mail addresses. Provide names, addresses, and telephone numbers of individuals assigned as alternates in the absence of individuals assigned to Project.

1. Post copies of list in project meeting room, in temporary field office, [on Project Web site,] and by each temporary telephone. Keep list current at all times.

1.5 GENERAL COORDINATION PROCEDURES

A. General: Each entity involved in the performance of work for the entire Project shall cooperate in the overall coordination of the Work; promptly, when requested, furnish information concerning its portion of the Work; and respond promptly and reasonably to the decisions and requests of persons designated with coordination, supervision, administrative or similar authority.

1. University Standard Project Management Forms

a. Where applicable, obtain from the University Project Manager and use the following University Standard Forms:

1) Preconstruction Agenda
2) Change Order Log with Contingency Codes
3) Access Control Badge Application Form
4) Utility Interruption Request Form
5) Utility Start-Up Request Form
6) Fire Alarm/Sprinkler Disable Request Form
7) Hot Work Permit Form
8) Anschutz Medical Campus (AMC) Street and Parking Lot Closure Form
9) Indoor Air Quality (IAQ) Planning Checklist
10) Indoor Air Quality (IAQ) Inspection Checklist

2. Site Utilization:

a. In addition to the site utilization limitations and requirements indicated in Section 01 10 00 “Summary” and indicated by the Contract Documents; administer the allocation of available space equitably among entities needing access and space, so as to produce the best overall efficiency in the performance of the total work of the project. Schedule deliveries so as to minimize the space and time requirements for storage of materials and equipment on the site; but do not unduly risk delays in the work.

b. Concurrent with work of the Contractor, other contractors, suppliers, and the University personnel may be working in relatively close proximity. The Contractor is solely responsible for coordinating their work with that of other contractors and will make no claims for failure to do so.

3. Layout:

a. It is recognized that the Contract Documents are diagrammatic in showing certain physical relationships of the various elements and systems and their interfacing with other elements and systems. Establishment and coordination of these relationships is the exclusive responsibility of the Contractor. Do not scale the drawings. Lay out and arrange all elements to contribute to safety, efficiency and to carry the harmony of design throughout the Work. In case of conflict or undimensioned locations, verify required positioning with Architect/Engineer.
4. Substrate Examination:
 a. The Installer of each element of the work must examine the conditions of the substrate to receive the work, dimensions and spaces adjacent, tolerances, interfacing with other elements and services, and the conditions under which the work will be performed, and must notify the Contractor in writing of conditions detrimental to the proper or timely completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner acceptable to the Installer.

5. Large and Heavy Equipment:
 a. Contractor to coordinate with University Project Manager requirements to be maintained for the subsequent entry of large equipment units. Coordinate the movement of heavy items with shoring and bracing, so that the building structure will not be overloaded during the movement and installation.
 b. Where equipment or products to be installed on the roof are too heavy to be hand-carried, do not transport across roof deck; position by crane or other device so as to avoid overloading the roof deck.

B. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations, included in different Sections of the Specification that depend on each other for proper installation, connection, and operation.
 1. Contractor Communication with the University: Direct all communication with the University through the University Project Manager.
 2. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 3. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 4. Make adequate provisions to accommodate items scheduled for later installation.

C. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 1. Prepare similar memoranda for University and separate contractors if coordination of their Work is required.

D. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 1. Preparation of Contractor's construction schedule.
 2. Preparation of the schedule of values.
 3. Installation and removal of temporary facilities and controls.
 4. Delivery and processing of submittals.
 5. Progress meetings.
 6. Preinstallation conferences.
 7. Project closeout activities.
 8. Startup and adjustment of systems.

E. Coordination Of Submittals: Prior to transmittal to the Architect/Engineer, review shop and erection drawings, product data, and samples for compliance with Contract Documents and for coordination
among work of all Sections of the Specifications. Coordination of submittals shall include, but not be limited to the following:

1. Verification of field dimensions and clearances and relationship to available space and anchors.
2. Verification of compatibility with equipment and work of other Sections, electrical characteristics, and operational control requirements.
3. Verification of motor voltages and control characteristics.
4. Coordination of controls, interlocks, wiring of pneumatic switches, and relays.
5. Coordination of wiring and control diagrams.
6. Review of the effect of any changes on work of other Sections.
7. For any item to be installed in or on a finished surface, certify that applicable Contract Documents have been checked and that the item submitted is compatible with the surface finish on which it is to be installed.
8. Equipment and material submittals shall show sufficient data to indicate complete compliance with Contract Documents as follows:
 a. Proper sizes and capabilities.
 b. Ability to fit in the available space in a manner that will allow proper service.
 c. Construction methods, materials, and finishes.
 d. List of accessories.

F. Special Coordination Requirements for Mechanical and Electrical Work:

1. General: Provide necessary work and services required to coordinate the complete installation of heating, ventilating, and air conditioning (HVAC) equipment and systems; plumbing systems and fixtures; electrical equipment, fixtures, and systems; and other equipment or systems containing motors and controls or requiring connection to mechanical or electrical systems; all so that the various systems perform as indicated and are in harmony with other project Work.
2. Contract Drawings:
 a. Drawings are schematic in nature, and indicate in general how the various components are integrated with other parts of the building. Coordinate exact locations by job measurement, by verifying the requirements of other trades, and by review of Contract Documents.
3. Mechanical and Electrical Drawings indicate general routing of the various parts of the systems, but do not indicate all sizes, fittings, offsets, and runouts which are required. Coordinate correct sizes, fittings, offsets, and runouts required to fit systems into allocated spaces. Coordinate locations of all light fixtures, vents, and supply grilles to conform to the ceiling grid system or other modular finishes.
4. Coordinate installation of mechanical and electrical work in compliance with the following requirements:
 a. Install piping, ductwork and similar services straight and true, aligned with other work, close to walls and overhead structure, allowing for insulation, concealed (except where indicated as exposed) in occupied spaces, and out-of-the-way with maximum passageway and headroom remaining in each space.
 b. Install electrical work in a neat, organized manner with conduit and similar services in or parallel with building lines, and concealed unless indicated as exposed.
 c. For all work maintain maximum practical overhead clearance but not less than 6" above ceiling. Where exposed, maintain 7'-0" minimum clearance.
 d. Arrange all work to facilitate maintenance and repair or replacement of equipment. Locate services requiring maintenance on valves and similar units in front of services requiring less maintenance. Connect equipment for ease of disconnecting, with minimum of interference with other work.
 e. Provide space to permit removal of coils, tubes, fan shafts, filters, other parts which may require replacement.
f. Locate operating and control equipment and devices for easy access. Furnish access panels where units are concealed by finishes and similar work.

g. Integrate mechanical work in ceiling plenums with suspension system, light fixtures and other work, so that required performances of each will be achieved.

h. Give the right-of-way to piping systems required to slope for drainage over other service lines and ductwork.

i. Advise other trades of openings required in their work for accommodation of mechanical and electrical elements. Provide and place sleeves and anchors required in other work.

5. Access to Equipment: Except where located above accessible ceilings, provide access panels wherever access is required to concealed valves, controls, dampers, pull boxes and other devices requiring ongoing or periodic access.

 a. Acceptable types of access panels are specified in Division 08.
 b. Each trade is responsible for providing access panels needed for access to their equipment and coordinating installation with other Division 03, 04, 06 and 09 trades.
 c. Coordinate requirements and obtain approval of locations from Architect/Engineer.

G. Compatibility of Systems:

1. Provide products and equipment which are compatible with other work requiring mechanical/electrical interface including electrical connections, control devices, water, drain and other piping connections. Verify electrical characteristics, fuel requirements and other interface requirements before ordering equipment and resolve conflicts that may arise.

2. Coordinate equipment, mechanical and electrical work in accordance with the following schedule:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>FURNISHED BY</th>
<th>MOUNTED BY</th>
<th>LOW VOLTAGE WIRED BY</th>
<th>POWER WIRED & CONNECTED BY</th>
<th>LOW VOLTAGE CONTROL CONNECTED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment motors</td>
<td>I</td>
<td>MI</td>
<td>MI</td>
<td>EI</td>
<td>--</td>
</tr>
<tr>
<td>Motor starters, contactors and overload heaters</td>
<td>MI</td>
<td>EI</td>
<td>EI</td>
<td>EI</td>
<td>MI</td>
</tr>
<tr>
<td>Fused and unfused disconnect switches</td>
<td>EI**</td>
<td>EI**</td>
<td>EI**</td>
<td>EI</td>
<td>--</td>
</tr>
<tr>
<td>Manual operating switches, speed switches, push-button stations and pilot lights</td>
<td>MI</td>
<td>EI</td>
<td>EI</td>
<td>EI</td>
<td>EI</td>
</tr>
<tr>
<td>Duct detectors</td>
<td>EI</td>
<td>MI</td>
<td>MI</td>
<td>EI</td>
<td>MI</td>
</tr>
<tr>
<td>Control relays and transformers</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>EI</td>
<td>MI</td>
</tr>
<tr>
<td>Thermostats, time switches*</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>EI</td>
<td>MI</td>
</tr>
<tr>
<td>Temperature control panels</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>EI</td>
<td>MI</td>
</tr>
<tr>
<td>Motor and solenoid valves, damper motors, PE and EP switches</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>--</td>
<td>MI</td>
</tr>
<tr>
<td>Refrigeration</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>EI</td>
<td>MI</td>
</tr>
</tbody>
</table>
equipment, cooling
tower and controls

<table>
<thead>
<tr>
<th></th>
<th>EI</th>
<th>EI</th>
<th>EI</th>
<th>EI</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric meters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam meters</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
</tr>
<tr>
<td>Chilled water meters</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
</tr>
<tr>
<td>Water meters</td>
<td>MI ***</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
</tr>
</tbody>
</table>

I = Installer of equipment requiring electrical service
EI = Electrical Installer
MI = Mechanical Installer

* Motor driven units which are controlled from line voltage automatic controls such as line voltage thermostats, float switches or time switches which conduct full load current of the motor shall be wired for both power and control circuit under the electrical contract. However, if the control device does not conduct full load current, then the responsibility shall be that set forth in the above schedule. (Example: a 208 volt, 3-phase, 3-wire motor requires 120 volt control. Electrical Installer shall furnish a 120 volt circuit for control and 208 volt circuit for power and wire the power circuit. Mechanical Installer shall wire the control circuit.)

** Disconnects for AH units are factory mounted.

***Building Service meter provided by Civil. Any sub meter provided by MI. Coordinate meter requirements with utility for remote monitoring by 23 09 00 – Instrumentation and Controls.

H. Special Coordination Requirements for Exterior Envelope Work:

1. General: Provide necessary work and services required to coordinate the complete and continuous installation of the building’s heat, air and moisture barriers. Exterior building envelope construction to be coordinated includes, but is not limited to, below-grade walls, slabs-on-grade, exterior opaque walls, windows, curtain walls, roofs, and skylights.

2. Contract Drawings:

 a. Drawings indicate general concepts and design intent for continuity of heat, air and moisture barriers at each exterior building envelope component and at transitions between building envelope components. Coordinate details for continuity based on actual product selections and Contractor’s proposed sequence of construction.

I. Complete Systems:

1. It is the intent of the Contract Documents that all systems, including mechanical and electrical, be complete and functional to provide the intended or specified performance. Provide all incidental items and parts necessary to achieve this requirement.

2. Provide correctly sized power, utilities, piping, drains, services and their connections to equipment and systems requiring them, whether or not specific items are listed in the schedule under “Compatibility of Systems” paragraph in this Section.

J. Conservation: Coordinate construction activities to ensure that operations are carried out with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.
1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. See other Sections for disposition of salvaged materials that are designated as University's property.

2. Establish recycling program at job site. Refer to Section 01 74 19 “Construction Waste Management and Disposal” for additional requirements.

1.6 Coordination Drawings

A. Coordination Drawings, General: Prepare coordination drawings according to requirements in individual Sections, and additionally where installation is not completely shown on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity.

1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:

a. Use applicable Drawings as a basis for preparation of coordination drawings. Prepare sections, elevations, and details as needed to describe relationship of various systems and components.

b. Coordinate the addition of trade-specific information to the coordination drawings by multiple subcontractors in a sequence that best provides for coordination of the information and resolution of conflicts between installed components before submitting for review.

c. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.

d. Indicate space requirements for routine maintenance and for anticipated replacement of components during the life of the installation.

e. Show location and size of access doors required for access to concealed dampers, valves, and other controls.

f. Indicate required installation sequences.

g. Indicate dimensions shown on the Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect/Engineer indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.

B. Coordination Drawing Organization: Organize coordination drawings as follows:

1. Floor Plans and Reflected Ceiling Plans: Show architectural and structural elements, and mechanical, plumbing, fire-protection, fire-alarm, and electrical Work. Show locations of visible ceiling-mounted devices relative to acoustical ceiling grid. Supplement plan drawings with section drawings, where required, to adequately represent the Work.

2. Plenum Space: Indicate subframing for support of ceiling and wall systems, mechanical and electrical equipment, and related Work. Locate components within ceiling plenum to accommodate layout of light fixtures indicated on Drawings. Indicate areas of conflict between light fixtures and other components.

3. Mechanical Rooms: Provide coordination drawings for mechanical rooms showing plans and elevations of mechanical, plumbing, fire-protection, fire-alarm, and electrical equipment.

4. Structural Penetrations: Indicate penetrations and openings required for all disciplines.

5. Slab Edge and Embedded Items: Indicate slab edge locations and sizes and locations of embedded items for metal fabrications, sleeves, anchor bolts, bearing plates, angles, door floor closers, slab depressions for floor finishes, curbs and housekeeping pads, and similar items.

6. Mechanical and Plumbing Work: Show the following:
1. Sizes and bottom elevations of ductwork, piping, and conduit runs, including insulation, bracing, flanges, and support systems.

2. Dimensions of major components, such as dampers, valves, diffusers, access doors, cleanouts and electrical distribution equipment.

3. Fire-rated enclosures around ductwork.

7. Electrical Work: Show the following:

a. Runs of vertical and horizontal conduit 1-1/4 inches in diameter and larger.

b. Light fixture, exit light, emergency battery pack, smoke detector, and other fire-alarm locations.

c. Panel board, switch board, switchgear, transformer, busway, generator, and motor control center locations.

d. Location of pull boxes and junction boxes, dimensioned from column center lines.

8. Fire-Protection System: Show the following:

a. Locations of standpipes, mains piping, branch lines, pipe drops, and sprinkler heads.

9. Windows, Curtain Wall, and Exterior Wall Assembly Transition Work: Show all components of each adjacent wall or window system and all required compatible tie-ins between them including transition strips, flashings and sealants. Clearly identify each product, its configuration and its extent. Shop Drawings which only generically indicate adjacent construction and/or indicate “construction by others” will not be acceptable.

10. Review: Architect/Engineer will review coordination drawings to confirm that the Work is being coordinated, but not for the details of the coordination, which are Contractor's responsibility. If Architect/Engineer determines that coordination drawings are not being prepared in sufficient scope or detail, or are otherwise deficient, Architect/Engineer will so inform Contractor, who shall make changes as directed and resubmit.

11. Coordination Drawing Prints: Prepare coordination drawing prints according to requirements in Section 01 33 00 "Submittal Procedures."

C. Interference Resolution: Whenever job measurements and an analysis of the building coordination model, Drawings and Specifications indicate that the various systems cannot be installed without significant deviation from the intent of the Contract, prepare interference drawings as required to indicate conflict between the various systems and other components of the building such as beams, columns, and walls. Include plans, elevations, sections, and other details drawn to large scale as required to clearly define the interference and to indicate the Contractor's proposed solution. Submit interference drawings for review by the Architect prior to proceeding with work in the general areas of the conflict.

1.7 REQUESTS FOR INFORMATION (RFIs)

A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.

1. Architect/Engineer will return RFIs submitted to Architect/Engineer by other entities controlled by Contractor with no response.

2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:

1. Project name.
2. Project number.
3. Date.
4. Name of Contractor.
5. Name of Architect/Engineer.
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's suggested resolution impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.

C. RFI Forms: Hard copy form or software-generated form with substantially the same content as indicated above, acceptable to Architect/Engineer.
 1. Attachments shall be electronic files in Adobe Acrobat PDF format.

D. Architect/Engineer's Action: Architect/Engineer will review each RFI, determine action required, and respond. Allow seven calendar days for Architect/Engineer's response for each RFI. RFIs received by Architect/Engineer after 1:00 p.m. will be considered as received the following working day.
 1. The following Contractor-generated RFIs will be returned without action:
 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
 c. Requests for approval of Contractor's means and methods.
 d. Requests for coordination information already indicated in the Contract Documents.
 e. Requests for adjustments in the Contract Time or the Contract Sum.
 f. Requests for interpretation of Architect/Engineer's actions on submittals.
 g. Incomplete RFIs or inaccurately prepared RFIs.
 2. Architect/Engineer's action may include a request for additional information, in which case Architect/Engineer's time for response will date from time of receipt of additional information.
 3. Architect/Engineer's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Contractor-Initiated Change Order Bulletin and Proposal according to Section 01 26 00 "Contract Modification Procedures."
 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect/Engineer in writing within seven calendar days of receipt of the RFI response.

E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by RFI number. Submit log weekly. Use CSI Log Form 13.2B or Contractor-generated form of substantially same content. Include the following:
 1. Project name.
2. Name and address of Contractor.
3. Name and address of Architect/Engineer.
4. RFI number including RFIs that were returned without action or withdrawn.
5. RFI description.
6. Date the RFI was submitted.
7. Date Architect/Engineer's response was received.

F. On receipt of Architect/Engineer's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect/Engineer within seven calendar days if Contractor disagrees with response.

1.8 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.

1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify University and Architect/Engineer of scheduled meeting dates and times a minimum of 4 business days prior to meeting.

 a. Participants, including representatives of subcontractors and suppliers, shall be qualified, familiar with Project and authorized to conclude matters relating to the Work.

2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including University and Architect/Engineer, within three business days of the meeting.

B. Preconstruction Conference: Schedule and conduct a preconstruction conference before starting construction, at a time and site convenient to all parties, but not later than 14 calendar days after Notice to Proceed.

1. Conduct the conference to review responsibilities and personnel assignments.
2. Attendees: Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work and include the following:

 a. Authorized representatives of University:

 1) University Project Manager.
 2) University Building Maintenance Operations (BMO) Representative.

 b. Architect/Engineer and their consultants.
 c. Contractor’s project manager and superintendent.
 d. Major subcontractors and suppliers.
 e. Other concerned parties shall attend the conference.

3. Agenda: Discuss items of significance that could affect progress, including the following:

 a. Designation of key personnel and their duties.
 b. Lines of communications.
 c. List of major subcontractors and suppliers.
 d. Tentative construction schedule.

 1) Phasing.
 2) Critical work sequencing and long-lead items.
3) Equipment deliveries and priorities.

e. Procedures and processing of:
 2) RFI’s
 3) Testing and inspecting.
 4) Applications for Payment.
 5) Submittals.
 6) Preparation of record documents.

f. Use of the premises, existing building and adjacent buildings as applicable.
 1) Work restrictions.
 2) Working hours.
 3) University's occupancy requirements.
 4) Procedures for disruptions and shutdowns.
 5) Construction parking and staging.
 6) Construction route and site access.
 7) Office, work, and storage areas.
 8) Progress cleaning and housekeeping procedures.

g. Project coordination.
h. Distribution of the Contract Documents.
i. Temporary facilities and controls.
j. Indoor Air Quality Plan and Monitoring including procedures for moisture and mold control.
k. Construction waste management and recycling.
l. Safety.
 1) Fire and Life Safety.
 2) Health and Safety.

m. First aid.

n. Security.
o. Building Department.
p. Telecommunications.
q. Building Services.
r. Building Operations.
s. University Work Related Policies.
t. Contractor Contacts.
u. University Contacts.
v. University Process Forms.

1) Key Request Form.
2) Access Control Badge Application Form.
3) Utility Interruption Request Form.
4) Utility Start-Up Form.
5) Fire Alarm/ Sprinkler Disable Request Form.
6) Hot Work Permit Form.
7) Anschutz Medical Campus (AMC) Street and Parking Lot Closure Form.
8) Indoor Air Quality (IAQ) Plan.
9) IAQ Planning Checklist.
10) IAQ Inspection Checklist.
11) Request for Variance.
4. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.

C. Preinstallation Conferences: Conduct a preinstallation conference at Project site for installations, systems or assemblies where required by individual Specification Sections, or where deemed necessary by Contractor.

1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect/Engineer of scheduled meeting dates.

2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following, as appropriate:

 b. Options.
 c. Related RFIs.
 d. Related Change Orders.
 e. Purchases.
 f. Deliveries.
 g. Submittals.
 h. LEED requirements, for projects pursuing LEED certification.
 i. Review of mockups.
 j. Possible conflicts.
 k. Compatibility requirements.
 l. Time schedules.
 m. Weather limitations.
 n. Manufacturer's written instructions.
 o. Warranty requirements.
 q. Acceptability of substrates.
 r. Temporary facilities and controls.
 s. Space and access limitations.
 t. Regulations of authorities having jurisdiction.
 u. Testing and inspecting requirements.
 v. Installation procedures.
 w. Coordination with other work.
 x. Required performance results.
 y. Protection of adjacent work.
 z. Protection of construction and personnel.

3. Record significant conference discussions, approved schedules, agreements, and disagreements, including required corrective measures and actions.

4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information, including University Project Manager and Architect/Engineer.

5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

D. Project Closeout Conference: Schedule and conduct a project closeout conference, at a time convenient to University and Architect/Engineer, but no later than 30 calendar days prior to the scheduled date of Substantial Completion or Partial Substantial Completion.

1. Conduct the conference to review requirements and responsibilities related to Project closeout.

2. Attendees: Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work and include the following:
a. University Project Manager.
c. Architect/Engineer and their consultants.
d. Contractor’s project manager and superintendent.
e. Major subcontractors and suppliers.
f. Other concerned parties.

g. Other concerned parties.

3. Agenda: Discuss items of significance that could affect or delay Project closeout, including the following:

a. Procedures related to:
 1) Notice of Completion, including preparation of Contractor’s punch list.
 2) Final Inspection.
 3) Notice of Substantial Completion.
 4) Notice of Approval of Occupancy/Use.
 5) Supplemental Occupancy/Use Checklist.
 6) Supplemental Acceptance Checklist.
 7) Pre-acceptance Checklists.
 8) Notice of Acceptance.
 9) Settlement and Final Payment.

b. Preparation of record documents.
c. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
d. Submittal of written warranties.
e. Requirements for completing LEED documentation, for projects pursuing LEED certification.
f. Requirements for preparing operations and maintenance data.
g. Requirements for delivery of material samples, attic stock, and spare parts.
h. Requirements for demonstration and training.
i. University's partial occupancy requirements.
j. Installation of University's furniture, fixtures, and equipment.
k. Responsibility for removing temporary facilities and controls.

b. Preparation of record documents.
c. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
d. Submittal of written warranties.
e. Requirements for completing LEED documentation, for projects pursuing LEED certification.
f. Requirements for preparing operations and maintenance data.
g. Requirements for delivery of material samples, attic stock, and spare parts.
h. Requirements for demonstration and training.
i. University's partial occupancy requirements.
j. Installation of University's furniture, fixtures, and equipment.
k. Responsibility for removing temporary facilities and controls.

4. Minutes: Entity conducting meeting will record and distribute meeting minutes.

E. Progress Meetings: Conduct progress meetings at weekly intervals.

1. Coordinate dates of meetings with preparation of payment requests.
2. Attendees: Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work and include the following:

a. University Project Manager.
b. University Health Safety Department Representative.
d. University Campus Building Official.
e. Architect/Engineer and their consultants.
f. Contractor’s project manager and superintendent.
g. Major subcontractors and suppliers.
h. Other entities concerned with current progress or involved in planning, coordination, or performance of future activities.
i. As needed, University Building Maintenance Operations (BMO), Subject Matter Experts (SME), and University Facility Support Services (FSS) Representatives.
3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.

 a. Contractor's Construction Schedule:
 1) Review progress since the last meeting.
 2) Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule.
 3) Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 4) Review schedule for next two week period.
 5) Review schedule of deliveries.
 6) Review off-site fabrication.

 b. Site Safety.
 c. Indoor Air Quality Management monitoring.
 d. Quality:
 1) Quality and work standards.
 2) Status of correction of deficient items.
 3) Progress cleaning.
 4) Field observations.

 e. Status of submittals.
 f. Status of RFIs.
 g. Status of Changes including:
 1) Change Order Bulletins.
 2) Change Order Proposals.
 3) Change Orders.
 4) Pending claims and disputes.

 h. Status of LEED documentation, for projects pursuing LEED certification.
 i. Review present and future needs of each entity present including:
 1) Access.
 2) Site utilization.
 3) Temporary facilities and controls.
 4) Coordination.

4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.

F. Pay Application and Schedule Review Meeting: Conduct review meeting monthly on or about the 25th of each month.

1. Attendees:
 a. University Project Manager.
 b. Architect/Engineer.
 c. Contractor’s Project Manager, Superintendent and Scheduler.
2. Agenda: Review draft pay application and progress schedule update in accordance with the requirements of Section 01 29 00 “Payment Procedures” and Section 01 32 00 “Construction Progress Documentation.”

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 31 00
SECTION 01 32 00

CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:

1. Startup construction schedule.
2. Contractor's construction schedule.
3. Construction schedule updating reports.
4. Daily construction reports.
5. Monthly project status reports.
6. Material location reports.
7. Site condition reports.
8. Special reports.

B. Related Requirements:

1. Section 01 33 00 "Submittal Procedures" for submitting schedules and reports.
2. Section 01 40 00 "Quality Requirements" for submitting a schedule of tests and inspections.

1.3 DEFINITIONS

A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources.

1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
2. Predecessor Activity: An activity that precedes another activity in the network.
3. Successor Activity: An activity that follows another activity in the network.

B. Cost Loading: The allocation of the schedule of values for the completion of an activity as scheduled. The sum of costs for all activities must equal the total Contract Sum exclusive of profit, overhead, and general conditions costs.

C. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of Project.
D. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.

E. Event: The starting or ending point of an activity.

F. Float: The measure of leeway in starting and completing an activity.
 1. Float time is not for the exclusive use or benefit of either University or Contractor, but is a jointly owned, expiring Project resource available to both parties as needed to meet schedule milestones and Contract completion date.
 2. Free float is the amount of time an activity can be delayed without adversely affecting the early start of the successor activity.
 3. Total float is the measure of leeway in starting or completing an activity without adversely affecting the planned Project completion date.

G. Resource Loading: The allocation of manpower necessary for the completion of an activity as scheduled.

1.4 INFORMATIONAL SUBMITTALS

A. Format for Submittals: Submit required submittals in the following format:
 1. Working electronic copy of schedule file, where indicated.
 2. PDF electronic file and four paper copies.

B. Startup construction schedule (bar chart).
 1. Approval of cost-loaded, startup construction schedule will not constitute approval of schedule of values for cost-loaded activities.

C. Contractor's Detailed Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.
 1. Submit a working electronic copy of schedule, using software indicated, and labeled to comply with requirements for submittals. Include type of schedule (initial or updated) and date on label.

D. Construction Schedule Updating Reports: Submit draft for discussion at monthly project schedule and pay application review meeting. Submit final report with monthly Application for Payment.

E. Daily Construction Reports: Submit at weekly intervals.

F. Material Location Reports: Submit at monthly intervals.

G. Site Condition Reports: Submit at time of discovery of differing conditions.

H. Special Reports: Submit at time of unusual event.

1.5 QUALITY ASSURANCE

A. Prescheduling Conference: Conduct conference at Project site to comply with requirements in Section 01 31 00 "Project Management and Coordination." Review methods and procedures related to the preliminary construction schedule and Contractor's construction schedule, including, but not limited to, the following:
1. Review software limitations and content and format for reports.
2. Verify availability of qualified personnel needed to develop and update schedule.
3. Discuss constraints, including phasing, work stages, area separations, interim milestones, and partial University occupancy, as may be applicable.
4. Review delivery dates for University-furnished products.
5. Review schedule for work of University's separate contracts.
6. Review submittal requirements and procedures.
7. Review time required for review of submittals and resubmittals.
8. Review requirements for tests and inspections by independent testing and inspecting agencies.
9. Review time required for Project closeout and University startup procedures, including commissioning activities.
10. Review and finalize list of construction activities to be included in schedule.
11. Review procedures for updating schedule.

1.6 COORDINATION

A. Coordinate Contractor's construction schedule with the schedule of values, list of subcontracts, submittal schedule, progress reports, payment requests, and other required schedules and reports.

1. Secure time commitments for performing critical elements of the Work from entities involved.
2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

PART 2 - PRODUCTS

2.1 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

A. Time Frame: Extend schedule from date established for commencement of the Work to date of Substantial Completion.

1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date is not permitted. Contract completion date may only be modified by Change Order.

B. Activities: Treat each story or separate area as a separate numbered activity for each main element of the Work. Comply with the following:

1. Activity Duration: Define activities so no activity is longer than 21 calendar days, unless specifically allowed by Architect/Engineer.
2. Procurement Activities: Include procurement process activities for long lead items and major items, requiring a cycle of more than 60 calendar days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
3. Submittal Review Time: Include review and resubmittal times indicated in Section 01 33 00 "Submittal Procedures" in schedule. Coordinate submittal review times in Contractor's construction schedule with submittal schedule.
4. Startup and Testing Time: Include adequate time for startup, testing and commissioning.
5. Substantial Completion: Indicate completion in advance of date established for Substantial Completion, and allow time for Architect/Engineer's administrative procedures necessary for issuing Notice of Substantial Completion.
C. Constraints: Include the following constraints and work restrictions as indicated in the Contract Documents and as applicable in schedule; show how the sequence of the Work is affected.

1. Phasing: Arrange list of activities on schedule by phase.
2. Work by University: Include a separate activity for each portion of the Work performed by University.
3. Products Ordered in Advance: Include a separate activity for each product. Include delivery date indicated in Section 01 10 00 "Summary." Delivery dates indicated stipulate the earliest possible delivery date.
4. University-Furnished Products: Include a separate activity for each product. Include delivery date indicated in Section 01 10 00 "Summary." Delivery dates indicated stipulate the earliest possible delivery date.
5. Work Restrictions: Show the effect of the following items, as applicable, on the schedule:
 a. Coordination with existing construction.
 b. Limitations of continued occupancies.
 c. Uninterruptible services.
 d. Partial occupancy before Substantial Completion.
 e. Use of premises restrictions.
 f. Environmental control.

6. Work Stages: Indicate important stages of construction for each major portion of the Work, including, but not limited to, the following:
 a. Submittals.
 b. Mockups.
 c. Fabrication.
 d. Sample testing.
 e. Deliveries.
 f. Installation.
 g. Tests and inspections.
 h. Building flush-out.
 i. Startup and placement into final use and operation.

7. Construction Areas: As applicable, identify each major area of construction for each major portion of the Work. Indicate where each construction activity within a major area must be sequenced or integrated with other construction activities to provide for the following:
 a. Structural completion.
 b. Temporary enclosure and space conditioning.
 c. Permanent space enclosure.
 d. Completion of mechanical installation.
 e. Completion of electrical installation.
 f. Substantial Completion.

D. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Commencement of Work, Substantial Completion, Notice of Occupancy and Use, and Final Acceptance. As applicable, also include milestones for Partial Substantial Completion and Partial Notice of Occupancy and Use.

E. Recovery Schedule: When periodic update indicates the Work is 14 or more calendar days behind the current approved schedule, submit a separate recovery schedule indicating means by which Contractor intends to regain compliance with the schedule. Indicate changes to working hours, working days, crew sizes, and equipment required to achieve compliance, and date by which recovery will be accomplished.
F. **Computer Scheduling Software:** Prepare schedules using current version of a program that has been developed specifically to manage construction schedules and as approved by University and Architect/Engineer.

2.2 **STARTUP CONSTRUCTION SCHEDULE (BAR CHART)**

A. **Bar-Chart Schedule:** Submit startup, horizontal, bar-chart-type construction schedule within seven calendar days of date established for commencement of the Work.

B. **Preparation:** Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line. Outline significant construction activities for first 90 calendar days of construction. Include skeleton diagram for the remainder of the Work and a cash requirement prediction based on indicated activities.

2.3 **CONTRACTOR'S CONSTRUCTION SCHEDULE (BAR CHART OR GANTT CHART)**

A. **Bar-Chart or Gantt-Chart Schedule:** Submit startup, horizontal, bar-chart-type or a comprehensive, fully developed, horizontal, Gantt-chart-type construction schedule within 30 calendar days of date established for commencement of the Work. Base schedule on the startup construction schedule and additional information received since the start of Project.

B. **Preparation:** Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line. Use the same breakdown of construction activities as indicated in the Schedule of Values.

1. For construction activities that require three months or longer to complete, indicate an estimated completion percentage in 10 percent increments within time bar. With each required construction schedule update, place a contrasting mark in each bar to indicate actual completion.

2.4 **REPORTS**

A. **Daily Construction Reports:** Prepare a daily construction report recording the following information concerning events at Project site:

1. List of subcontractors at Project site.
2. List of separate contractors at Project site.
3. Approximate count of personnel at Project site.
4. Equipment at Project site.
5. Material deliveries.
6. High and low temperatures and general weather conditions, including presence of rain or snow.
7. Accidents.
8. Meetings and significant decisions.
9. Unusual events (see special reports).
10. Stoppages, delays, shortages, and losses.
11. Meter readings and similar recordings.
13. Orders and requests of authorities having jurisdiction.
14. Change Orders received and implemented.
15. Services connected and disconnected.
16. Equipment or system tests and startups.
17. Partial completions and occupancies.
18. Substantial Completions authorized.
B. Material Location Reports: At monthly intervals, prepare and submit a comprehensive list of materials delivered to and stored at Project site. List shall be cumulative, showing materials previously reported plus items recently delivered. Include with list a statement of progress on and delivery dates for materials or items of equipment fabricated or stored away from Project site. Indicate the following categories for stored materials:

1. Material stored prior to previous report and remaining in storage.
2. Material stored prior to previous report and since removed from storage and installed.
3. Material stored following previous report and remaining in storage.

C. Site Condition Reports: Immediately on discovery of a difference between site conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.

2.5 SPECIAL REPORTS

A. General: Submit special reports directly to University within one calendar day(s) of an occurrence. Distribute copies of report to parties affected by the occurrence.

B. Reporting Unusual Events: When an event of an unusual and significant nature occurs at Project site, whether or not related directly to the Work, prepare and submit a special report. List chain of events, persons participating, response by Contractor's personnel, evaluation of results or effects, and similar pertinent information. Advise University in advance when these events are known or predictable.

PART 3 - EXECUTION

3.1 CONTRACTOR'S CONSTRUCTION SCHEDULE

A. Contractor's Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule draft update schedule for discussion and review at monthly project progress schedule and pay application review meeting.

1. Revise schedule immediately after each meeting and issue updated schedule concurrently with submittal of monthly Application for Payment.
2. Include summary reports with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
3. As the Work progresses, indicate final completion percentage for each activity.
4. Schedule updates may change logic but may not change milestone or critical path without prior approval of University and Architect/Engineer.

B. Distribution: Distribute copies of approved schedule to Architect/Engineer University, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.

1. Post copies in Project meeting rooms and temporary field offices.
2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

END OF SECTION 01 32 00
SECTION 01 32 33

PHOTOGRAPHIC DOCUMENTATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for the following:

1. Preconstruction photographs.
2. Periodic construction photographs.
3. Final completion construction photographs.

B. Related Requirements:

1. Section 01 33 00 "Submittal Procedures" for submitting photographic documentation.
2. Section 01 77 00 "Closeout Procedures" for submitting photographic documentation as project record documents at Project closeout.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For photographer.

B. Key Plan: Submit key plan of Project site and building with notation of vantage points marked for location and direction of each photograph. Indicate elevation or story of construction. Include same information as corresponding photographic documentation.

C. Digital Photographs: Submit image files within three business days of taking photographs.

1. Digital Camera: Minimum sensor resolution of 12 megapixels.
2. Format: Minimum 3200 by 2400 pixels, in unaltered original files, with same aspect ratio as the sensor, uncropped, date and time stamped, in folder named by date of photograph, accompanied by key plan file.
3. Identification: Provide the following information with each image description in file metadata tag:
 a. Name of Project.
 b. Name and contact information for photographer.
 c. Name of Architect/Engineer.
 d. Name of Contractor.
 e. Date photograph was taken.
 f. Description of vantage point, indicating location, direction (by compass point), and elevation or story of construction.
 g. Unique sequential identifier keyed to accompanying key plan.
1.4 QUALITY ASSURANCE

A. Photographer Qualifications: An individual who has been regularly engaged as a professional photographer of construction projects for not less than three years.

1.5 USAGE RIGHTS

A. Obtain and transfer copyright usage rights from photographer to University for unlimited reproduction of photographic documentation.

PART 2 - PRODUCTS

2.1 PHOTOGRAPHIC MEDIA

A. Digital Images: Provide images in JPG format, produced by a digital camera with minimum sensor size of 12 megapixels, and at an image resolution of not less than 3200 by 2400 pixels.

PART 3 - EXECUTION

3.1 CONSTRUCTION PHOTOGRAPHS

A. Photographer: Engage a qualified photographer to take construction photographs.

B. General: Take photographs using the maximum range of depth of field, and that are in focus, to clearly show the Work. Photographs with blurry or out-of-focus areas will not be accepted.

1. Maintain key plan with each set of construction photographs that identifies each photographic location.

C. Digital Images: Submit digital images exactly as originally recorded in the digital camera, without alteration, manipulation, editing, or modifications using image-editing software.

1. Date and Time: Include date and time in file name for each image.
2. Field Office Images: Maintain one set of images accessible in the field office at Project site, available at all times for reference. Identify images in the same manner as those submitted to Architect/Engineer.

D. Preconstruction Photographs: Before starting construction, take photographs of Project site and surrounding properties, including existing items to remain during construction, from different vantage points, as directed by Architect/Engineer.

1. Flag construction limits before taking construction photographs.
2. Take 20 photographs to show existing conditions adjacent to property before starting the Work.
3. Take 20 photographs of existing buildings either on or adjoining property to accurately record physical conditions at start of construction.
4. Take additional photographs as required to record settlement or cracking of adjacent structures, pavements, and improvements.
E. Periodic Construction Photographs: Take 20 photographs monthly, coinciding with the cutoff date associated with each Application for Payment. Select vantage points to show status of construction and progress since last photographs were taken.

F. Architect/Engineer-Directed Construction Photographs: From time to time, Architect/Engineer will instruct photographer about number and frequency of photographs and general directions on vantage points. Select actual vantage points and take photographs to show the status of construction and progress since last photographs were taken.

G. Final Completion Construction Photographs: Take 20 color photographs after date of Substantial Completion for submission as project record documents. Architect/Engineer will inform photographer of desired vantage points.

1. Do not include date stamp.

H. Additional Photographs: University through Architect/Engineer may request photographs in addition to periodic photographs specified. Additional photographs will be paid for by Change Order and are not included in the Contract Sum.

1. Three business days' notice will be given, where feasible.
2. In emergency situations, take additional photographs within 24 hours of request.
3. Circumstances that could require additional photographs include, but are not limited to, the following:

 a. Special events planned at Project site.
 b. Immediate follow-up when on-site events result in construction damage or losses.
 c. Photographs to be taken at fabrication locations away from Project site. These photographs are not subject to unit prices or unit-cost allowances.
 d. Substantial Completion of a major phase or component of the Work.
 e. Extra record photographs at time of final acceptance.
 f. University's request for special publicity photographs.

END OF SECTION 01 32 33
SECTION 01 33 00

SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

B. Related Requirements:

1. Section 01 29 00 "Payment Procedures" for submitting Applications for Payment and the schedule of values.
2. Section 01 32 00 "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
3. Section 01 78 23 "Operation and Maintenance Data" for submitting operation and maintenance manuals.
4. Section 01 78 39 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
5. Division 02 through 33 for additional submittal requirements specific to indicated Specification Sections.

1.3 DEFINITIONS

A. Action Submittals: Written and graphic information and physical samples that require Architect/Engineer's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals." Submittals not specifically indicated as informational submittals are considered to be action submittals.

B. Informational Submittals: Written and graphic information and physical samples that do not require Architect/Engineer's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals" and include, but are not limited to:

1. Schedules.
2. Permits.
3. Applications for payment.
4. Performance and payment bonds.
5. Insurance certificates.
7. Schedule of Values.
8. Inspection and test results.
10. Coordination drawings.

C. File Transfer Protocol (FTP): Communications protocol that enables transfer of files to and from another computer over a network and that serves as the basis for standard Internet protocols. An FTP site is a portion of a network located outside of network firewalls within which internal and external users are able to access files.

1.4 ACTION SUBMITTALS

A. Submittal Schedule: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect/Engineer and additional time for handling and reviewing submittals required by those corrections.

1. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.
2. Final Submittal: Submit concurrently with the first complete submittal of Contractor's construction schedule.
 a. Submit revised submittal schedule to reflect changes in current status and timing for submittals.
3. Format: Arrange the following information in a tabular format:
 a. Scheduled date for first submittal.
 b. Specification Section number and title.
 c. Submittal category: Action; informational.
 d. Name of subcontractor.
 e. Description of the Work covered.
 f. Scheduled date for resubmittal.
 g. Scheduled date for Architect/Engineer's final release or approval.
 h. Scheduled date of fabrication.
 i. Scheduled dates for purchasing.
 j. Scheduled dates for installation.
 k. Activity or event numbers.

1.5 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

A. Paper Submittals: Place a permanent label or title block on each submittal item for identification.

1. Indicate name of firm or entity that prepared each submittal on label or title block.
2. Provide a space approximately 6 by 8 inches on label or beside title block to record Contractor's review and approval markings and action taken by Architect/Engineer.
3. Include the following information for processing and recording action taken:
 a. Project name.
b. Date.
c. Name of Architect/Engineer.
d. Name and address of Contractor.
e. Name and address of subcontractor.
f. Name and address of supplier.
g. Name of manufacturer.
h. Submittal number or other unique identifier, including revision identifier.

1) Submittal number shall use Specification Section number followed by a decimal point and then a sequential number (e.g., 061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., 061000.01.A).

i. Number and title of appropriate Specification Section.
j. Drawing number and detail references, as appropriate.
k. Location(s) where product is to be installed, as appropriate.
l. Other necessary identification.

4. Additional Paper Copies: Unless additional copies are required for final submittal, and unless Architect/Engineer observes noncompliance with provisions in the Contract Documents, initial submittal may serve as final submittal.

a. Submit one copy of submittal to concurrent reviewer in addition to specified number of copies to Architect/Engineer.

5. Transmittal for Paper Submittals: Assemble each submittal individually and appropriately for transmittal and handling. Transmit each submittal using a transmittal form. Architect/Engineer will return without review submittals received from sources other than Contractor.

a. Transmittal Form for Paper Submittals: Provide locations on form for the following information:

1) Project name.
2) Date.
3) Destination (To:).
4) Source (From:).
5) Name and address of Architect/Engineer.
6) Name and address of Contractor.
7) Name of firm or entity that prepared submittal.
8) Names of subcontractor, manufacturer, and supplier.
9) Category and type of submittal.
10) Submittal purpose and description.
11) Specification Section number and title.
12) Specification paragraph number or drawing designation and generic name for each of multiple items.
13) Drawing number and detail references, as appropriate.
14) Indication of full or partial submittal.
15) Transmittal number.
16) Submittal and transmittal distribution record.
17) Remarks.
18) Contractor’s certification that information complies with Contract Document requirements.
19) Signature of transmitter.

B. Options: Identify options requiring selection by Architect/Engineer.
C. Deviations and Additional Information: On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Architect/Engineer on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.

D. Contractor Certification: On transmittal include Contractor's certification that information complies with Contract Document requirements.

E. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 1. Note date and content of previous submittal.
 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 3. Resubmit submittals until they are marked with approval notation from Architect/Engineer's action stamp.

F. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

G. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect/Engineer's action stamp.

H. Record Documents: Retain complete additional copies of submittals on Project site to be submitted as record documents in accordance with requirements of Section 01 78 39 “Project Record Documents.”

I. Legibility: Provide clear and legible submittals. Submittals that are blurry or are for any reason unreadable will be returned without action.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 1. Post electronic submittals as PDF electronic files directly to Project Management Software Web site specifically established for Project or send via email.
 2. Action Submittals: Submit three paper copies of each submittal to Architect/Engineer and one to University unless otherwise indicated. Architect/Engineer will return one copy.
 3. Informational Submittals: Submit two paper copies of each submittal to Architect/Engineer and one to University unless otherwise indicated. Architect/Engineer will not return copies.
 4. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.

B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
2. Mark each copy of each submittal to show which products and options are applicable.
3. Include the following information, as applicable:
 a. Manufacturer's catalog cuts.
 b. Manufacturer's product specifications.
 c. Manufacturer's installation instructions.
 d. Manufacturer's printed recommendations.
 e. Standard color charts.
 f. Statement of compliance with specified referenced standards.
 g. Statement of compliance with specified trade association standards.
 h. Testing by recognized testing agency.
 i. Application of testing agency labels and seals.
 j. Notation of coordination requirements.
 k. Notation of dimensions verified by field measurement.
4. For equipment, include the following in addition to the above, as applicable:
 a. Wiring diagrams showing factory-installed wiring.
 b. Printed performance curves.
 c. Operational range diagrams.
 d. Rough-in diagrams and templates indicating clearances required to other construction, if not indicated on accompanying Shop Drawings.
5. Submit Product Data before or concurrent with Samples.
7. Submit additional copies of Product Data as required complying with requirements of Section 01 78 39 “Project Record Documents.”

C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Highlight, encircle or otherwise indicate deviations from Contract Documents. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data, unless submittal based on Architect/Engineer's digital data drawing files is otherwise permitted. Standard information prepared without specific reference to the Project is not considered a shop drawing.

1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 a. Identification of products.
 b. Schedules.
 c. Compliance with specified standards.
 d. Notation of coordination requirements.
 e. Notation of dimensions established by field measurement.
 f. Relationship and attachment to adjoining construction clearly indicated.
 g. Seal and signature of professional engineer if specified.
2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches, but no larger than size of Construction Drawings.

D. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.
1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.

2. Mount, display or package Samples in the manner specified to facilitate review of qualities indicated. Prepare Samples to match the Architect/Engineer's Sample.

3. Identification: Attach label on unexposed side of Samples that includes the following:
 a. Generic description of Sample.
 b. Product name and name of manufacturer.
 c. Sample source.
 d. Number and title of applicable Specification Section.
 e. Specification paragraph number and generic name of each item.
 f. Compliance with recognized standards.
 g. Availability and delivery time.

4. For projects where electronic submittals are required, provide corresponding electronic submittal of Sample transmittal, digital image file illustrating Sample characteristics, and identification information for record.

5. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 a. Number of Samples: Submit one full set(s) of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect/Engineer will return submittal with options selected.

6. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 a. Number of Samples: Submit three sets of Samples. Architect/Engineer will retain two Sample sets; remainder will be returned. Mark up and retain one returned Sample set as a project record sample.
 1) Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated.
 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.

7. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 b. Samples not incorporated into the Work, or otherwise designated as University's property, are the property of Contractor.

8. Distribution of Samples: Prepare and distribute additional sets to Subcontractors, manufacturers, fabricators, suppliers, Installers, and others as required for performance of the Work. Show distribution on transmittal forms.
Field Samples and Mock-Ups: Field Samples and mock-ups specified in individual Sections are full-size examples erected on site to illustrate finishes, coatings, or finish materials and to establish the standard by which the Work will be judged.

Selection of Related Materials: Where selections of colors, patterns, textures are specified to be made by Architect/Engineer, assemble complete samples of all specified or approved products for all Specification Sections and submit to Architect/Engineer. Review specifications and assemble all such samples for a combined single submittal. Indicate on the transmittal the latest date for selections to be made for each item to permit delivery of material in accordance with Progress Schedule. Architect/Engineer's action is limited solely to the specified selections or rejection of submittal items not in accordance with Specifications.

Coordination Drawing Submittals: Comply with requirements specified in Section 01 31 00 "Project Management and Coordination."

Contractor's Construction Schedule: Comply with requirements specified in Section 01 32 00 "Construction Progress Documentation."

Application for Payment and Schedule of Values: Comply with requirements specified in Section 01 29 00 "Payment Procedures."

Test and Inspection Reports and Schedule of Tests and Inspections Submittals: Comply with requirements specified in Section 01 40 00 "Quality Requirements."

Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Section 01 77 00 "Closeout Procedures."

Maintenance Data: Comply with requirements specified in Section 01 78 23 "Operation and Maintenance Data."

LEED Submittals: For project required to obtain LEED certification, comply with requirements specified in Division 01 Section "Sustainable Design Requirements".

Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.

Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.

Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.

Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
S. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.

T. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.

U. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:

1. Name of evaluation organization.
2. Date of evaluation.
3. Time period when report is in effect.
4. Product and manufacturers' names.
5. Description of product.
6. Test procedures and results.
7. Limitations of use.

V. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.

W. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.

X. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

Y. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

2.2 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect/Engineer.

B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit three paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.

1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.
3.1 CONTRACTOR'S REVIEW

A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect/Engineer. Submittals received without Contractor's substantive review and approval stamp will be rejected and returned to the Contractor.

B. Project Closeout and Maintenance Material Submittals: See requirements in Section 01 77 00 "Closeout Procedures."

C. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 ARCHITECT/ENGINEER'S ACTION

A. Action Submittals: Architect/Engineer will review each submittal, make marks to indicate corrections or revisions required, and return it. Architect/Engineer will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action.

B. Informational Submittals: Architect/Engineer will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect/Engineer will forward each submittal to appropriate party.

C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Architect/Engineer.

D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

E. Submittals not required by the Contract Documents may be returned by the Architect/Engineer without action.

END OF SECTION 01 33 00
SECTION 01 35 44

SPECIAL PROCEDURES FOR ENVIRONMENTAL HEALTH AND SAFETY AND FIRE AND LIFE SAFETY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes special administrative and procedural requirements related to environmental health and safety.

B. University is Authority Having Jurisdiction (AHJ) for Fire and Life Safety. This responsibility is administered by the University’s Fire and Life Safety Officer.

C. Related Requirements:
 1. Section 01 35 46 “Indoor Air Quality Procedures” for procedure related to maintaining indoor air quality during construction.
 2. Section 02 81 00 “Transportation/Disposal of Hazardous Materials.”

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 ENVIRONMENTAL HEALTH AND SAFETY AND FIRE AND LIFE SAFETY PROCEDURES

A. Physical, Life, and Fire Safety:

1. All contractors are required to conform to the Federal Occupational Safety and Health Administration (OSHA) regulations for construction (29 CFR 1926). Certain General Industry Standards (29 CFR 1910) may also apply, depending on location of work.

2. Provide an effective health and safety program to control hazards, including but not limited to compressed gases, welding, electrical, safety netting, cranes, scaffolding and supplies on the roof.

3. Provide fire protection in all construction areas to the satisfaction of the Authority Having Jurisdiction.

4. During the construction phase, the Authority Having Jurisdiction may conduct oversight inspections to observe and provide recommendations regarding applicable safety standards. The following minimum items are included:

 a. Do not block exit corridors. Install signage clearly identifying exit routes.
 b. Provide physical barriers with appropriate warning signage to protect public areas from construction work.
c. Conduct daily inspections to eliminate fire hazards and any other safety hazards.

d. Periodic safety inspections will be performed on job sites by the Authority Having Jurisdiction. The Authority Having Jurisdiction for fire safety will present University’s Project Manager with a written summary of the findings who will then take these issues to the Contractor’s superintendent, foreman or other designated representative and return the summary form with documentation of the resolution of safety items to AHJ. Abate deficient items in a timely manner. Include documentation and resolution of safety items presented in weekly Progress Meeting minutes. Inspections by University AHJ are spot-checks only. They are not all encompassing. These inspections and recommendations do not relieve the Contractor from obligations related to safe work practices, as required under federal law.

e. AHJ has the right to access the site at all times. Should a potential threat to personnel or property be observed, AHJ may require the hazard related operation immediately altered until adequate safeguards are addressed.

f. Supply AHJ, through the University Project Manager, with a copy of Contractor’s weekly safety meeting minutes and safety inspection reports.

g. Provide signs used for proper identification of construction areas.

h. Provide adequate number of appropriately rated fire extinguishers to be available on-site for emergency use in the construction area.

i. Insure standpipes, pull stations, electrical panels, water control valves and fire hydrants are accessible at all times.

j. Post emergency notification phone numbers provided by Contractor and University in all construction areas.

k. Notify University Project Manager of any lost time injuries occurring on University’s property within one (1) calendar day and of any fatalities immediately.

l. Submit copies of all injury reports to AHJ, through University’s Project Manager.

m. Equip construction personnel with personal protective equipment (PPE) where required. Coordinate with University Project Manager to identify where use of PPE will be required.

B. OSHA Hazard Communication Standard:

1. Every Contractor and Subcontractor performing work shall comply with the OSHA Hazard Communication Standard. Compliance includes joint University and Contractor responsibilities for the purpose of providing timely communications and information sharing with regard to hazardous materials, chemicals and chemical sources which may be present on-site or brought in by Contractor.

2. University Project Manager will provide Contractor with the following:

a. Information regarding known hazardous chemicals and agents or other hazards present at the job site.

b. University emergency procedures and contact numbers.

3. Provide safety training and environmental surveillance of all workers.

4. Inform and provide University’s Project Manager the following:

a. Material safety data sheets (MSDS) for all chemicals introduced into the workplace.

b. Information regarding potential sources of pollutants which may be entrained in University’s air intakes, e.g., roofing tar fumes, nuisance dusts, exhaust from internal combustion engines, welding or cutting fumes, and asbestos - if damaged or encountered during the course of the work.

C. Asbestos and Lead Paint:

1. The presence of asbestos-containing materials and/or paint containing lead on the job site does not mean a problem exists. Areas where asbestos is friable and not contained or lead paint is present or will be caused to be present in airborne or settled dust are of concern.
2. Responsibilities of University and Contractor regarding asbestos and lead paint are as follows:

 a. University:

 1) Notify the Contractor of the condition and location(s) where asbestos is known to be present or may reasonably be encountered, e.g., asbestos insulation, ceiling tiles, floor tiles, fire doors, wall and ceiling plasters, concrete, grouting, etc., and lead paint on metal building materials, walls, windows, etc.

 2) Coordinate with Contractor when response action is required by a Subcontractor.

 3) Contract with third party contractor to monitor areas where friable asbestos and/or lead-containing particles are present during construction/renovation projects for its own records and purpose. Monitoring results can be shared with Contractors but are in no way to be used for Contractor employee monitoring.

 4) Final authority on all asbestos-related concerns and contractual arrangements.

 b. Contractor:

 1) Notify University's Project Manager of any suspected or existing problem involving asbestos or lead and cease work in that area until University has assessed the situation.

 2) Ensure that undamaged asbestos-containing material and/or material containing lead, not included in the scope of the project, are not damaged.

 3) Train and monitor their own employees, including Asbestos Awareness training and Lead Paint Awareness training, where applicable.

 4) Be responsible for all environmental/industrial hygiene surveillance of its work staff and subcontractors and for required area monitoring where potential contamination of adjacent areas exists.

 5) Prevent problems which can result in asbestos or lead exposure to building occupants.

 6) Coordinate with the University’s EHS Department and Building Maintenance and Operations through University’s Project Manager and perform all activities that may potentially disturb asbestos containing materials in a manner acceptable to the EHS.

 7) Follow State of Colorado regulation, Emission Standards for Asbestos, Part B, Control of Asbestos, “Regulation 8” and OSHA standards regulating exposure to asbestos and lead.

 8) Where applicable, comply with Section 02 81 00 “Transportation/Disposal of Hazardous Materials.”

D. Carcinogens:

1. Contractor or any Subcontractor shall not knowingly install or cause to be installed any material or product containing carcinogens. Refer to Annual Report on Carcinogens, U.S. Department of Health and Human Services, National toxicology Program.

E. Hazardous Waste:

1. All hazardous wastes are to be handled and disposed of according to current EPA and CDPHE guidelines which can be obtained through University Project Manager. Only individuals specifically authorized by University may sign hazardous waste manifests for wastes generated on University’s property. Only University approved transporters and disposal facilities are to be used for transportation and disposal of hazardous wastes.

F. The Control of Hazardous Energy (Lockout/Tagout):
1. Provide and enforce a program and procedures for the control of hazardous energy (lockout/tagout) including, but not limited to, locks, tags and lockout devices. Provide proof that workers have received safety training in the control of hazardous energy through lockout/tagout.

G. Hot Work Operations:

1. Comply with University hot work policy and obtain Hot Work Permit prior to executing any hot work in existing buildings.
2. Notify University Project Manager prior to any hot work on University property.
3. Provide and enforce a program to control fires during hot work operations. Provide appropriately rated fire extinguishers, fire retardant protective covers (when needed), and any other hot work related equipment.

H. Confined Space Entry:

1. Work in compliance with the “Confined Spaced Entry Procedure for Non-University Personnel” whenever any project requires entry into a confined space. A copy of this procedure can be obtained from University EHS through University’s Project Manager.

I. Green Tagging of Work Area:

1. Obtain a Green Tag and Construction Permit from the University Project Manager prior to any work being conducted in a laboratory or on any exhaust ductwork system serving a laboratory. If a Green Tag has been issued, it will be displayed at the entry of the laboratory area. The Green Tag assures that any radioactive, chemical or biological materials have been removed from the laboratory verifying the area is free from hazards to workers. If a Green Tag is not displayed, coordinate tagging with EHS through University’s Project Manager.

END OF SECTION 01 35 44
SECTION 01 35 46
INDOOR AIR QUALITY PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for managing emissions and moisture control during construction.

1.3 DEFINITIONS
A. Sustainable Design Related Terminology: As defined in ASTM E 2114.
B. Adequate Ventilation: Ventilation, including air circulation and air changes, required to cure materials, dissipate humidity, and prevent accumulation of particulates, dust, fumes, vapors, or gases.
C. Hazardous Materials: Any material that is regulated as a hazardous material in accordance with 49 CFR 173, requires a Material Safety Data Sheet (MSDS) in accordance with 29 CFR 1910.1200, or which during end use, treatment, handling, storage, transportation or disposal meets or has components which meet or have the potential to meet the definition of a Hazardous Waste in accordance with 40 CFR 261. Throughout this specification, hazardous material includes hazardous chemicals.
 1. Hazardous materials include: pesticides, biocides, and carcinogens as listed by recognized authorities, such as the Environmental Protection Agency (EPA) and the International Agency for Research on Cancer (IARC).
D. Indoor Air Quality (IAQ): The composition and characteristics of the air in an enclosed space that affect the occupants of that space. The indoor air quality of a space refers to the relative quality of air in a building with respect to contaminants and hazards and is determined by the level of indoor air pollution and other characteristics of the air, including those that impact thermal comfort such as air temperature, relative humidity and air speed.
E. Interior Final Finishes: Materials and products that will be exposed at interior, occupied spaces including but not limited to flooring, wallcovering, finish carpentry, and ceilings.
F. Packaged Dry Products: Materials and products that are installed in dry form and are delivered to the site in manufacturer's packaging including but not limited to carpets, resilient flooring, ceiling tiles, and insulation.
G. Wet Products: Materials and products installed in wet form, including paints, sealants, adhesives, special coatings, and other materials which require curing.
1.4 QUALITY ASSURANCE

A. Inspection and Testing Lab Qualifications: Minimum of 5 years experience in performing the types of testing specified herein.

1.5 PRECONSTRUCTION MEETING

A. After award of Contract and prior to the commencement of the Work, schedule and conduct meeting with University and Architect/Engineer to review and discuss the proposed IAQ Management Plan and develop a mutual understanding of detailed requirements for maintaining indoor air quality and environmental protection.

1.6 SUBMITTALS

A. Indoor Air Quality (IAQ) Management Plan: Not less than 10 business days before the Pre-construction meeting, prepare and submit an IAQ Management Plan including, but not limited to, the following:

1. Procedures for control of emissions during construction.
 a. Identify schedule for application of interior finishes.

2. Procedures for moisture control during construction.
 a. Identify porous materials and absorptive materials.
 b. Identify schedule for inspection of stored and installed absorptive materials.

3. Revise and resubmit Plan as required by University.
 a. Approval of Contractor’s Plan will not relieve the Contractor of responsibility for compliance with applicable environmental regulations.

B. Product Data:

1. Submit product data for filtration media used during construction and during operation. Include Minimum Efficiency Reporting Value (MERV).
2. Submit air pressure difference maps for each mode of operation of HVAC.
3. Material Safety Data Sheets: Submit MSDSs for inclusion in Operation and Maintenance Manual for the following products. Coordinate with Section 01 78 23 – Operation and Maintenance Data.
 a. Adhesives.
 b. Floor and wall patching/leveling materials.
 c. Caulking and sealants.
 d. Insulating materials.
 e. Fireproofing and firestopping.
 f. Carpet.
 g. Paint.
 h. Clear finish for wood surfaces.
 i. Lubricants.
 j. Cleaning products.

C. Inspection and Test Reports:

1. Moisture control inspections.
2. Moisture content testing.
3. Moisture penetration testing.
4. Microbial growth testing.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 IAQ MANAGEMENT - EMISSIONS CONTROL

A. Provide point person responsible for the implementation and assurance that the Indoor Air Quality Plan is being implemented.

B. University Indoor Air Quality Plan: Comply with the requirements of the University IAQ Plan, latest version, appended to this Specification Section.

C. Flush-Out: After construction ends, prior to occupancy and with all interior finishes installed, perform a building flush-out by supplying a total air volume of 14,000 cu.ft. of outdoor air per sq.ft. of floor area while maintaining an internal temperature of at least 60 degrees F and relative humidity no higher than 60%.

3.2 IAQ MANAGEMENT - MOISTURE CONTROL

A. Housekeeping:

1. Keep materials dry. Protect stored on-site and installed absorptive materials from moisture damage.
2. Verify that installed materials and products are dry prior to sealing and weatherproofing the building envelope.
3. Install interior absorptive materials only after building envelope is sealed and weatherproofed.

B. Inspections: Document and report results of inspections; state whether or not inspections indicate satisfactory conditions.

1. Examine materials for dampness as they arrive. If acceptable to University, dry damp materials completely prior to installation; otherwise, reject materials that arrive damp.
2. Examine materials for mold as they arrive and reject materials that arrive contaminated with mold.
3. Inspect stored and installed absorptive materials regularly for dampness and mold growth. Inspect weekly.
 a. Where stored on-site or installed absorptive materials become wet, notify Architect/Engineer and University. Inspect for damage. If acceptable to University, dry completely prior to closing in assemblies; otherwise, remove and replace with new materials.
4. Basement: Monitor basement and crawlspace humidity, and dehumidify when relative humidity is greater than 85 percent for more than 2 weeks or at the first sign of mold growth.
5. Site drainage: Verify that final grades of site work and landscaping drain surface water and ground water away from the building.
6. Weather-proofing: Inspect moisture control materials as they are being installed. Include the following:
a. Air and weather-resistive barrier: Verify air and weather-resistive barrier is installed without punctures and/or other damage. Verify air barrier and weather-resistive is sealed completely.
b. Flashing: Verify correct shingling of the flashing for roof, walls, windows, doors, and other penetrations.
c. Insulation layer: Verify insulation is installed without voids.
d. Roofing: In accordance with ASTM D7186 Standard Practice for Quality Assurance Observation of Roof Construction and Repair

7. Plumbing: Verify satisfactory pressure test of pipes and drains is performed before closing in and insulating lines.
8. HVAC: Inspect HVAC system as specified in Section 23 08 00 – Commissioning.
 a. And, inspect HVAC to verify:
 1) Condensate pans are sloped and plumbed correctly.
 2) Access panels are installed to allow for inspection and cleaning of coils and ductwork downstream of coils.
 3) Ductwork and return plenums are air sealed.
 4) Duct insulation is installed and sealed.
 5) Chilled water line and refrigerant line insulation are installed and sealed.

C. Schedule:
 1. Schedule work such that absorptive materials, including but not limited to porous insulations, paper-faced gypsum board, ceiling tile, and finish flooring, are not installed until they can be protected from rain and construction-related water.
 2. Weather-proof as quickly as possible. Schedule installation of moisture-control materials, including but not limited to air and weather-resistive barriers, flashing, exterior sealants and roofing, at the earliest possible time.

D. Testing for Moisture Content: Test moisture content of porous materials and absorptive materials to ensure that they are dry before sealing them into an assembly. Document and report results of testing. Where tests are not satisfactory, dry materials and retest. If satisfactory results cannot be obtained with retest, remove and replace with new materials.

 1. Concrete: Moisture test prior to finish flooring application as specified in Division 09.
 2. Wood: Moisture test as per ASTM D4444 - Standard Test Methods for Use and Calibration of Hand-Held Moisture Meters; unless otherwise indicated acceptable upper limits for wood products are < 20% at center of piece; < 15% at surface.
 3. Gypsum Board, Gypsum Plaster, Insulation, and other absorptive materials: Moisture test with a Pinless Moisture Meter to assess patterns of moisture, if any.

E. Testing for Moisture Penetration:

 1. Windows: Test as per ASTM E1105 Test Method for Field Determination of Water Penetration of Installed Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform or Cyclic Static Air Pressure Difference at 100 percent static-air-pressure difference specified in applicable Division 08 Sections; unless otherwise indicated, acceptable upper limits are no leakage for 15 minutes.
 a. Number of Tests: 1 percent of openings but not less than two.
2. Horizontal Waterproofing (not roofing): Test as per ASTM D5957 Standard Guide for Flood Testing Horizontal Waterproofing Installations; acceptable upper limits are no leakage for 15 minutes.
 a. Test frequency: 100 percent of horizontal waterproofed surfaces.

3. Masonry: Test as per ASTM C1601 Standard Test Method for Field Determination of Water Penetration of Masonry Wall Surfaces; acceptable upper limits are no leakage for 15 minutes.

4. Exterior Walls:
 a. Air tightness of the enclosure test: ASTM E779 Standard Test Method for Determining Air Leakage Rate by Fan Pressurization or ASTM E1827
 1) Air Leakage: The mean value of the air leakage flow rate calculated from measured data at 0.3 in wg (75 Pa) must not exceed 0.25 cu ft/minute per square foot of envelope area. Measurements must be referenced at standard conditions of 14.696 psi (101.325 KPa) and 68 deg F.

F. Testing for Support of Microbial Growth: Test and report in accordance with ASTM D6329 Standard Guide for Developing Methodology for Evaluating the Ability of Indoor Materials to Support Microbial Growth Using Static Environmental Chambers. Indicate susceptibility of product or material to colonization and amplification of microorganisms. Identify microorganisms and conditions of testing.

1. Normal conditions: Perform testing at 35 degrees Centigrade and 50 percent relative humidity.
2. Extreme conditions: Perform worst case scenarios screening tests by providing an atmosphere where environmental conditions may be favorable for microbial growth.
3. Perform testing for the following:
 a. Fireproofing material on appropriate substrate.
 b. Ceiling tile.
 c. Wall covering.
 d. Other appropriate material.

END OF SECTION 01 35 46
This plan describes the measures to be taken to provide good indoor air quality (IAQ) during construction and after construction is complete and the occupants have moved into the building. This plan is based on the SMACNA standard “IAQ Guidelines for Occupied Buildings under Construction” and the requirements of the LEED.

It is not the intent of this document to replace or supersede OSHA regulations as to safe construction workplace practices. It remains the responsibility of the Construction Manager and the individual sub-contractors to maintain safe building and site operations. Addition precautions may be necessary when hazardous materials are present.

The plan will address construction IAQ by recommending procedures in five areas of concern, which in turn will allow the building to achieve two LEED program points:

- HVAC system protection
- Containment source control
- Pathway interruption
- Housekeeping
- Scheduling

The following describes the specific measures to be performed in each area of concern:

1. HVAC Protection

 - During construction, provide MERV 13 filters for supply air intake when in use. Provide MERV 8 filters at the return air system openings when in use. Perform frequent maintenance when the HVAC system is being utilized and replace filters as they become loaded, prior to building flushout, and prior to occupancy.
 - When performing construction activities that produce dust, such as drywall sanding, concrete cutting, masonry work, wood sawing or adding insulation, seal off the supply diffusers and return air system openings completely for the duration of the task.
 - Shut down and seal off the supply diffusers and return air ducts during any demolition operations.
 - Whenever the HVAC system is not used during construction, seal off the supply diffusers and return air system openings to prevent the accumulation of dust and debris in the duct system.
 - Do not use the mechanical rooms to store construction or waste materials. Keep rooms clean and neat.
 - Provide periodic duct inspections during construction; if the ducts become contaminated due to inadequate protection, clean the ducts professionally in accordance with NADCA (National Air Duct Cleaning Association) standards.
 - The General Contractor shall take photographs showing measures in place.

2. Source Control

 - Use low VOC products as indicated by the specifications to reduce potential problems.
• Restrict traffic volume and prohibit idling of motor vehicles where emissions could be drawn into the building.
• Utilize electric or natural gas alternatives for gasoline and diesel equipment where possible and practical. Use low-sulfur diesel in lieu of regular diesel.
• Cycle equipment off when not being used or needed.
• Exhaust pollution sources to the outside with portable fan systems. Prevent exhaust from recirculating back into the building from construction equipment outside the building.
• Keep containers of wet products closed as much as possible. Cover or seal containers of waste materials that can release odor or dust.
• Protect stored on-site or installed absorptive building materials from weather and moisture; wrap with plastic and seal tight to prevent moisture absorption.
• The General Contractor shall take photographs showing measures in place.

3. Pathway Interruption

• Provide dust curtains or temporary enclosures to prevent dust from migrating to other areas when applicable.
• Locate pollutant sources as far away as possible from supply ducts and areas occupied by workers when feasible. Supply and exhaust systems may have to be shut down or isolated during such activity.
• During construction, isolate areas of work to prevent contamination of clean or occupied areas. Pressure differentials may be utilized to prevent contaminated air from entering clean areas.
• Depending on weather, ventilation using 100% outside air will be used to exhaust contaminated air directly to the outside during installation of VOC emitting materials.

4. Housekeeping

• Provide regular cleaning concentrating on HVAC equipment and building spaces to remove contaminants from the building prior to occupancy.
• All coils, air filters, fans and ductwork shall remain clean during installation and, if required, will be cleaned prior to performing the testing, adjusting and balancing of the systems.
• Suppress and minimize dust with wetting agents or sweeping compounds. Utilize efficient and effective dust collecting methods such as a damp cloth, wet mop, or vacuum with particulate filters, or wet scrubber.
• Remove accumulations of water inside the building. Protect porous materials such as insulation and ceiling tile from exposure to moisture.
• Thoroughly clean all interior surfaces prior to replacing filters and running HVAC system for system balancing, commissioning and building flushout.
• Provide photographs of the above activities during construction to document compliance.

5. Scheduling and Construction Activity Sequence

• Schedule high pollution activities that utilize high VOC level products (including paints, sealers, insulation, adhesives, caulking and cleaners) to take place prior to installing highly absorbent materials (such as ceiling tiles, gypsum wall board, fabric furnishing, carpet and insulation, for example). These materials will act as ‘sinks’ for VOCs, odors and other contaminants, and release them later after occupancy.

PLANNING AND INSPECTION CHECKLISTS

The planning and inspection checklists included in this document are useful to ensure construction IAQ management is planned and implemented correctly. The planning checklist should be completed by the contractor prior to construction. The inspection checklists should be completed monthly to confirm the IAQ management plan is being followed. At the time of inspection, photographs should be taken to support the checklist and to provide audit documentation for the USGBC.
Planning Checklist

University of Colorado Denver IAQ

February 14, 2009

(Must be completed weekly)

Project

Completed by:

(Name & Company)

Date:

1. HVAC Protection

- [] MERV 13 filters at supply air intake
- [] MERV 8 filters at return air openings
- [] Seal supply diffusers and return air during demolition
- [] Seal supply diffusers and return air openings during construction
- [] Mechanical rooms clean and neat
- [] Periodic duct inspections during construction
- [] General Contractor to document with photographs

2. Source Control

- [] Low/no VOC products as indicated by specifications
- [] Restrict vehicle traffic volume and prohibit idling
- [] Utilize electric or natural gas alternatives for gasoline and diesel
- [] Cycle equipment off when not being used or needed
- [] Exhaust pollution sources to the outside
- [] Keep containers of wet products closed
- [] Cover or seal containers of waste materials
- [] Protect absorptive building materials from weather and moisture
- [] Prevent fume migration from construction vehicles and equipment into adjacent buildings
- [] General Contractor to document with photographs

3. Pathway Interruption

- [] Provide dust curtains or temporary enclosures
- [] Locate pollutant sources as far away as possible from supply dusts and areas occupied by workers
- [] General Contractor to document with photographs
- [] Isolate areas of work to prevent contamination of clean or occupied areas
- [] When using VOC emitting materials ventilate using 100% outside air
4. **Housekeeping**

- Provide regular cleaning, including HVAC equipment
- If necessary clean HVAC equipment prior to testing, adjusting and balancing the systems
- Suppress and minimize dust with wetting agents or sweeping compounds
- Remove accumulations of water inside the building
- Protect porous materials
- General Contractor to document with photographs

5. **Scheduling and Construction Activity Sequence**

- Schedule high pollution activities prior to installing absorbent materials
- General Contractor to document with photographs

I confirm the checked activities to be proceeding according to the Construction Indoor Air Quality Plan. Items that are not checked will be addressed, initialed and dated once corrective actions have been taken. Items that are not applicable are labeled as such.

Signed: __ Date: __________________

(Contractor)
University of Colorado Denver IAQ
February 14, 2009

Inspection Checklist
(Must be completed weekly)

Project ___
Completed by: ___
(Name & Company)
Date: ________________________________

1. HVAC Protection
 □ MERV 13 filters at supply air intake
 □ MERV 8 filters at return air openings
 □ Seal supply diffusers and return air during demolition
 □ Seal supply diffusers and return air openings during construction
 □ Mechanical rooms clean and neat
 □ Periodic duct inspections during construction
 □ General Contractor to document with photographs

2. Source Control
 □ Low/no VOC products as indicated by specifications
 □ Restrict vehicle traffic volume and prohibit idling
 □ Utilize electric or natural gas alternatives for gasoline and diesel
 □ Cycle equipment off when not being used or needed
 □ Exhaust pollution sources to the outside
 □ Keep containers of wet products closed
 □ Cover or seal containers of waste materials
 □ Protect absorptive building materials from weather and moisture
 □ General Contractor to document with photographs

3. Pathway Interruption
 □ Provide dust curtains or temporary enclosures
 □ Locate pollutant sources as far away as possible from supply dusts and areas occupied by workers
 □ General Contractor to document with photographs
 □ Isolate areas of work to prevent contamination of clean or occupied areas
 □ When using VOC emitting materials ventilate using 100% outside air
 □ General Contractor to document with photographs

4. Housekeeping
Provide regular cleaning, including HVAC equipment
If necessary clean HVAC equipment prior to testing, adjusting and balancing the systems
 Suppress and minimize dust with wetting agents or sweeping compounds
 Remove accumulations of water inside the building
 Protect porous materials
 General Contractor to document with photographs

5. Scheduling and Construction Activity Sequence
 Schedule high pollution activities prior to installing absorbent materials
 General Contractor to document with photographs

I confirm the checked activities to be proceeding according to the Construction Indoor Air Quality Plan. Items that are not checked will be addressed, initialed and dated once corrective actions have been taken. Items that are not applicable are labeled as such.

Signed: __ Date: ________________
(Contractor)
SECTION 01 40 00
QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.

1. Specific quality-assurance and control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.

2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.

3. Requirements for Contractor to provide quality-assurance and -control services required by Architect/Engineer, University, or authorities having jurisdiction are not limited by provisions of this Section.

4. Specific test and inspection requirements are not specified in this Section.

C. Related Requirements:

1. Section 01 42 00 "Reference" for list of references, standards and definitions.

2. Section 01 91 13 “General Commissioning” for coordination of testing with commissioning activities.

3. Division 23 for testing, adjusting and balancing of mechanical systems.

4. Division 26 for testing of electrical systems.

1.3 DEFINITIONS

A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.

B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect/Engineer.

C. Mockups: Full-size physical assemblies that are constructed on-site. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and, where indicated, qualities...
of materials and execution; to review coordination, testing, or operation; to show interface between
dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are
not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work
will be judged.

1. As indicated in individual Specifications Sections or on the Drawings, the Work may include the
following types of mockups:

a. Laboratory Mockups: Full-size physical assemblies constructed at testing facility to verify
performance characteristics.

b. Integrated Exterior Mockups: Mockups of the exterior envelope erected separately from
the building but on Project site, consisting of multiple products, assemblies, and
subassemblies.

c. Room Mockups: Mockups of typical interior spaces complete with wall, floor, and ceiling
finishes, doors, windows, millwork, casework, specialties, furnishings and equipment, and
lighting.

D. Preconstruction Testing: Tests and inspections performed specifically for Project before products and
materials are incorporated into the Work, to verify performance or compliance with specified criteria.

E. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency
qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product
performance and compliance with specified requirements.

F. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill,
factory, or shop.

G. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the
Work and for completed Work.

H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory
shall mean the same as testing agency.

I. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee,
Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including
installation, erection, application, and similar operations.

1. Use of trade-specific terminology in referring to a trade or entity does not require that certain
construction activities be performed by accredited or unionized individuals, or that requirements
specified apply exclusively to specific trade(s).

J. Experienced: When used with an entity or individual, "experienced" means having successfully
completed a minimum of five previous projects similar in nature, size, and extent to this Project; being
familiar with special requirements indicated; and having complied with requirements of authorities
having jurisdiction.

1.4 CONFLICTING REQUIREMENTS

A. Referenced Standards: If compliance with two or more standards is specified and the standards establish
different or conflicting requirements for minimum quantities or quality levels, comply with the most
stringent requirement. Refer conflicting requirements that are different, but apparently equal, to
Architect/Engineer for a decision before proceeding.
B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect/Engineer for a decision before proceeding.

1.5 ACTION SUBMITTALS

A. Shop Drawings: Where integrated exterior mockups are required and indicated on the Drawings, provide plans, sections, and elevations, indicating materials and size of mockup construction.

1. Indicate manufacturer and model number of individual components.
2. Provide axonometric drawings for conditions difficult to illustrate in two dimensions.

1.6 INFORMATIONAL SUBMITTALS

A. Contractor's Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility sent to authorities having jurisdiction before starting work on the following systems:

1. Seismic-force-resisting system, designated seismic system, or component listed in the designated seismic system quality-assurance plan prepared by Architect/Engineer.

B. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.

C. Schedule of Tests and Inspections: Prepare in tabular form and include the following:

1. Specification Section number and title.
2. Entity responsible for performing tests and inspections.
3. Description of test and inspection.
4. Identification of applicable standards.
5. Identification of test and inspection methods.
6. Number of tests and inspections required.
7. Time schedule or time span for tests and inspections.
8. Requirements for obtaining samples.
9. Unique characteristics of each quality-control service.

1.7 REPORTS AND DOCUMENTS

A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:

1. Date of issue.
2. Project title and number.
3. Name, address, and telephone number of testing agency.
4. Dates and locations of samples and tests or inspections.
5. Names of individuals making tests and inspections.
6. Description of the Work and test and inspection method.
8. Complete test or inspection data.
9. Test and inspection results and an interpretation of test results.
10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
12. Name and signature of laboratory inspector.
13. Recommendations on retesting and reinspecting.

B. Manufacturer's Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative's tests and inspections specified in other Sections. Include the following:

1. Name, address, and telephone number of technical representative making report.
2. Statement on condition of substrates and their acceptability for installation of product.
3. Statement that products at Project site comply with requirements.
4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
6. Statement whether conditions, products, and installation will affect warranty.
7. Other required items indicated in individual Specification Sections.

C. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative's tests and inspections specified in other Sections. Include the following:

1. Name, address, and telephone number of factory-authorized service representative making report.
2. Statement that equipment complies with requirements.
3. Results of operational and other tests and a statement of whether observed performance complies with requirements.
4. Statement whether conditions, products, and installation will affect warranty.
5. Other required items indicated in individual Specification Sections.

D. Permits, Licenses, and Certificates: For University's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.8 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

1. Monitor quality control over products, services, site conditions, and workmanship to produce work of specified quality.
2. Comply fully with manufacturers' instructions, including each step in sequence.
3. If manufacturers' instructions conflict with Contract Document requirements, request clarification from Architect/Engineer before proceeding.
4. Comply with specified standards as a minimum quality for the work except when more stringent tolerances, codes, or specified requirements indicate higher standards or more precise workmanship.
5. Perform work by persons qualified to produce workmanship of specified quality.
B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

D. Subcontractor and Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance. In addition comply with the following:

1. For all trades: Proof of applicable licensing.
2. Electrical contractors:
3. Plumbing Contractors:
 c. Gas piping installations: State of Colorado master plumber with minimum 5 years institutional or heavy commercial gas piping experience. Provide an on-site supervisor with a minimum of 3 years of supervisory experience.

E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.

F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.

1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.

G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 329 or ASTM D 3740 as appropriate; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.

1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7.
2. NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program.
4. Authorized to operate in the State of Colorado.
5. Calibrate testing equipment at reasonable intervals with devices of accuracy traceable to National Bureau of Standards or of accepted values of natural physical constants.

H. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
I. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

J. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:

1. Contractor responsibilities include the following:
 a. Provide test specimens representative of proposed products and construction.
 b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 c. Provide sizes and configurations of test assemblies, mockups, and laboratory mockups to adequately demonstrate capability of products to comply with performance requirements.
 d. When required, build site-assembled test assemblies and mockups using installers who will perform same tasks for Project.
 e. When required, build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 f. When testing is complete, remove test specimens, assemblies, mockups, and laboratory mockups, as applicable; do not reuse products on Project.

2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Architect/Engineer, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.

K. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:

1. Build mockups in location and of size indicated or, if not indicated, as directed by Architect/Engineer.
2. Notify Architect/Engineer seven calendar days in advance of dates and times when mockups will be constructed.
3. Employ supervisory personnel who will oversee mockup construction. Employ workers that will be employed during the construction at Project.
4. Demonstrate the proposed range of aesthetic effects and workmanship.
5. Obtain Architect/Engineer's approval of mockups before starting work, fabrication, or construction.
 a. Allow seven calendar days for initial review and each re-review of each mockup.
6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
7. Demolish and remove mockups when directed unless otherwise indicated.

L. Integrated Exterior Mockups: When indicated on Drawings, construct integrated exterior mockup. Coordinate installation of exterior envelope materials and products for which mockups are required in individual Specification Sections, along with supporting materials.

M. Room Mockups: When indicated on Drawings, construct room mockups incorporating required materials and assemblies, finished according to requirements. Provide required lighting and additional lighting where required to enable Architect/Engineer to evaluate quality of the Work. Provide room mockups of the following rooms:
N. Laboratory Mockups: When required by individual Specification Sections, comply with requirements of preconstruction testing and those specified in individual Specification Sections.

1.9 QUALITY CONTROL

A. University Responsibilities: Where quality-control services are indicated as University's responsibility, University will engage a qualified testing agency to perform these services.

1. University will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
2. Payment for these services will be made by the University.
3. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor.

B. Contractor Responsibilities: Tests and inspections not explicitly assigned to University are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.

1. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.
2. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.
 a. Contractor shall not employ same entity engaged by University, unless agreed to in writing by University.
3. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.
4. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
5. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
6. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

C. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Section 01 33 00 "Submittal Procedures."

D. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.

E. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.

1. Notify Architect/Engineer and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.

2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.

3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.

4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.

5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.

6. Do not perform any duties of Contractor.

G. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:

1. Access to the Work.
2. Incidental labor and facilities necessary to facilitate tests and inspections.
3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
4. Facilities for storage and field curing of test samples including, but not limited to, safe storage and proper curing of concrete test cylinders at Project site for first 24 hours after casting as required by ASTM C 31.
5. Delivery of samples to testing agencies.
6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
7. Security and protection for samples and for testing and inspecting equipment at Project site.

H. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.

1. Schedule times for tests, inspections, obtaining samples, and similar activities.

I. Manufactured Items and Equipment: Where manufactured products or equipment are required to have representative samples tested, do not use such materials or equipment until tests have been made and the materials or equipment found to be acceptable. Do not incorporate in the work any product which becomes unfit for use after acceptance.

J. Schedule of Tests and Inspections: Prepare a schedule of tests, inspections, and similar quality-control services required by the Contract Documents. Coordinate and submit concurrently with Contractor's construction schedule. Update as the Work progresses.

1. Distribution: Distribute schedule to University, Architect/Engineer, testing agencies, and each party involved in performance of portions of the Work where tests and inspections are required.

1.10 SPECIAL TESTS AND INSPECTIONS

A. Special Tests and Inspections: University will engage a qualified testing agency or special inspector to conduct special tests and inspections required by authorities having jurisdiction as the responsibility of University, and as follows:

1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviews the completeness and adequacy of those procedures to perform the Work.
2. Notifying Architect/Engineer and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.
3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect/Engineer with copy to Contractor and to authorities having jurisdiction.
4. Submitting a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved deficiencies.
5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
6. Retesting and reinspecting corrected work.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

A. Test and Inspection Log: Prepare a record of tests and inspections including instructions received from University. Include the following:

1. Date test or inspection was conducted.
2. Description of the Work tested or inspected.
3. Date test or inspection results were transmitted to Architect/Engineer.
4. Identification of testing agency or special inspector conducting test or inspection.
5. Disposition: Pass, fail, nature of defects, if any.
6. Date and descriptions of remedial or correction action taken.

B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect/Engineer's reference during normal working hours.

3.2 REPAIR AND PROTECTION

A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.

1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 01 73 00 "Execution."

B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

3.3 SCHEDULE OF INSPECTIONS AND TESTS BY UNIVERSITY

A. University will engage testing agency and pay for testing and inspection associated with the following materials and systems, where included in the Project:

1. Compaction density of fill and backfill.
2. Drilled pier end bearing conditions and depths.
4. Precast concrete.
5. Post-tensioned concrete tendons.
7. Structural steel field welds and bolted connections.
8. Spray-applied fireproofing.
10. Asphalitic concrete paving.
11. Foundation drainage systems.
12. Drainage structures and piping.
15. Fluid applied membranes.
16. Thermal imaging.
17. Curtain wall, window, and door field testing.
18. Ceiling hanger wire pull-out.
20. Field sound testing of operable partitions.
22. Fan vibration.

END OF SECTION 01 40 00
SECTION 01 41 00

REGULATORY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Building Department Authority.
2. MS 4 Storm Water and Water Quality Permits
3. Applicable Codes and Standards.

1.3 BUILDING DEPARTMENT AUTHORITY

A. The University of Colorado Denver is charged with the responsibility of ensuring that provision of applicable codes, standards and guidelines are met on its campuses.

B. The University Denver campus has an established Building Authority responsible to review and examine buildings and plan documents, to permit and inspect construction and/or demolition to ensure conformance to codes adopted by the University and issue certificates of temporary occupancy and occupancy if satisfactory conformance is demonstrated.

C. The authority is executed by the Campus Building Official (CBO) who has the responsibility to perform all the duties set forth in the Current Approved State Buildings Codes and other applicable codes and standards indicated in the “Applicable Codes and Standards” Article of this Section.

D. Permits: Obtain a separate permit for each Project from the Office of the CBO prior to erecting, constructing, enlarging, repairing, moving, removing, converting or demolishing any building or portion thereof. Coordinate and obtain all permits through the University Project Manager. The Contractor is not responsible for costs associated with construction permits.

1. Exempt work: A building permit is not required for the following:

a. Fences less than or equal to 6 feet tall.

b. Movable casework, counters and partitions not over 5 feet 9 inches tall with no electrical or plumbing.

c. Platforms, walks, and driveways not more than 30 inches above grade and not over any basement or story below.

d. Painting, papering and similar finish work.

e. Other work of limited scope at the discretion of the CBO.

E. Permit Issuance: The CBO, or at the discretion of the CBO a third party code consultant, will review application, Drawings, Specifications, computations and other data filed for permit. Complete the permit...
application with the University Project Manager. Permits require submittal of two (2) stamped, signed sets of Construction Documents, including Drawings, Specifications and all Addenda, and one (1) set of each engineering discipline’s calculations, where such calculations are required. If CBO determines that submittal conforms to the requirements of the Building Code and other applicable codes, standards, laws, regulations and ordinances, an inspection record card will be issued with the building permit. Keep one stamped set of documents on site. The University will keep one stamped set in the Campus Support plan room.

F. Suspension or Revocation of Permit: CBO may, in writing, suspend or revoke a permit issued in error or on the basis of submitted information that is incorrect or that is in violation of the Building Code and other applicable codes and standards.

G. Posting of Permit: Post the Permit in a visible and protected location near the access to the project.

H. Inspection Record Card: Post the Inspection Record Card next to the permit in a visible and protected location near the access to the project. CBO will make required entries based on inspection of the work.

I. Inspection Requests:

1. Notify CBO that work is ready for inspection two business days before such inspection is desired by telephoning the number posted on the permit. The CBO retains the right to require requests in writing.
2. A re-inspection fee may be charged for prior rejected items.

J. Construction Inspections:

1. Contractor is not responsible for costs associated with construction inspections, except re-inspections. The CBO or his/her designee will perform all general building, electrical and plumbing inspections. All construction or work for which a permit is required must remain accessible and exposed for inspection purposes. Provide access to and means for inspection of work.
2. Site Utilities: Contact and comply with all requirements of City and County of Denver for site utility inspections.
3. Plumbing and Electrical Inspections: For new buildings and major additions, contact and comply with all requirements of State of Colorado Plumbing and Electrical Boards.
4. Provisions for structural and other special inspections required by Contract Documents, current approved State Building Codes and University Codes will be provided by the University.

K. Certification of Occupancy:

1. When CBO inspects the project and finds no violations of any provision of the Building Code, other applicable codes, standards, laws, regulations and ordinances, CBO will issue a Certification of Occupancy (CO) which will contain the following:
 a. Building permit number.
 b. Address of building.
 c. Name and address of Owner.
 d. Description of building or portion thereof for which certification is issued.
 e. Statement that described building or portion thereof has been inspected for compliance with the requirements of the Building Code, other applicable codes, standards, laws, regulations and ordinances, as relates to type of occupancy and use for which the building is intended.
2. Temporary Certificate of Occupancy (TCO): If CBO finds no substantial hazard will result from occupancy of any building or portion thereof before the same is completed, CBO may issue a TCO for the use of a portion or portions of a building or structure prior to the completion of the entire building or structure.

3. Posting of CO: Provide a copy to the University Project Manager and post in a conspicuous location on the premises. CO may not be removed except by CBO upon initial occupancy.

4. Revocation of CO:

1.4 MS4 STORM WATER AND WATER QUALITY PERMITS

A. Obtain necessary State of Colorado and City and County of Denver Permits to the extent that Project impacts site.

1.5 APPLICABLE CODES AND STANDARDS

A. The following approved building codes and standards have been adopted by State Buildings Programs (SBP) as the minimum requirements to be applied to all state-owned buildings and physical facilities including capital construction and controlled maintenance construction projects. Current applicable codes can be obtained from The Office of the State Architect’s website.

B. University of Colorado Denver Codes and Standards: The following codes and standards supplement those indicated on the Office of the State Architect website.

 a. Use the most restrictive interpretation where NFPA 101 conflicts with the IBC requirements.

19. OSHA “Occupational Safety and Health Standards” (29 CRF 1910).
21. CDC-NIH Biosafety in Microbiological and Biomedical Laboratories (BMBL); latest edition.

C. Other Standards: As indicated in individual Specification Sections.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 41 00
SECTION 01 42 00

REFERENCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Definitions.
2. Industry Standards.
3. Abbreviations and Acronyms.

B. Related Requirements:

1. Section 01 10 00 “Summary” for an explanation of specification and drawing conventions.
2. Section 01 41 00 “Regulatory Requirements” for a list of applicable codes.

1.3 DEFINITIONS

A. General: Basic Contract definitions are included in the Conditions of the Contract.

1. Definitions in this Section are not intended to be complete, exhaustive or exclusive. They are general and apply to the Work to the extent that such definitions are not stated more explicitly in other provisions of the Contract Documents.

B. "Approved": When used to convey Architect/Engineer's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect/Engineer's duties and responsibilities as stated in the Conditions of the Contract. Except where expressly indicated, such approval does not release the Contractor from responsibility to fulfill requirements of the Contract Documents.

C. “Backup”: N+1 system.

D. "Directed": A command or instruction by Architect/Engineer. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."

E. “EHS”: Environmental Health and Safety.

F. “Engineer”: Architect/Engineer. Other terms including “Mechanical Engineer”, “Electrical Engineer”, or “Structural Engineer” have the same meaning as “Engineer.”

G. “General Conditions”: Contract terms contained in Contractor’s Agreement Design/Bid/Build, State Form SC-6.21 and The General Conditions of the Construction Contract Design/Bid/Build, State Form SC-6.23.
H. “General Requirements”: Provisions and requirements of all Division 01 Sections as they apply to all aspects of the Work.

I. “Guarantee”: The narrow definition of the term “warranty” applying to both “warranty” and “guarantee” which terms are used interchangeably.

J. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."

K. “Redundant”: 2N system. The level of redundancy is determined by design.

L. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work, whether lawfully imposed by authorities having jurisdiction or not.

M. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.

N. "Install": Operations at Project site including unloading, temporarily storing, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations.

O. “Owner”: Principal Representative and/or University.

P. "Provide": Furnish and install, complete and ready for the intended use.

Q. “Project Manual”: Bound, printed volume or volumes including Conditions of the Contract and Specifications, which may also include bidding requirements, contract forms, details, schedules, surveys, reports or other relevant items that may or may not be Contract Documents.

R. "Project Site": Space available for performing construction activities, either exclusively or in conjunction with others performing other work as part of the Project. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

S. “Supplementary Conditions”: University Special Supplementary General Conditions. Other terms including “Supplementary General Conditions” shall have the same meaning.

1.4 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.

1. Referenced standards take precedence over standards that are not referenced but generally recognized in the construction industry as applicable.

B. Publication Dates: Comply with standards in effect as of date of the Contract Documents.

1. Updated Codes and Standards: Where an applicable code or standard has been revised and reissued after the date of the Contract Documents and before performance of Work affected, submit Contractor-Initiated Change Order Bulletin and Change Order Proposal in accordance with
Section 01 26 00 “Contract Modification Procedures” for consideration to modify contract requirements to comply with revised code or standard.

C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.

1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.
2. Where required by individual Specification Sections provide and maintain copies of referenced codes and standards at Project Site.
3. Although copies of standards needed for enforcement of requirements may be part of required submittals, the Architect/Engineer reserves the right to require the Contractor to submit additional copies as necessary for enforcement of requirements.

D. Unreferenced Standards: Unreferenced standards are not directly applicable to the Work, except as a general requirement of whether the Work complies with recognized construction industry standards.

E. Conflicting Requirements: Where compliance with two or more standards is specified, and they establish different or conflicting requirements for minimum quantities or quality levels, the most stringent requirement will be enforced, unless the Contract Documents indicate otherwise. Refer requirements that are different, but apparently equal, and uncertainties as to which quality level is more stringent to the Architect/Engineer for a decision before proceeding.

1.5 ABBREVIATIONS AND ACRONYMS

A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Name</th>
<th>Phone Number</th>
<th>Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABC</td>
<td>Associated Air Balance Council</td>
<td>(202) 737-0202</td>
<td>www.aabc.com</td>
</tr>
<tr>
<td>AAMA</td>
<td>American Architectural Manufacturers Association</td>
<td>(847) 303-5664</td>
<td>www.aamanet.org</td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
<td>(202) 624-5800</td>
<td>www.transportation.org</td>
</tr>
<tr>
<td>AATCC</td>
<td>American Association of Textile Chemists and Colorists</td>
<td>(919) 549-8141</td>
<td>www.aatcc.org</td>
</tr>
<tr>
<td>ABMA</td>
<td>American Bearing Manufacturers Association</td>
<td>(202) 367-1155</td>
<td>www.americanbearings.org</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute (Formerly: ACI International)</td>
<td>(248) 848-3700</td>
<td>www.concrete.org</td>
</tr>
<tr>
<td>ACPA</td>
<td>American Concrete Pipe Association</td>
<td>(972) 506-7216</td>
<td>www.concrete-pipe.org</td>
</tr>
<tr>
<td>AEIC</td>
<td>Association of Edison Illuminating Companies, Inc. (The)</td>
<td>(205) 257-2530</td>
<td></td>
</tr>
<tr>
<td>Issued For:</td>
<td>100% Construction Documents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Name of Organization</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF&PA</td>
<td>American Forest & Paper Association</td>
<td>(800) 878-8878</td>
<td>www.afandpa.org</td>
</tr>
<tr>
<td>AGA</td>
<td>American Gas Association</td>
<td>(202) 824-7000</td>
<td>www.aga.org</td>
</tr>
<tr>
<td>AHAM</td>
<td>Association of Home Appliance Manufacturers</td>
<td>(202) 872-5955</td>
<td>www.aham.org</td>
</tr>
<tr>
<td>AI</td>
<td>Asphalt Institute</td>
<td>(859) 288-4960</td>
<td>www.asphaltinstitute.org</td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects (The)</td>
<td>(800) 242-3837</td>
<td>www.aia.org</td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
<td>(800) 644-2400</td>
<td>www.aisc.org</td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
<td>(202) 452-7100</td>
<td>www.steel.org</td>
</tr>
<tr>
<td>AITC</td>
<td>American Institute of Timber Construction</td>
<td>(303) 792-9559</td>
<td>www.aitc-glulam.org</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
<td>(202) 293-8020</td>
<td>www.ansi.org</td>
</tr>
<tr>
<td>AOSA</td>
<td>Association of Official Seed Analysts, Inc.</td>
<td>(607) 256-3313</td>
<td>www.aosaseed.com</td>
</tr>
<tr>
<td>APA</td>
<td>APA - The Engineered Wood Association</td>
<td>(253) 565-6600</td>
<td>www.apawood.org</td>
</tr>
<tr>
<td>APA</td>
<td>Architectural Precast Association</td>
<td>(239) 454-6989</td>
<td>www.archprecast.org</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
<td>(202) 682-8000</td>
<td>www.api.org</td>
</tr>
<tr>
<td>ARI</td>
<td>Air-Conditioning & Refrigeration Institute (See AHRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARI</td>
<td>American Refrigeration Institute (See AHRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMA</td>
<td>Asphalt Roofing Manufacturers Association</td>
<td>(202) 207-0917</td>
<td>www.asphaltroofing.org</td>
</tr>
</tbody>
</table>
100% Construction Documents

ASCE American Society of Civil Engineers
www.asce.org

ASCE/SEI American Society of Civil Engineers/Structural Engineering Institute
(See ASCE)

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
www.ashrae.org

ASME ASME International
(American Society of Mechanical Engineers)
www.asme.org

ASSE American Society of Safety Engineers (The)
www.asse.org

ASSE American Society of Sanitary Engineering
www.asse-plumbing.org

ASTM ASTM International
(American Society for Testing and Materials International)
www.astm.org

ATIS Alliance for Telecommunications Industry Solutions
www.atis.org

AWEA American Wind Energy Association
www.awea.org

AWI Architectural Woodwork Institute
www.awinet.org

AWMAC Architectural Woodwork Manufacturers Association of Canada
www.awmac.com

AWPA American Wood Protection Association
(Formerly: American Wood-Preservers' Association)
www.awpa.com

AWS American Welding Society
www.aws.org

AWWA American Water Works Association
www.awwa.org

BHMA Builders Hardware Manufacturers Association
www.buildershardware.com

BIA Brick Industry Association (The)
www.gobrick.com

BICSI BICSI, Inc.
www.bicsi.org

American Society of Civil Engineers
www.asce.org
(800) 548-2723
(703) 295-6300

American Society of Heating, Refrigerating and Air-Conditioning Engineers
www.ashrae.org
(800) 527-4723
(404) 636-8400

ASME International
(American Society of Mechanical Engineers)
www.asme.org
(800) 843-2763
(973) 882-1170

American Society of Safety Engineers (The)
www.asse.org
(847) 699-2929

American Society of Sanitary Engineering
www.asse-plumbing.org
(440) 835-3040

ASTM International
(American Society for Testing and Materials International)
www.astm.org
(610) 832-9500

Alliance for Telecommunications Industry Solutions
www.atis.org
(202) 628-6380

American Wind Energy Association
www.awea.org
(202) 383-2500

Architectural Woodwork Institute
www.awinet.org
(571) 323-3636

Architectural Woodwork Manufacturers Association of Canada
www.awmac.com
(403) 453-7387

American Wood Protection Association
(Formerly: American Wood-Preservers' Association)
www.awpa.com
(205) 733-4077

American Welding Society
www.aws.org
(800) 443-9353
(305) 443-9353

American Water Works Association
www.awwa.org
(800) 926-7337
(303) 794-7711

Builders Hardware Manufacturers Association
www.buildershardware.com
(212) 297-2122

Brick Industry Association (The)
www.gobrick.com
(703) 620-0010

BICSI, Inc.
www.bicsi.org
(800) 242-7405
(813) 979-1991
<table>
<thead>
<tr>
<th>Reference</th>
<th>Organization</th>
<th>Website</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIFMA</td>
<td>BIFMA</td>
<td>www.bifma.com</td>
<td>(616) 285-3963</td>
</tr>
<tr>
<td>BISSC</td>
<td>Baking Industry Sanitation Standards Committee</td>
<td>www.bissc.org</td>
<td>(866) 342-4772</td>
</tr>
<tr>
<td>BOCA</td>
<td>BOCA</td>
<td>www.boi.org</td>
<td></td>
</tr>
<tr>
<td>BWF</td>
<td>Badminton World Federation</td>
<td>60 3 9283 7155</td>
<td>(Formerly: International Badminton Federation)</td>
</tr>
<tr>
<td>CDA</td>
<td>Copper Development Association</td>
<td>www.copper.org</td>
<td>(800) 232-3282</td>
</tr>
<tr>
<td>CEA</td>
<td>Canadian Electricity Association</td>
<td>www.electricity.ca</td>
<td>(613) 230-9263</td>
</tr>
<tr>
<td>CEA</td>
<td>Consumer Electronics Association</td>
<td>www.ce.org</td>
<td>(866) 858-1555</td>
</tr>
<tr>
<td>CFSA</td>
<td>Chemical Fabrics & Film Association, Inc.</td>
<td>www.chemicalfabricsandfilm.com</td>
<td>(216) 241-7333</td>
</tr>
<tr>
<td>CFSEI</td>
<td>Cold-Formed Steel Engineers Institute</td>
<td>www.cfsei.org</td>
<td>(866) 465-4732</td>
</tr>
<tr>
<td>CGA</td>
<td>Compressed Gas Association</td>
<td>www.egani.org</td>
<td>(703) 788-2700</td>
</tr>
<tr>
<td>CIMA</td>
<td>Cellulose Insulation Manufacturers Association</td>
<td>www.cellulose.org</td>
<td>(888) 881-2462</td>
</tr>
<tr>
<td>CISCA</td>
<td>Ceilings & Interior Systems Construction Association</td>
<td>www.cisca.org</td>
<td>(630) 584-1919</td>
</tr>
<tr>
<td>CISPI</td>
<td>Cast Iron Soil Pipe Institute</td>
<td>www.cispi.org</td>
<td>(404) 622-0073</td>
</tr>
<tr>
<td>CLFMI</td>
<td>Chain Link Fence Manufacturers Institute</td>
<td>www.chainlinkinfo.org</td>
<td>(301) 596-2583</td>
</tr>
<tr>
<td>CPA</td>
<td>Composite Panel Association</td>
<td>www.pbmfd.com</td>
<td>(703) 724-1128</td>
</tr>
<tr>
<td>CRI</td>
<td>Carpet and Rug Institute (The)</td>
<td>www.carpet-rug.org</td>
<td>(706) 278-3176</td>
</tr>
<tr>
<td>CRRC</td>
<td>Cool Roof Rating Council</td>
<td>www.coolroofs.org</td>
<td>(866) 465-2523</td>
</tr>
<tr>
<td>CRSI</td>
<td>Concrete Reinforcing Steel Institute</td>
<td>www.crsi.org</td>
<td>(800) 328-6306</td>
</tr>
</tbody>
</table>

Issued For: **100% Construction Documents** 01 42 00 - 6 REFERENCES
<table>
<thead>
<tr>
<th>Association</th>
<th>Address</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA</td>
<td>Canadian Standards Association</td>
<td>(800) 463-6727</td>
<td>www.csa.ca</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(416) 747-4000</td>
<td></td>
</tr>
<tr>
<td>CSA</td>
<td>CSA International</td>
<td>(866) 797-4272</td>
<td>www.csa-international.org</td>
</tr>
<tr>
<td></td>
<td>(Formerly: IAS - International Approval Services)</td>
<td>(416) 747-4000</td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>Construction Specifications Institute (The)</td>
<td>(800) 689-2900</td>
<td>www.csinet.org</td>
</tr>
<tr>
<td>CSSB</td>
<td>Cedar Shake & Shingle Bureau</td>
<td>(604) 820-7700</td>
<td>www.cedarbureau.org</td>
</tr>
<tr>
<td>CTI</td>
<td>Cooling Technology Institute</td>
<td>(281) 583-4087</td>
<td>www.cti.org</td>
</tr>
<tr>
<td></td>
<td>(Formerly: Cooling Tower Institute)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWC</td>
<td>Composite Wood Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See CPA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASMA</td>
<td>Door and Access Systems Manufacturers Association</td>
<td>(216) 241-7333</td>
<td>www.dasma.com</td>
</tr>
<tr>
<td>DHI</td>
<td>Door and Hardware Institute</td>
<td>(703) 222-2010</td>
<td>www.dhi.org</td>
</tr>
<tr>
<td>ECA</td>
<td>Electronic Components Association</td>
<td>(703) 907-8024</td>
<td>www.ec-central.org</td>
</tr>
<tr>
<td>ECAMA</td>
<td>Electronic Components Assemblies & Materials Association</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See ECA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Alliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See TIA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIMA</td>
<td>EIFS Industry Members Association</td>
<td>(800) 294-3462</td>
<td>www.eima.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(703) 538-1616</td>
<td></td>
</tr>
<tr>
<td>EJMA</td>
<td>Expansion Joint Manufacturers Association, Inc.</td>
<td>(914) 332-0040</td>
<td>www.ejma.org</td>
</tr>
<tr>
<td>ESD</td>
<td>ESD Association</td>
<td>(315) 339-6937</td>
<td>(Electrostatic Discharge Association)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>www.esda.org</td>
</tr>
<tr>
<td>ESTA</td>
<td>Entertainment Services and Technology Association</td>
<td></td>
<td>(See PLASA)</td>
</tr>
<tr>
<td>EVO</td>
<td>Efficiency Valuation Organization</td>
<td>(415) 367-3643</td>
<td>www.evo-world.org</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44 20 88 167 857</td>
<td></td>
</tr>
<tr>
<td>FIBA</td>
<td>Fédération Internationale de Basketball</td>
<td>41 22 545 00 00</td>
<td>(The International Basketball Federation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>www.fiba.com</td>
</tr>
<tr>
<td>Acronym</td>
<td>Name</td>
<td>Address</td>
<td>Phone Number</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>FIVB</td>
<td>Fédération Internationale de Volleyball (The International Volleyball Federation)</td>
<td>www.fivb.org</td>
<td>41 21 345 35 45</td>
</tr>
<tr>
<td>FM Approvals</td>
<td>FM Approvals LLC</td>
<td>www.fmglobal.com</td>
<td>(781) 762-4300</td>
</tr>
<tr>
<td>FM Global</td>
<td>FM Global (Formerly: FMG - FM Global)</td>
<td>www.fmglobal.com</td>
<td>(401) 275-3000</td>
</tr>
<tr>
<td>FRSA</td>
<td>Florida Roofing, Sheet Metal & Air Conditioning Contractors Association, Inc.</td>
<td>www.floridaroof.com</td>
<td>(407) 671-3772</td>
</tr>
<tr>
<td>FSA</td>
<td>Fluid Sealing Association</td>
<td>www.fluidsealing.com</td>
<td>(610) 971-4850</td>
</tr>
<tr>
<td>FSC</td>
<td>Forest Stewardship Council U.S.</td>
<td>www.fscus.org</td>
<td>(612) 353-4511</td>
</tr>
<tr>
<td>GA</td>
<td>Gypsum Association</td>
<td>www.gypsum.org</td>
<td>(301) 277-8686</td>
</tr>
<tr>
<td>GANA</td>
<td>Glass Association of North America</td>
<td>www.glasswebsite.com</td>
<td>(785) 271-0208</td>
</tr>
<tr>
<td>GS</td>
<td>Green Seal</td>
<td>www.greenseal.org</td>
<td>(202) 872-6400</td>
</tr>
<tr>
<td>HI</td>
<td>Hydraulic Institute</td>
<td>www.pumps.org</td>
<td>(973) 267-9700</td>
</tr>
<tr>
<td>HI/GAMA</td>
<td>Hydronics Institute/Gas Appliance Manufacturers Association (See AHRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMMA</td>
<td>Hollow Metal Manufacturers Association (See NAAMM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPVA</td>
<td>Hardwood Plywood & Veneer Association</td>
<td>www.hpva.org</td>
<td>(703) 435-2900</td>
</tr>
<tr>
<td>HPW</td>
<td>H. P. White Laboratory, Inc.</td>
<td>www.hpwhite.com</td>
<td>(410) 838-6550</td>
</tr>
<tr>
<td>IAPSC</td>
<td>International Association of Professional Security Consultants</td>
<td>www.iapsc.org</td>
<td>(415) 536-0288</td>
</tr>
<tr>
<td>IAS</td>
<td>International Approval Services (See CSA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICBO</td>
<td>International Conference of Building Officials (See ICC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>International Code Council</td>
<td>www.iccsafe.org</td>
<td>(888) 422-7233</td>
</tr>
</tbody>
</table>

Issued For: **100% Construction Documents**

References:

August 4, 2017
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
<th>Phone Number</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICEA</td>
<td>Insulated Cable Engineers Association, Inc.</td>
<td>(770) 830-0369</td>
<td>www.icea.net</td>
</tr>
<tr>
<td>ICPA</td>
<td>International Cast Polymer Alliance</td>
<td>(703) 525-0511</td>
<td>www.icpa-hq.org</td>
</tr>
<tr>
<td>ICRI</td>
<td>International Concrete Repair Institute, Inc.</td>
<td>(847) 827-0830</td>
<td>www.icri.org</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
<td>41 22 919 02 11</td>
<td>www.iec.ch</td>
</tr>
<tr>
<td>IEEΕ</td>
<td>Institute of Electrical and Electronics Engineers, Inc. (The)</td>
<td>(212) 419-7900</td>
<td>www.ieee.org</td>
</tr>
<tr>
<td>IES</td>
<td>Illuminating Engineering Society (Formerly: Illuminating Engineering Society of North America)</td>
<td>(212) 248-5000</td>
<td>www.ies.org</td>
</tr>
<tr>
<td>IESNA</td>
<td>Illuminating Engineering Society of North America (See IES)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEST</td>
<td>Institute of Environmental Sciences and Technology</td>
<td>(847) 981-0100</td>
<td>www.iest.org</td>
</tr>
<tr>
<td>IGMA</td>
<td>Insulating Glass Manufacturers Alliance</td>
<td>(613) 233-1510</td>
<td>www.igmaonline.org</td>
</tr>
<tr>
<td>IGSHPA</td>
<td>International Ground Source Heat Pump Association</td>
<td>(405) 744-5175</td>
<td>www.igshpa.okstate.edu</td>
</tr>
<tr>
<td>ILI</td>
<td>Indiana Limestone Institute of America, Inc.</td>
<td>(812) 275-4426</td>
<td>www.iliai.com</td>
</tr>
<tr>
<td>Intertek</td>
<td>Intertek Group (Formerly: ETL SEMCO; Intertek Testing Service NA)</td>
<td>(800) 967-5352</td>
<td>www.intertek.com</td>
</tr>
<tr>
<td>ISA</td>
<td>International Society of Automation (The) (Formerly: Instrumentation, Systems, and Automation Society)</td>
<td>(919) 549-8411</td>
<td>www.isa.org</td>
</tr>
<tr>
<td>ISAS</td>
<td>Instrumentation, Systems, and Automation Society (The) (See ISA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFA</td>
<td>International Surface Fabricators Association (Formerly: International Solid Surface Fabricators Association)</td>
<td>(877) 464-7732 (801) 341-7360</td>
<td>www.isfanow.org</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
<td>41 22 749 01 11</td>
<td>www.iso.org</td>
</tr>
<tr>
<td>ISSFA</td>
<td>International Solid Surface Fabricators Association (See ISFA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Address</td>
<td>Phone Numbers</td>
<td>Website</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
<td>41 22 730 51 11</td>
<td>www.itu.int/home</td>
</tr>
<tr>
<td>KCMA</td>
<td>Kitchen Cabinet Manufacturers Association</td>
<td>(703) 264-1690</td>
<td>www.kcma.org</td>
</tr>
<tr>
<td>LMA</td>
<td>Laminating Materials Association</td>
<td></td>
<td>(See CPA)</td>
</tr>
<tr>
<td>LPI</td>
<td>Lightning Protection Institute</td>
<td>(800) 488-6864</td>
<td>www.lightning.org</td>
</tr>
<tr>
<td>MBMA</td>
<td>Metal Building Manufacturers Association</td>
<td>(216) 241-7333</td>
<td>www.mbma.com</td>
</tr>
<tr>
<td>MCA</td>
<td>Metal Construction Association</td>
<td>(847) 375-4718</td>
<td>www.metalconstruction.org</td>
</tr>
<tr>
<td>MFMA</td>
<td>Maple Flooring Manufacturers Association, Inc.</td>
<td>(888) 480-9138</td>
<td>www.maplefloor.org</td>
</tr>
<tr>
<td>MFMA</td>
<td>Metal Framing Manufacturers Association, Inc.</td>
<td>(312) 644-6610</td>
<td>www.metalframingmfg.org</td>
</tr>
<tr>
<td>MHIA</td>
<td>Material Handling Industry of America</td>
<td>(800) 345-1815</td>
<td>www.mhia.org</td>
</tr>
<tr>
<td>MIA</td>
<td>Marble Institute of America</td>
<td>(704) 676-1190</td>
<td>www.marble-institute.com</td>
</tr>
<tr>
<td>MMPA</td>
<td>Moulding & Millwork Producers Association</td>
<td>(800) 550-7889</td>
<td>www.wmmpa.com</td>
</tr>
<tr>
<td>MPI</td>
<td>Master Painters Institute</td>
<td>(888) 674-8937</td>
<td>www.paintinfo.com</td>
</tr>
<tr>
<td>MSS</td>
<td>Manufacturers Standardization Society of The</td>
<td>(703) 281-6613</td>
<td>www.mss-hq.org</td>
</tr>
<tr>
<td>NAIMM</td>
<td>National Association of Architectural Metal</td>
<td>(630) 942-6591</td>
<td>www.naamm.org</td>
</tr>
<tr>
<td>NACE</td>
<td>NACE International</td>
<td>(800) 797-6223</td>
<td>www.nace.org</td>
</tr>
<tr>
<td>NADCA</td>
<td>National Air Duct Cleaners Association</td>
<td>(202) 737-2926</td>
<td>www.nadca.com</td>
</tr>
<tr>
<td>NAIMA</td>
<td>North American Insulation Manufacturers</td>
<td>(703) 684-0084</td>
<td>www.naima.org</td>
</tr>
<tr>
<td>NBGQA</td>
<td>National Building Granite Quarries Association</td>
<td>(800) 557-2848</td>
<td>www.nbgqa.com</td>
</tr>
<tr>
<td>Organization</td>
<td>Description</td>
<td>Phone</td>
<td>Website</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>NCAA</td>
<td>National Collegiate Athletic Association (The)</td>
<td>(317) 917-6222</td>
<td>www.ncaa.org</td>
</tr>
<tr>
<td>NCMA</td>
<td>National Concrete Masonry Association</td>
<td>(703) 713-1900</td>
<td>www.ncma.org</td>
</tr>
<tr>
<td>NEBB</td>
<td>National Environmental Balancing Bureau</td>
<td>(301) 977-3698</td>
<td>www.nebb.org</td>
</tr>
<tr>
<td>NECA</td>
<td>National Electrical Contractors Association</td>
<td>(301) 657-3110</td>
<td>www.necanet.org</td>
</tr>
<tr>
<td>NeLMA</td>
<td>Northeastern Lumber Manufacturers Association</td>
<td>(207) 829-6901</td>
<td>www.nelma.org</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
<td>(703) 841-3200</td>
<td>www.nema.org</td>
</tr>
<tr>
<td>NETA</td>
<td>InterNational Electrical Testing Association</td>
<td>(888) 300-6382</td>
<td>www.netaworld.org</td>
</tr>
<tr>
<td>NFHS</td>
<td>National Federation of State High School Associations</td>
<td>(317) 972-6900</td>
<td>www.nfhs.org</td>
</tr>
<tr>
<td>NFPA</td>
<td>NFPA (National Fire Protection Association)</td>
<td>(800) 344-3555</td>
<td>www.nfpa.org</td>
</tr>
<tr>
<td>NFPA</td>
<td>NFPA International (See NFPA)</td>
<td>(617) 770-3000</td>
<td></td>
</tr>
<tr>
<td>NFRC</td>
<td>National Fenestration Rating Council</td>
<td>(301) 589-1776</td>
<td>www.nfrc.org</td>
</tr>
<tr>
<td>NHLA</td>
<td>National Hardwood Lumber Association</td>
<td>(800) 933-0318</td>
<td>www.nhla.com</td>
</tr>
<tr>
<td>NLGA</td>
<td>National Lumber Grades Authority</td>
<td>(901) 377-1818</td>
<td>www.nlga.org</td>
</tr>
<tr>
<td>NOFMA</td>
<td>National Oak Flooring Manufacturers Association (See NWFA)</td>
<td></td>
<td>www.nofma.org</td>
</tr>
<tr>
<td>NOMMA</td>
<td>National Ornamental & Miscellaneous Metals Association</td>
<td>(888) 516-8585</td>
<td>www.nomma.org</td>
</tr>
<tr>
<td>NRCA</td>
<td>National Roofing Contractors Association</td>
<td>(800) 323-9545</td>
<td>www.nrca.net</td>
</tr>
<tr>
<td>NRMCA</td>
<td>National Ready Mixed Concrete Association</td>
<td>(888) 846-7622</td>
<td>www.nrmca.org</td>
</tr>
<tr>
<td>NSF</td>
<td>NSF International (National Sanitation Foundation International)</td>
<td>(800) 673-6275</td>
<td>www.nsf.org</td>
</tr>
<tr>
<td>Acronym</td>
<td>Name</td>
<td>Website</td>
<td>Phone</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NSPE</td>
<td>National Society of Professional Engineers</td>
<td>www.nspe.org</td>
<td>(703) 684-2800</td>
</tr>
<tr>
<td>NSSGA</td>
<td>National Stone, Sand & Gravel Association</td>
<td>www.nssga.org</td>
<td>(800) 342-1415</td>
</tr>
<tr>
<td>NTMA</td>
<td>National Terrazzo & Mosaic Association, Inc. (The)</td>
<td>www.ntma.com</td>
<td>(800) 323-9736</td>
</tr>
<tr>
<td>NWFA</td>
<td>National Wood Flooring Association</td>
<td>www.nwfa.org</td>
<td>(800) 422-4556</td>
</tr>
<tr>
<td>PCI</td>
<td>Precast/Prestressed Concrete Institute</td>
<td>www pci.org</td>
<td>(312) 786-0300</td>
</tr>
<tr>
<td>PDI</td>
<td>Plumbing & Drainage Institute</td>
<td>www.pdionline.org</td>
<td>(800) 589-8956</td>
</tr>
<tr>
<td>PLASA</td>
<td>PLASA (Formerly: ESTA - Entertainment Services and Technology Association)</td>
<td>www.plasa.org</td>
<td>(212) 244-1505</td>
</tr>
<tr>
<td>RCSC</td>
<td>Research Council on Structural Connections</td>
<td>www.boltcouncil.org</td>
<td></td>
</tr>
<tr>
<td>RFCI</td>
<td>Resilient Floor Covering Institute</td>
<td>www.rfci.com</td>
<td>(706) 882-3833</td>
</tr>
<tr>
<td>RIS</td>
<td>Redwood Inspection Service</td>
<td>www.redwoodinspection.com</td>
<td>(925) 935-1499</td>
</tr>
<tr>
<td>SAE</td>
<td>SAE International (Society of Automotive Engineers)</td>
<td>www.sae.org</td>
<td>(877) 606-7323</td>
</tr>
<tr>
<td>SBCCI</td>
<td>Southern Building Code Congress International, Inc. (See ICC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTE</td>
<td>Society of Cable Telecommunications Engineers</td>
<td>www.scte.org</td>
<td>(800) 542-5040</td>
</tr>
<tr>
<td>SDI</td>
<td>Steel Deck Institute</td>
<td>www.sdi.org</td>
<td>(847) 458-4647</td>
</tr>
<tr>
<td>SDI</td>
<td>Steel Door Institute</td>
<td>www.steeldoor.org</td>
<td>(440) 899-0010</td>
</tr>
<tr>
<td>SEFA</td>
<td>Scientific Equipment and Furniture Association</td>
<td>www.sefalabs.com</td>
<td>(877) 294-5424</td>
</tr>
<tr>
<td>SEI/ASCE</td>
<td>Structural Engineering Institute/American Society of Civil Engineers (See ASCE)</td>
<td></td>
<td>(516) 294-5424</td>
</tr>
<tr>
<td>Organization</td>
<td>Website / Contact Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIA</td>
<td>Security Industry Association [www.siaonline.org] (866) 817-8888 (703) 683-2075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJI</td>
<td>Steel Joist Institute [www.steeljoist.org] (843) 293-1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMA</td>
<td>Screen Manufacturers Association [www.smainfo.org] (773) 636-0672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMACNA</td>
<td>Sheet Metal and Air Conditioning Contractors' National Association [www.smacna.org] (703) 803-2980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMPTE</td>
<td>Society of Motion Picture and Television Engineers [www.smpte.org] (914) 761-1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPFA</td>
<td>Spray Polyurethane Foam Alliance [www.sprayfoam.org] (800) 523-6154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIB</td>
<td>Southern Pine Inspection Bureau [www.spib.org] (850) 434-2611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRI</td>
<td>Single Ply Roofing Industry [www.spri.org] (781) 647-7026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSINA</td>
<td>Specialty Steel Industry of North America [www.ssina.com] (800) 982-0355 (202) 342-8630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSPC</td>
<td>SSPC: The Society for Protective Coatings [www.sspc.org] (877) 281-7772 (412) 281-2331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI</td>
<td>Steel Tank Institute [www.steeltank.com] (847) 438-8265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWI</td>
<td>Steel Window Institute [www.steelwindows.com] (216) 241-7333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWPA</td>
<td>Submersible Wastewater Pump Association [www.swpa.org] (847) 681-1868</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCA</td>
<td>Tilt-Up Concrete Association [www.tilt-up.org] (319) 895-6911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCNA</td>
<td>Tile Council of North America, Inc. (Formerly: Tile Council of America) [www.tileusa.com] (864) 646-8453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMA</td>
<td>Tubular Exchanger Manufacturers Association, Inc. [www.tema.org] (914) 332-0040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIA</td>
<td>Telecommunications Industry Association (Formerly: TIA/EIA - Telecommunications Industry Association/Electronic Industries Alliance) [www.tiaonline.org] (703) 907-7700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Name</td>
<td>Website</td>
<td>Phone</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>TIA/EIA</td>
<td>Telecommunications Industry Association/Electronic Industries Alliance</td>
<td>(See TIA)</td>
<td></td>
</tr>
<tr>
<td>TMS</td>
<td>The Masonry Society</td>
<td>www.masonrysociety.org</td>
<td>(303) 939-9700</td>
</tr>
<tr>
<td>TPI</td>
<td>Truss Plate Institute</td>
<td>www.tpiinst.org</td>
<td>(703) 683-1010</td>
</tr>
<tr>
<td>TPI</td>
<td>Turfgrass Producers International</td>
<td>www.turfgrasssod.org</td>
<td>(800) 405-8873 (847) 649-5555</td>
</tr>
<tr>
<td>TRI</td>
<td>Tile Roofing Institute</td>
<td>www.tileroofing.org</td>
<td>(312) 670-4177</td>
</tr>
<tr>
<td>UBC</td>
<td>Uniform Building Code</td>
<td>(See ICC)</td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories Inc.</td>
<td>www.ul.com</td>
<td>(877) 854-3577</td>
</tr>
<tr>
<td>UNI</td>
<td>Uni-Bell PVC Pipe Association</td>
<td>www.uni-bell.org</td>
<td>(972) 243-3902</td>
</tr>
<tr>
<td>USAV</td>
<td>USA Volleyball</td>
<td>www.usavolleyball.org</td>
<td>(888) 786-5539 (719) 228-6800</td>
</tr>
<tr>
<td>USGBC</td>
<td>U.S. Green Building Council</td>
<td>www.usgbc.org</td>
<td>(800) 795-1747</td>
</tr>
<tr>
<td>USITT</td>
<td>United States Institute for Theatre Technology, Inc.</td>
<td>www.usitt.org</td>
<td>(800) 938-7488 (315) 463-6463</td>
</tr>
<tr>
<td>WASTEC</td>
<td>Waste Equipment Technology Association</td>
<td>www.wastec.org</td>
<td>(800) 424-2869 (202) 244-4700</td>
</tr>
<tr>
<td>WCLIB</td>
<td>West Coast Lumber Inspection Bureau</td>
<td>www.wclib.org</td>
<td>(800) 283-1486 (503) 639-0651</td>
</tr>
<tr>
<td>WCMA</td>
<td>Window Covering Manufacturers Association</td>
<td>www.wcmanet.org</td>
<td>(212) 297-2122</td>
</tr>
<tr>
<td>WDMA</td>
<td>Window & Door Manufacturers Association</td>
<td>www.wdma.com</td>
<td>(800) 223-2301 (312) 321-6802</td>
</tr>
<tr>
<td>WI</td>
<td>Woodwork Institute</td>
<td>(Formerly: WIC - Woodwork Institute of California) www.wicnet.org</td>
<td>(916) 372-9943</td>
</tr>
<tr>
<td>WMMPA</td>
<td>Wood Moulding & Millwork Producers Association</td>
<td>(See MMPA)</td>
<td></td>
</tr>
<tr>
<td>WSRCA</td>
<td>Western States Roofing Contractors Association</td>
<td>www.wsrca.com</td>
<td>(800) 725-0333 (650) 938-5441</td>
</tr>
</tbody>
</table>
WWPA Western Wood Products Association
www.wwpa.org (503) 224-3930

B. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.

DIN Deutsches Institut für Normung e.V.
www.din.de 49 30 2601-0

IAPMO International Association of Plumbing and Mechanical Officials
www.iapmo.org (909) 472-4100

ICC International Code Council
www.iccsafe.org (888) 422-7233

ICC-ES ICC Evaluation Service, LLC
www.icc-es.org (800) 423-6587 (562) 699-0543

C. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.

COE Army Corps of Engineers
www.usace.army.mil (202) 761-0011

CPSC Consumer Product Safety Commission
www.cpsc.gov (800) 638-2772 (301) 504-7923

DOC Department of Commerce
National Institute of Standards and Technology
www.nist.gov (301) 975-4040

DOD Department of Defense
http://dodssp.daps.dla.mil (215) 697-2664

DOE Department of Energy
www.energy.gov (202) 586-9220

EPA Environmental Protection Agency
www.epa.gov (202) 272-0167

FAA Federal Aviation Administration
www.faa.gov (866) 835-5322

FG Federal Government Publications

GSA General Services Administration
www.gsa.gov (800) 488-3111 (202) 619-8925

HUD Department of Housing and Urban Development
www.hud.gov (202) 708-1112
D. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents.

CFR Code of Federal Regulations
 Available from Government Printing Office
 www.gpo.gov/fdsys
 (866) 512-1800
 (202) 512-1800

DOD Department of Defense
 Military Specifications and Standards
 Available from Department of Defense Single Stock Point
 http://dodssp.daps.dla.mil
 (215) 697-2664

DSCC Defense Supply Center Columbus
 (See FS)

FED-STD Federal Standard
 (See FS)

FS Federal Specification
 (215) 697-2664
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 42 00
SECTION 01 60 00
PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

B. Related Requirements:

1. Section 01 21 00 "Allowances" for products selected under an allowance, if applicable.
2. Section 01 23 00 "Alternates" for products selected under an alternate, if applicable.
3. Section 01 25 00 "Substitution Procedures" for requests for substitutions.
4. Section 01 42 00 "References" for applicable industry standards for products specified.
5. Section 01 77 00 “Closeout Procedures” for submittal of project warranties.

1.3 DEFINITIONS

A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.

1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.
2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.

B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.
1.4 ACTION SUBMITTALS

A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Requests for consideration of comparable products will only be entertained during bidding.
2. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.
3. Architect/Engineer's Action: If necessary, Architect/Engineer will request additional information or documentation for evaluation of a comparable product request. Architect/Engineer will notify Contractor of approval or rejection of proposed comparable product.
 a. Form of Approval: Written Addendum.

B. Basis-of-Design Product Specification Submittal: Comply with requirements in Section 01 33 00 "Submittal Procedures." Show compliance with requirements.

1.5 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options. The complete compatibility between the various choices available to the Contractor is not assured by the various requirements of the Contract Documents, but must be provided by the Contractor.

B. Source Limitations: To the fullest extent possible, provide products of the same kind, from a single source.

C. Nameplates: Except for required labels and operating data, do not attach or imprint manufacturers or producer's nameplates or trademarks on exposed surfaces of products which will be exposed to view in occupied spaces or on the exterior.

D. Labels: Locate required product labels and stamps on a concealed surface or, where required for observation after installation, on an accessible surface that is not conspicuous.

E. Equipment Nameplates: Provide a permanent nameplate on each item of service-connected or power-operated equipment. Locate on an easily accessible surface which is inconspicuous in occupied spaces. The nameplate shall contain the following information and other essential operating data.

 1. Name of product and manufacturer.
 2. Model and serial number.
 3. Capacity.
 4. Speed.
 5. Ratings.
 6. Power characteristics (if applicable).
 7. UL label or compliance (if applicable).

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.
B. Delivery and Handling:

1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:

1. Store products to allow for inspection and measurement of quantity or counting of units.
2. Store materials in a manner that will not endanger Project structure.
3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
6. Protect stored products from damage and liquids from freezing.

1.7 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents. Such disclaimers and limitations do not relieve warranty requirements on Work that incorporates product nor do they relieve suppliers, manufacturers and subcontractors required to countersign special warranties with the Contractor.

1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to University.
2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for University.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.

1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
3. See other Sections for specific content requirements and particular requirements for submitting special warranties.

C. Submittal Time and Form: Comply with requirements in Section 01 77 00 "Closeout Procedures."

D. Warranty Requirements:
1. **Related Damages and Losses:** When correcting warranted Work that has failed, remove and replace other Work that has been damaged as a result of such failure or that must be removed and replaced to provide access for correction of warranted Work.

2. **Reinstatement of Warranty:** When Work covered by a warranty has failed and been corrected by replacement or rebuilding, reinstate the warranty by written endorsement. The reinstated warranty shall be equal to the original warranty with an equitable adjustment for depreciation.

3. **Replacement Cost:** Upon determination that Work covered by a warranty has failed, replace or rebuild the Work to an acceptable condition complying with requirements of Contract Documents. The Contractor is responsible for the cost of replacing or rebuilding defective Work regardless of whether the University has benefited from use of the Work through a portion of its anticipated useful service life.

4. **University's Recourse:**
 a. Written warranties made to the University are in addition to implied warranties, and shall not limit the duties, obligations, rights and remedies otherwise available under the law, nor shall warranty periods be interpreted as limitations on time in which the University can enforce such other duties, obligations, rights, or remedies.
 b. Rejection of Warranties: The University reserves the right to reject warranties and to limit selections to products with warranties not in conflict with requirements of the Contract Documents.
 c. The University reserves the right to refuse to accept Work for the Project where a special warranty, certification, or similar commitment is required on such Work or part of the Work, until evidence is presented that entities required to countersign such commitments are willing to do so.

PART 2 - PRODUCTS

2.1 **PRODUCT SELECTION PROCEDURES**

A. **General Product Requirements:** Provide products that comply with the Contract Documents, are undamaged, are asbestos free, and, unless otherwise indicated, are new at time of installation.

1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
2. **Standard Products:** If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
3. University reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
4. Where products are accompanied by the term "as selected," Architect/Engineer will make selection.
6. **Or Equal:** For products specified by name and accompanied by the term "or equal," or "or approved equal," or "or approved," comply with requirements in "Comparable Products" Article to obtain approval for use of an unnamed product and provide only products previously approved during bid phase by written Addendum. The determination of equivalence is at the sole discretion of the Architect/Engineer who has no obligation to prove non-equivalence.
7. Mechanical and electrical equipment design and their space requirements are based on the first named item of the Section in which specified or that scheduled on the Drawings. If other than the first named or scheduled item listed for use is selected, modification to other elements of Work may be required. Show all such modification on shop drawings and submittals as appropriate. The cost of such modifications is solely the responsibility of the Contractor.
8. Where manufacturers are listed as acceptable for specific proprietary products but precise identification by model, series, or trade name is not specified, submit detailed product information for such products for Architect/Engineer's acceptance prior to ordering. Include specific requirements for modifications to other construction, including but not limited to, power and utility requirements, characteristics, capacities, size and locations. The cost of such modifications is solely the responsibility of the Contractor.

B. Product Selection Procedures:

1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

3. Products:
 - Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

4. Manufacturers:
 - Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. If proposing a comparable product by another manufacturer, whether named or not, provide a custom product if manufacturer's standard product does not include salient features of the Basis-of-Design product indicated. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.

6. Contractor’s Option: Where materials, products, systems or methods are specified to be selected from a list of options, subject to compliance with requirements, the choice of which material, method, product or system will be solely at the Contractor's discretions. There will be no change in Contract Sum or Time because of such choice.

C. Visual Matching Specification: Where Specifications require "match Architect/Engineer's sample", provide a product that complies with requirements and matches Architect/Engineer's sample. Architect/Engineer's decision will be final on whether a proposed product matches.

1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 01 25 00 "Substitution Procedures" for proposal of product.

D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect/Engineer from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect/Engineer will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.
2.2 COMPARABLE PRODUCTS

A. Conditions for Consideration: Prior to bid, Architect/Engineer will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect/Engineer will reject request:

1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
3. Evidence that proposed product provides specified warranty.
4. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 60 00
SECTION 01 73 00

EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:

2. Field engineering and surveying.
3. Installation of the Work.
4. Cutting and patching.
5. Coordination of University-installed products.
6. Progress cleaning.
7. Starting and adjusting.
8. Protection of installed construction.

B. Related Requirements:

1. Section 01 10 00 "Summary" for limits on use of Project site and procedures related to utility interruptions.

1.3 DEFINITIONS

A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.

B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For land surveyor or professional engineer.

B. Certificates: Submit certificate signed by land surveyor or professional engineer certifying that location and elevation of improvements comply with requirements.

C. Cutting and Patching Plan and Request: Submit plan and request describing procedures at least 21 calendar days prior to the time cutting and patching will be performed.

1. Submit request whenever cutting and patching operation affect:
1. Work of the University or any separate contractor.
 a. Structural value or integrity of any element of the Project.
 b. Integrity or effectiveness of weather-exposed or moisture-resistant elements or systems.
 c. Efficiency, operational life, maintenance or safety of operational elements.
 d. Visual qualities of sight-exposed elements.
 e. Cutting new openings in existing structural concrete walls, floors and suspended slabs.
 f. Cutting new openings in existing roofs and roofing materials.
 g. Cutting exterior walls.
 h. Cutting into shafts.

2. Include the following information:
 a. Extent: Describe reason for and extent of each occurrence of cutting and patching, including explanation of why cutting and patching operation cannot be reasonable avoided.
 b. Changes to In-Place Construction: Describe cutting and patching methods and anticipated results. Include changes to structural elements and operating components as well as changes in building appearance and other significant visual elements.
 c. Products: List products to be used for patching and firms or entities that will perform patching work.
 d. Trades: Indicate trades and subcontractors who will perform the work.
 e. Dates: Indicate when cutting and patching will be performed.
 f. Utilities and Mechanical and Electrical Systems: List services and systems that cutting and patching procedures will disturb or affect. List services and systems that will be relocated and those that will be temporarily out of service. Indicate length of time permanent services and systems will be disrupted.
 1) Include description of provisions for temporary services and systems during interruption of permanent services and systems.
 2) Comply with requirements of Section 01 10 00 “Summary” related to existing utility and system interruptions.
 g. Structural Elements: Where cutting and patching structural elements requires the addition of reinforcement, submit details and calculations signed and sealed by an Engineer registered in the State of Colorado. Indicate how new reinforcing will be integrated with original structure.

3. Limitations: Approval of cutting and patching request does not waive right of Architect/Engineer or University to later require complete removal and replacement of work found to be unsatisfactorily cut and patched.

D. Certified Surveys: Submit two copies signed by land surveyor or professional engineer.

E. Final Property Survey: Submit one electronic and two paper copies showing the Work performed and record survey data.
 1. Include certified statement that lines and levels of the work comply with the requirements of the Contract Documents and listing authorized or accepted deviations, cross-referenced to Change Order number, where applicable.

1.5 QUALITY ASSURANCE

A. Land Surveyor Qualifications: A professional land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated.
B. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.

1. Structural Elements: When cutting and patching structural elements, notify Architect/Engineer of locations and details of cutting and await directions from Architect/Engineer before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.

2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operational elements include but are not limited to the following:
 a. Primary operational systems and equipment.
 b. Fire separation assemblies.
 c. Air or smoke barriers.
 d. Fire-suppression systems.
 e. Mechanical systems piping and ducts.
 f. Control systems.
 g. Communication systems.
 h. Fire-detection and alarm systems.
 i. Conveying systems.
 j. Electrical wiring systems.
 k. Operating systems of special construction.

3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Other construction elements include but are not limited to the following:
 a. Water, moisture, or vapor barriers.
 b. Membranes and flashings.
 c. Exterior curtain-wall construction.
 d. Sprayed fire-resistive material.
 e. Equipment supports.
 f. Piping, ductwork, vessels, and equipment.
 g. Noise- and vibration-control elements and systems.

4. Visual Elements: Do not cut and patch construction exposed to the exterior or exposed in occupied spaces in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect/Engineer's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

5. Hazardous Materials: Do not proceed with cutting and patching operations until University has examined existing construction for the presence of asbestos and/or lead-based coatings. Comply with requirements in Section 01 35 00 “Special Procedures.”

C. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.
PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

1. For projects requiring compliance with sustainable design and construction practices and procedures, use products for patching that comply with requirements in Division 01 Section “Sustainable Design Requirements.”

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect/Engineer for the visual and functional performance of in-place materials.

C. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

1. Use cleaning products that comply with Green Seal's GS-37, or if GS-37 is not applicable, use products that comply with the California Code of Regulations maximum allowable VOC levels.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work. Notify University Project Manager and Architect/Engineer and obtain approval prior to disturbing, moving or penetrating soil.

1. Arrange for locating buried utilities including water and sewer lines within construction limits. Obtain location information and stake all known utilities prior to commencing construction activities.

 a. Contact Utility Notification Center of Colorado (UNCC), 1-800-922-1987, and comply with UNCC guidelines.

2. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.
3. Furnish location data for work related to Project that must be performed by public utilities serving Project site.

B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present, for compliance with requirements for installation tolerances and other conditions affecting performance.

1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
4. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to local utility or University, as appropriate, that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Architect/Engineer according to requirements in Section 01 31 00 "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect/Engineer promptly.

B. General: Engage a land surveyor or professional engineer to lay out the Work using accepted surveying practices.

1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
2. Establish limits on use of Project site.
3. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions.
4. Inform installers of lines and levels to which they must comply.
5. Check the location, level and plumb, of every major element as the Work progresses.
6. Notify Architect/Engineer when deviations from required lines and levels exceed allowable tolerances. Record deviation which are accepted (i.e., not corrected) on record drawings in accordance with the requirements of Section 01 78 39 “Project Record Documents.”
7. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.

C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.
D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations.

E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect/Engineer.

3.4 FIELD ENGINEERING

A. Identification: University will identify existing benchmarks, control points, and property corners.

B. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.

1. Do not change or relocate existing benchmarks or control points without prior written approval of Architect/Engineer. Report lost or destroyed permanent benchmarks or control points promptly. Report the need to relocate permanent benchmarks or control points to Architect/Engineer before proceeding.

2. Replace lost or destroyed permanent benchmarks and control points promptly. Base replacements on the original survey control points.

C. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.

1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.

2. Where the actual location or elevation of layout points cannot be marked, provide temporary reference points sufficient to locate the Work.

3. Remove temporary reference points when no longer needed. Restore marked construction to its original condition.

D. Certified Survey: On completion of foundation walls, major site improvements, and other work requiring field-engineering services, prepare a certified survey showing dimensions, locations, angles, and elevations of construction and sitework.

E. Final Property Survey: Engage a land surveyor or professional engineer to prepare a final property survey showing significant features (real property) for Project. Include on the survey a certification, signed by land surveyor or professional engineer, that principal metes, bounds, lines, and levels of Project are accurately positioned as shown on the survey.

1. Show boundary lines, monuments, streets, site improvements and utilities, existing improvements and significant vegetation, adjoining properties, acreage, grade contours, and the distance and bearing from a site corner to a legal point.

2. Recording: At Substantial Completion, have the final property survey recorded by or with authorities having jurisdiction as the official "property survey."
A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer’s written instructions and recommendations for installing products in applications indicated to the extent they are more explicit or stringent than requirements of the Contract Documents.

C. Install products at the time and under conditions, including weather that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Isolate each part of complete installation from incompatible material as needed to prevent deterioration.

E. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

F. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

G. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

H. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

I. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned, true and level as applicable, with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect/Engineer.
 2. Allow for building movement, including thermal expansion and contraction.
 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

J. Attachment to Concrete:
 1. No drilled inserts or powder-actuated fasteners are permitted in pre-stressed concrete except as specifically authorized by Contractor and carried out under the direct supervision of its Superintendent.
 2. Only those devices with a maximum controlled penetration of 3/4 inch or less will be permitted. Make holes through slabs by means of sleeves placed no closer than 2 inch from tensioning cables. Core drilling will not be permitted unless unavoidable and as specified for cutting and patching in this Section.
K. Joints: Unless indicated otherwise, make joints of uniform width. Where joint locations in exposed work are required but not indicated, arrange joints for the best visual effect. Confirm arrangement with Architect/Engineer before proceeding. Fit exposed connections together to form hairline joints.

L. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.6 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Responsibility: Provide cutting and patching work, including attendant excavation and backfill required to complete the Work or to:

1. Make components fit together properly.
2. Uncover portions of the Work to provide for installation of ill-timed work.
3. Remove and replace defective work or work not conforming to requirements of Contract Documents.
4. Remove samples of installed work as specified for testing.
5. Provide routine penetrations of non-structural surfaces for installation of piping and electrical conduit.

C. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

D. Temporary Support: Provide temporary support of work to be cut.

E. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

F. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Section 01 10 00 "Summary."

G. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas, coordinate cutting and patching according to requirements in Section 01 10 00 "Summary."

H. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
3. **Concrete and Masonry:** Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.

4. **Excavating and Backfilling:** Comply with requirements in applicable Sections where required by cutting and patching operations. Employ methods which will prevent settlement or damage to other work.

5. **Mechanical and Electrical Services:** Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.

6. Proceed with patching after construction operations requiring cutting are complete.

I. **Patching:** Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements, including tolerance, specified in other Sections, where applicable.

1. **Inspection:** Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.

2. **Exposed Finishes:** Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing.

 a. Clean piping, conduit, and similar features before applying paint or other finishing materials.

 b. Restore damaged pipe covering to its original condition.

3. **Floors and Walls:** Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.

 a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.

4. **Ceilings:** Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.

5. **Exterior Building Enclosure:** Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

J. **Cleaning:** Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 **UNIVERSITY-INSTALLED PRODUCTS**

A. **Site Access:** Provide access to Project site for University's construction personnel.

B. **Coordination:** Coordinate construction and operations of the Work with work performed by University's construction personnel.

1. **Construction Schedule:** Inform University of Contractor's preferred construction schedule for University's portion of the Work. Adjust construction schedule based on a mutually agreeable timetable. Notify University if changes to schedule are required due to differences in actual construction progress.
2. Preinstallation Conferences: Include University's construction personnel at preinstallation conferences covering portions of the Work that are to receive University's work. Attend preinstallation conferences conducted by University's construction personnel if portions of the Work depend on University's construction.

3.8 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 2. Do not hold waste materials more than seven calendar days during normal weather or three calendar days if the temperature is expected to rise above 80 deg F.
 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.
 a. Use containers intended for holding waste materials of type to be stored.

B. Collection Point: Review location with University and obtain approval.

C. Site: Maintain Project site free of waste materials and debris.

D. Wind Blown Debris: Prevent spread of trash, debris, cartons, packing material, or other waste on or off Project site by wind.

E. Dust: Sprinkle dusty debris with water.

F. Packing Materials: Immediately after uncrating or unpacking materials or equipment, remove all crating, lumber, excelsior, wrapping or other like combustible materials from building to central collection facility.

G. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 1. Remove liquid spills promptly.
 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

H. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

I. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

J. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

K. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways. Comply with waste disposal requirements in Section 01 74 19 "Construction Waste Management and Disposal."
L. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

M. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

N. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

O. Snow and Ice: Remove snow and ice from sidewalks adjacent to site and from access ways to building and construction site.

P. Streets: At frequency required by University and/or governing authority, clean adjacent and nearby streets of dirt resulting from construction operations.

3.9 STARTING AND ADJUSTING

A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Manufacturer's Field Service: Comply with qualification requirements in Section 01 40 00 "Quality Requirements."

3.10 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Comply with manufacturer's written instructions for temperature and relative humidity.

C. Limiting Exposures: Supervise construction activities to ensure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period. Where applicable, such exposures include, but are not limited to, the following:

1. Excessive static or dynamic loading.
2. Excessive internal or external pressures.
3. Excessively high or low temperatures.
4. Thermal shock.
5. Excessively high or low humidity.
6. Air contamination or pollution.
7. Water or ice.
8. Solvents.
10. Light.
11. Radiation.
12. Puncture.
13. Abrasion.
14. Heavy traffic.
15. Soiling, staining and corrosion.
16. Bacteria.
17. Rodent and insect infestation.
19. Electrical current.
20. High speed operation.
21. Improper lubrication.
22. Unusual wear or other misuse.
23. Contact between incompatible materials.
24. Misalignment.
25. Excessive weathering.
27. Improper shipping or handling.
28. Theft.
29. Vandalism.

END OF SECTION 01 73 00
SECTION 01 77 00

CLOSEOUT PROCEDURES

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:

1. Substantial Completion procedures, including Notice of Completion and Final Inspection procedures.
2. Occupancy procedures, including Notice of Approval of Occupancy/Use and University Supplemental Notice of Occupancy and Use List.
3. Final Acceptance procedures, including Pre-Acceptance Checklist and University Supplemental Building/Project Acceptance List.
4. Inspections after completion.
5. Warranties.
6. Final cleaning.
7. Repair of the Work.

B. Related Requirements:

1. Section 01 32 33 "Photographic Documentation" for submitting final completion construction photographic documentation.
2. Section 01 73 00 "Execution" for progress cleaning of Project site.
3. Section 01 78 23 "Operation and Maintenance Data" for operation and maintenance manual requirements.
4. Section 01 78 39 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
5. Section 01 79 00 "Demonstration and Training" for requirements for instructing University's personnel.

1.3 ACTION SUBMITTALS

A. Product Data: For cleaning agents.

B. Contractor's List of Incomplete Items: Initial submittal at Notice of Completion.

C. Certified List of Incomplete Items: Final submittal at Final Acceptance.

1.4 CLOSEOUT SUBMITTALS

A. Certificates of Release: From authorities having jurisdiction.

B. Certificate of Insurance: For continuing coverage.
C. Field Report: For pest control inspection.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.6 NOTICE OF COMPLETION AND SUBSTANTIAL COMPLETION PROCEDURES

A. Procedures and Submittals Prior to Notice of Completion: Complete and submit all of the following items prior to submitting Notice of Completion to Architect/Engineer. Include Contractor’s comprehensive list of items to be completed, corrected or not in compliance with the Drawings and Specifications.

1. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's preliminary punch list), indicating the value of each item on the list and reasons why the Work is incomplete.
2. Building Inspection Record: Submit completed record with all required corrections noted.
4. Final Completion Schedule: Submit schedule for performing and completing all work indicated on the Contractor’s list of incomplete items.
5. Submit sustainable design documentation.
6. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.
7. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
8. Submit test/adjust/balance records.

B. Final Inspection: Submit Notice of Completion to Architect/Engineer. Upon receipt, Architect/Engineer and University will review and if all items on the University Supplemental Notice of Completion Checklist are complete will, within the timeframe required by the Contract, schedule and make an inspection of the Project to determine whether the Work is substantially complete.

1. Final Punch List: Based on the inspection, Architect/Engineer will prepare a final punch list of work to be completed, work not in compliance with the Drawings or Specifications, and unsatisfactory work for any reason.
2. Re-inspection: If the cumulative number of items identified on the final punch list prevents a determination that the work is substantially complete, complete those items and when complete resubmit Notice of Completion. Upon receipt of resubmittal, Architect/Engineer and University will then schedule and make a re-inspection of the Project to determine whether the Work is substantially complete.

C. Notice of Substantial Completion: When inspection of the Work indicates that the Project is substantially complete and all other Contract provisions required for substantial completion have been satisfied, Architect/Engineer will issue a Notice of Substantial Completion (State Form SBP-07).
1.7 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.

1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor or as approved by Architect/Engineer.
2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
3. Include the following information at the top of each page:
 a. Project name.
 b. Date.
 c. Name of Architect/Engineer.
 d. Name of Contractor.
 e. Page number.

4. Submit list of incomplete items in the following format:
 a. MS Excel and PDF electronic file. Architect/Engineer will return annotated file.

1.8 OCCUPANCY PROCEDURES

A. Procedures and Submittals Prior to Occupancy: Complete and submit all items on both State Form SBP-01 “Notice of Approval of Occupancy/Use” and University Supplemental Notice of Occupancy and Use List.

1.9 FINAL ACCEPTANCE PROCEDURES

A. Procedures and Submittals Prior to Final Acceptance: Complete and submit all items on both State Form SBP-05 “Pre-Acceptance Checklist” and University Supplemental Building/Project Acceptance List.

B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 business days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect/Engineer will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect/Engineer will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.10 SETTLEMENT AND FINAL PAYMENT

A. Submit and complete all of the following as a condition precedent to settlement and final payment:

1. All guarantees and warranties.
2. All statement to support local sales tax refunds, if any.
3. Three (3) sets of operation and maintenance manuals.
4. One (1) set of as-built Contract Documents showing all job changes.
5. All demonstration and training completed in accordance with Section 01 79 00.
6. All punch list items documented as complete.

B. Final Certificate of Payment: Submit in accordance with the requirements of Section 01 29 00 “Payment Procedures.”

1.11 INSPECTIONS AFTER COMPLETION

A. Warranty/Guarantee Inspections: During the warranty period, accompany Architect/Engineer and University Representative, and participate in inspection(s) of the Project to identify defective and deficient work at intervals and as required by the Contract.

B. List of Deficient or Defective Work: Within 10 business days of inspection, Architect/Engineer will provide Contractor with a list of items requiring correction.

C. Remedial Work: Upon receive of itemized list, immediately correct and remedy deficiencies and defects in a manner satisfactory to the Architect/Engineer and University.

1.12 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties to the Architect/Engineer prior to advertisement of the Notice of Contractor's Settlement. If the Notice of Acceptance designates a commencement date for warranties other than the date of Notice of Acceptance for the Work, or a designated portion of the Work, submit written warranties upon request of the Architect.

B. Partial Occupancy: When a designated portion of the Work is completed and occupied or used by the University, by separate agreement with the Contractor during the construction period, submit properly executed warranties to the Architect/Engineer within fifteen (15) calendar days of completion of that designated portion of the Work.

C. Special Warranties: When a special warranty is required to be executed by the Contractor, or the Contractor and a Subcontractor, supplier or manufacturer, prepare a written document that contains appropriate terms and identification, ready for execution by the required parties. Submit a draft to the University through the Architect/Engineer for approval prior to final execution. Refer to individual Specification Sections for specific requirements for special warranties.

D. Form of Submittal: Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.

1. Number of Copies: Two.

2. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.

3. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.

4. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.

5. Warranty Electronic File: Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide bookmarked table of contents at beginning of document.

E. Provide additional copies of each warranty to include in operation and maintenance manuals.
F. List of Extended Warranties: Provide a comprehensive list of all manufacturers’ standard and special warranties with duration greater than one year after Notice of Acceptance. Organize list into an orderly sequence based on table of contents of the Project Manual.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

1. Use cleaning products that comply with Green Seal's GS-37, or if GS-37 is not applicable, use products that comply with the California Code of Regulations maximum allowable VOC levels.
2. Do not use sweeping compounds on concrete floors that will leave residue affecting finish floor materials.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations immediately prior to Occupancy for entire Project or for a designated portion of Project:
 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Remove snow and ice to provide safe access to building.
 f. Clean exposed exterior and interior finishes to a dirt-free condition, free of grease, dust, stains, films, fingerprints, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 h. Sweep concrete floors broom clean in unoccupied spaces.
 i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
 j. Power scrub and power buff resilient flooring surfaces, tile and fluid-applied flooring.
 k. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Polish mirrors and glass, taking care not to scratch surfaces.
l. Remove labels that are not permanent.
m. Wipe surfaces of mechanical and electrical equipment, elevator equipment where applicable, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
n. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
o. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
p. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.

q. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
r. Clean food service equipment to sanitary condition acceptable for intended food service use and approved by authority having jurisdiction.
s. Leave Project clean and ready for occupancy.

C. Pest Control: Comply with pest control requirements in Section 01 50 00 "Temporary Facilities and Controls." Prepare written report.

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.

1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.
2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
 a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

3.3 ATTACHMENTS

A. Samples of the following forms are appended to this Section for reference following End of Section 01 77 00:

1. University of Colorado Denver | Anschutz Medical Campus Supplemental Notice of Occupancy and Use List.
END OF SECTION 01 77 00
In addition to completing Notice of Approval of Occupancy / Use (SBP-01), the following items must be completed before Occupancy is approved:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date Completed</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Final and formal address posted on the building entries.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>2. A copy of the Contractor’s in-progress red line “as-built” drawings has been given to BMO representative & a 2nd copy is provided for Projects plan room. This is to include landscape drawings showing irrigation installation.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>3. Maintenance, operations and spare parts manuals on all installed equipment.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>4. Notice of Partial Substantial Completion concerning roles/responsibilities of University and Contractor for security, maintenance, heat, utilities reviewed and accepted.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>5. Manufacturer maintenance, operations and spare parts manuals for fixtures, mechanical, electrical and plumbing.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>6. Hardware-maintenance, operations and spare parts manuals for doors & locks, including roll up doors.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>7. Warranty Dates and Contact list for all Contractors and Suppliers given to BMO.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>8. Transfer utility account from Contractor to Facilities Operations.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>9. Site plan to include first floor main isolation locations and plans for each floor to include main utility shutoffs, for utilities to include water, electrical, steam, sewer, fuel supply, telecom, fiber optic and gasses, identified on a set of drawings.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>10. If Commissioning Report is completed, BMO has reviewed/commented, including electrical, plumbing, mechanical/ HVAC.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>11. All Contractor provided equipment has new filters & construction filters removed.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>12. Not Used</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>13. Elevator equipment rooms insulated and space conditioned for control system requirements.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>14. Testing Certifications provided to BMO for Elevators, Fire Systems & Annunciator Systems.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>15. FSS has been provided with copy of Building Department testing and inspection report for window washing equipment.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>16. Roof walking pads to access equipment are installed.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td>17. PM to communicate to fire department via Life Safety Officer that building has transitioned to BMO. Alarms at Anschutz Medical Campus report to University Police Dispatch and at Downtown report to designated monitoring company.</td>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18. BAS System (Siemens), Energy and Lighting, Fuel Systems, and Power Management must report remotely & verify with University - Engineering.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>19. Training for BMO and FSS on installed equipment and systems is completed.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>20. Equipment keys and locks transitioned to Operations, including fire panels, electrical panels, directories and generator panels. Construction cores removed and replaced with permanent cores.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>21. Access control pathways and junction boxes for installed doors, gates, loading docks and roof access complete. All wiring and hardware completed and electronic security access controls in place and tested by University Electronic Security.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>22. EH&S is provided, as applicable for project, with fume hood certification, water testing certification, hazardous waste compliance certification, radiation compliance certification, BSL3 certification, and all other specialty equipment certification.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>23. PM notifies University Risk Management that project is transferring to University and notifies Contractor that it can eliminate Builders Risk Insurance.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>24. Not Used</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>25. Not Used</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>26. Elevator tools, including hand tools, computer, proprietary and operational software is received and confirm 1-year service from date of acceptance.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>27. All computers and software required in drawings and specs. are received, including for BAS, Energy and Lighting, Fuel Systems, and Power Management, and any specialty software and alarm codes for operating systems.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>28. For all areas to be transferred to University, all waste and debris removed; floor and wall surfaces clean and in good repair; ceiling surfaces clean, unmarked, in place; site, including sidewalks, cleared of debris and construction equipment; and roof is clear of all materials and debris.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>29. Water chlorination and testing complete and provided by PM to Chief Building Official and BMO via BMO Rep.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>30. Toilet accessories are in place that meet custodial contract.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>31. Trash receptacles outside the building are in place</td>
<td>CLOSED</td>
<td></td>
</tr>
</tbody>
</table>

University Project Manager
(sign & print name)
Date

University BMO Rep.
(sign & print name)
Date

University FSS Rep
(sign & print name)
Date

University Downtown Rep. (If Necessary)
(sign & print name)
Date

*Highlighted items are not the responsibility of Contractor but PM and BMO Rep must ensure these are completed and operational prior to occupancy and use.
Mark N/A by item if it is not applicable to project
7.12.11
Supplemental Building / Project Acceptance List
9/22/11 Update (Clean)

In addition to completing Pre-Acceptance Checklist (SBP-05), the following items must be completed before Final Acceptance.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date Completed</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Review State Buildings Pre-Acceptance check list & Notice of Approval of Occupancy / use form with BMO rep & confirm agreement with status</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>*2. Establish list of post construction change orders & track separately from basic project until items are complete – call it Phase 2 to avoid delay on basic project</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>3. O & M Manuals given to BMO Representative and BMO Archivist (2 hard copies and 1 electronic total)</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>*4. Record Documents – a hard copy of plans and specifications are provided for plan room & given to BMO & electronic auto cad & specs are given to Archive Officer (Art Steinman) this is to include landscape drawings showing irrigation installation.</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>*5. Final Site Walk is completed with University Grounds Supervisor. Drain barriers are removed and storm drains cleared. MS4 storm water plan, CDPHE permits, and evidence of final closeout received by Project Manager and all copied to University Engineering Division.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>*/**6. Move-related work items complete including physical move, tours (occupants & police), mail, phone & electrical hook ups for equipment & furniture systems complete & freezers enrolled in University freezer program.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>7. If exterior work is applicable: Landscape – Include a walk through with University Grounds for 1) new & established 1-year service date; 2) existing damaged landscape is repaired; and 3) irrigation – zone control test is complete.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>8. Attic stock, matches spec. requirements, is located in secured location, and is inventoried.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>9. Electrical system one line diagram framed and mounted in electrical room.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>10. Spare fire suppression heads in cabinets and tool: cabinet in main electrical room includes one complete set of spare fuses for major equipment.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>11. Contractor keys issued by University BMO returned to University Key Shop via PM/BMO Rep.</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>12. Interior Finishes Binder given to the University Project Manager: (Two hard copies)</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>13. Not Used</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>14. Not Used</td>
<td>CLOSED</td>
<td></td>
</tr>
</tbody>
</table>
15. Safety grating in pipe chases in place. | CLOSED

16. Signs in place including monument sign, building exterior and site signage and building interior signage. | CLOSED

17. All applicable reports, including Air Emission reports; Sewer Reports, including for process diverters, traps and collection tanks; Fuel Storage Tank and Detection reports; and Water System tests and reports provided to BMO via PM and BMO Rep. | CLOSED

18. Not Used | CLOSED

19. Not Used | CLOSED

20. Not Used | CLOSED

21. Not Used | CLOSED

22. If commissioning is included for project, Commissioning Agent certification is received by BMO via PM and BMO Rep. | CLOSED

University Project Manager
(sign & print name) Date

University BMO Rep.
(sign & print name) Date

University FSS
(sign & print name) Date

University Downtown Rep (if necessary)
(sign & print name) Date

*Warranty dates are not subject to completion of these items by contract

**Highlighted items are not the responsibility of Contractor but PM and BMO Rep must ensure these are completed and operational prior to occupancy and use.

Mark N/A by item if it is not applicable to project

7.12.11
SECTION 01 78 23

OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:

1. Operation and maintenance documentation directory.
2. Systems, subsystems, and equipment operation and maintenance manuals.
3. Product maintenance manuals.
4. Emergency manuals.
5. Framed operating and maintenance instructions.

B. Related Requirements:

1. Section 01 33 00 "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
2. Section 01 91 13 "General Commissioning Requirements" for verification and compilation of data into operation and maintenance manuals.

1.3 DEFINITIONS

A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.

B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

A. Schedule: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 30 calendar days before commencing demonstration and training. Architect/Engineer will return copy with comments.

1. Correct or revise each manual to comply with Architect/Engineer's comments. Submit copies of each corrected manual within 15 calendar days of receipt of Architect/Engineer's comments and prior to commencing demonstration and training.

B. Format: Submit operations and maintenance manuals in the following format:

1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Architect/Engineer.
a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
b. Compile entirely from documents with searchable text.
c. Enable inserted reviewer comments on draft submittals.

2. Paper copies. Assemble in accordance with the requirements of this Section.
 a. Submit three final copies, one to be retained by the Architect/Engineer and two to be retained by the University.

C. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 30 calendar days before commencing demonstration and training. Architect/Engineer will return copy with comments.
 1. Correct or revise each manual to comply with Architect/Engineer's comments. Submit copies of each corrected manual within 15 calendar days of receipt of Architect/Engineer's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

A. Intent: Prepare data in form of an instructional manual for use by University personnel.

B. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 1. Title page.
 2. Table of contents.

C. Title Page: Include the following information:
 1. Subject matter included in manual.
 2. Name and address of Project.
 3. Name and address of University.
 4. Date of submittal.
 5. Name and contact information for Contractor.
 6. Name and contact information for Construction Manager.
 7. Name and contact information for Architect/Engineer.
 8. Name and contact information for Commissioning Authority.
 9. Names and contact information for major consultants to the Architect/Engineer that designed the systems contained in the manuals.
 10. Cross-reference to related systems in other operation and maintenance manuals.

D. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.
E. **Manual Contents:** Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

F. **Manufacturers’ Data:** Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.

G. **Drawings:** Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.

H. **Manuals, Paper Copy:** Submit manuals in the form of hard copy, bound and labeled volumes.

1. **Binders:** Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in minimum 1 inch and maximum 2 inch thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.

 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.

 b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents, and indicate Specification Section number on bottom of spine. Indicate volume number for multiple-volume sets.

2. **Dividers:** Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

3. **Protective Plastic Sleeves:** Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.

4. **Supplementary Text:** Prepared on 8-1/2-by-11-inch, 20 lb., white bond paper.

5. **Drawings:** Attach reinforced, punched binder tabs on drawings and bind with text.

 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.

 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.2 **SYSTEMS, SUBSYSTEMS AND EQUIPMENT OPERATION AND MAINTENANCE MANUALS**

A. **General:** Provide operation and maintenance manuals where indicated in individual Specification Section and the following:
1. Heating, ventilating and air-conditioning equipment and systems.
2. Plumbing equipment and systems.
3. Special piping equipment and systems.
4. Electrical distribution systems.
5. Standby generator systems.
6. Communications systems.
7. Fire alarm and detection systems.
8. Underground sprinkler systems.
10. Food service equipment.
11. Elevators.
12. Other special construction and conveying systems.

B. Operation Content: In addition to requirements in this Section, include operation data required in individual Specification Sections.

1. Additional Operation Content Required:
 b. Performance and design criteria if Contractor has delegated design responsibility.
 c. Operating standards.
 d. Operating procedures.
 e. Operating logs.
 f. Wiring diagrams.
 g. Control diagrams.
 h. Piped system diagrams.
 i. Precautions against improper use.
 j. License requirements including inspection and renewal dates.

2. Descriptions: Include the following:
 a. Product name and model number. Use designations for products indicated on Contract Documents.
 b. Manufacturer's name.
 c. Equipment identification with serial number of each component.
 d. Equipment function.
 e. Operating characteristics.
 f. Limiting conditions.
 g. Performance curves.
 h. Engineering data and tests.
 i. Complete nomenclature and number of replacement parts.

3. Operating Procedures: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
 c. Routine and normal operating instructions.
 d. Regulation and control procedures.
 e. Instructions on stopping.
 f. Normal shutdown instructions.
 g. Seasonal and weekend operating instructions.
 h. Required sequences for electric or electronic systems.
 i. Special operating instructions and procedures.
4. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

C. Maintenance Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

1. Source Information: Provide the following information in a list for each product included in manual:
 a. Name, address, and telephone number of Installer or supplier and maintenance service agent.
 b. Name, address, and telephone number of local source for supply of replacement parts.
 c. Name, address, and telephone number of maintenance contractor, where appropriate.
 d. Cross-reference Specification Section number and title.
 e. Drawing or schedule designation or identifier where applicable.

2. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 a. Standard maintenance instructions and bulletins.
 b. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 c. Identification and nomenclature of parts and components.
 d. List of items recommended to be stocked as spare parts.

3. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 a. Test and inspection instructions.
 b. Troubleshooting guide.
 c. Precautions against improper maintenance.
 d. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 e. Aligning, adjusting, and checking instructions.
 f. Demonstration and training video recording, if available.

4. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 a. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semianual, and annual frequencies.
 b. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

5. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

6. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.

7. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
2.3 PRODUCT MAINTENANCE MANUALS

A. Content: Organize manual into a separate section for each product, material, and finish. Separate into two manuals: one for exterior moisture protection products and those exposed to weather and one for interior products. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: Provide the following information for each product included in manual:
 1. Name, address, and telephone number of Installer or supplier and maintenance service agent.
 3. Drawing or schedule designation or identifier where applicable.

C. Product Information: Include the following, as applicable:
 1. Product name and model number.
 2. Manufacturer's name.
 3. Color, pattern, and texture.
 5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 1. Inspection procedures.
 2. Types of cleaning agents to be used and methods of cleaning.
 3. List of cleaning agents and methods of cleaning detrimental to product.
 4. Schedule for routine cleaning and maintenance.
 5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 1. Include procedures to follow and required notifications for warranty claims.

2.4 EMERGENCY MANUALS

A. Content: Organize manual into a separate section for each of the following:
 1. Type of emergency.
 2. Emergency instructions.
 3. Emergency procedures.

B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 1. Fire.
2. Flood.
5. Power failure.
7. System, subsystem, or equipment failure.
8. Chemical release or spill.

C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of University's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.

D. Emergency Procedures: Include the following, as applicable:
 1. Instructions on stopping.
 2. Shutdown instructions for each type of emergency.
 3. Operating instructions for conditions outside normal operating limits.
 4. Required sequences for electric or electronic systems.
 5. Special operating instructions and procedures.

2.5 FRAMED OPERATING AND MAINENANCE INSTRUCTIONS

A. All mechanically and electrically operated equipment and controls shall be provided with legible and complete wiring diagrams, schematics, operating instructions, and pertinent preventative maintenance instructions in a sturdy frame with clear glass or plastic cover. Use non-fading, permanent media.

B. Locate frames in the same room or service enclosure as equipment, or in the nearest mechanical or electrical room.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 78 23
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for project record documents, including the following:

1. Record Drawings.
2. Record Specifications.
3. Record Product Data.
4. Record Samples.
5. Miscellaneous record submittals.

B. Related Requirements:

1. Section 01 73 00 "Execution" for final property survey.
2. Section 01 77 00 "Closeout Procedures" for general closeout procedures.
3. Section 01 78 23 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 CLOSEOUT SUBMITTALS

A. General: Submit record drawings with duplicate original transmittal letters containing:

1. Date.
2. Project title and number.
3. Contractor’s name and address.
4. Certification that each document as submitted is complete and accurate.
5. Signature of authorized representative of the Contractor.

B. Record Drawings: Submit copies of record Drawings as follows:

1. Submit three paper-copy sets of marked-up record prints, two copies will be retained by the University and one copy retained by the Architect/Engineer.
2. Submit three paper-copy sets and three digital copies on CD of electronic files for all delegated-design submittals. Two copies will be retained by the University and one copy retained by the Architect/Engineer.

C. Record Specifications: Submit three paper copies of Project's Specifications, including addenda and contract modifications. Two copies will be retained by the University and one copy retained by the Architect/Engineer.
D. Record Product Data: Submit three paper copies of each submittal. Two copies will be retained by the University and one copy retained by the Architect/Engineer.

 1. Where record Product Data are required as part of operation and maintenance manuals, submit duplicate marked-up Product Data as a component of manual.

E. Miscellaneous Record Submittals: See other Specification Sections for miscellaneous record-keeping requirements and submittals in connection with various construction activities. Submit three paper copies of each submittal. Two copies will be retained by the University and one copy retained by the Architect/Engineer.

F. Interior Finishes Binder: Three copies. Two copies will be retained by the University and one copy retained by the Architect/Engineer.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.

 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.

 a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Accurately record information in an acceptable drawing technique.
 c. Record data as soon as possible after obtaining it.
 d. Record and check the markup before enclosing concealed installations.
 e. Cross-reference record prints to corresponding archive photographic documentation.
 f. Mark using line types and symbols conforming to Contract Documents.

 2. Content: Types of items requiring marking include, but are not limited to, the following:

 a. Dimensional changes to Drawings.
 b. Revisions to details shown on Drawings.
 c. Depths of foundations below first floor.
 d. Locations and depths of underground utilities referenced to permanent surface improvements.
 e. Revisions to routing of piping and conduits.
 f. Revisions to electrical circuitry.
 g. Actual equipment locations.
 h. Duct size and routing.
 i. Locations of concealed internal utilities referenced to visible and accessible features of structure.
 j. Locations of concealed valves, dampers, controls, balancing devices, junction boxes, cleanouts, and other items requiring access or maintenance.
 k. Changes made by Change Order.
 l. Changes made following Architect/Engineer's written orders.
 m. Details not on the original Contract Drawings.
 n. Field records for variable and concealed conditions.
3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.

4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

5. Mark additional information important to University that was either shown schematically or omitted from original Drawings.

6. Note Change Order numbers, and similar identification, where applicable.

B. Record Delegated Design Electronic Files: For all delegated design submittals, including but not limited to landscape irrigation, fire alarm and fire sprinkler plans, prepare electronic files in full compliance with University of Colorado Denver | Anschutz Medical Campus Guidelines and Design Standards, Part 1.0, Paragraph “Drawing Production Standards.”

C. Identification: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize record prints into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.

2. Identification: As follows:
 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect/Engineer.
 e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.

1. Give particular attention to substitutions, selection of options, and similar information on concealed products and installations that cannot be readily identified and recorded later.

2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.

3. Note related Change Orders where applicable.

4. Maintain one complete copy of all Addenda, Change Orders and other written change documents in printed form during construction.

2.3 RECORD PRODUCT DATA

A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.

2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.

3. Note related Change Orders, record Specifications, and record Drawings where applicable.

B. Directory: Include record Product Data directory organized by Specification Section number and title.
C. Product List: Update and record any changes to Product List submitted in accordance with Section 01 60 00 “Product Requirements”, including any changes to brand, model, subcontractor, or Installer so that final list reflects materials, equipment and systems incorporated into the Work.

2.4 RECORD SAMPLES

A. Prior to Final Acceptance, meet with University Project Manager and Architect/Engineer at site to review and identify which submitted samples maintained during the progress of the Work are to be transmitted to the University.

B. Deliver selected samples to storage area identified by University.

C. Finishes Binder: Three-ring notebook or notebooks, organized by Specification Section number, providing a listing and description of all material finishes on the Project and including a minimum 6 inch by 6 inch sample thereof to accompany the description. Accompany each material selection indicated with the following:

1. Manufacturer and product name.
2. Pattern name and number, as applicable.
3. Color name, as applicable.
4. Any additional information required to order replacement product.

2.5 MISCELLANEOUS RECORD SUBMITTALS

A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.

1. Include manufacturer’s certifications, field test record, copies of permits, licenses, certifications, inspection reports, releases, notices, receipts for fee payments and similar documents.

B. Directory: Include miscellaneous record submittals directory organized by Specification Section number and title.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project. Update at least weekly.

B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect/Engineer's and University’s reference during normal working hours.

END OF SECTION 01 78 39
SECTION 01 78 46

EXTRA STOCK MATERIALS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes descriptions and quantities of required extra stock materials.

1.3 INFORMATIONAL SUBMITTALS
 A. Schedule of Maintenance Materials: Prepare a schedule in tabular form of all extra stock materials required in individual Specification Sections including:
 1. Specification Section number and title.
 2. Description of required material
 3. Quantity of required material.

1.4 MAINTENANCE MATERIALS
 A. Furnish extra materials that match and are from the same production runs as the product installed.
 B. Provide in the quantities indicated.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 MAINTENANCE MATERIAL SCHEDULE

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 51 23</td>
<td>ACOUSTICAL TILE</td>
<td>Acoustical Ceiling Units</td>
<td>100 sq. ft. of full-size tiles.</td>
</tr>
</tbody>
</table>

END OF SECTION 01 78 46
SECTION 01 79 00

DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for instructing University's personnel, including the following:

1. Demonstration of operation of systems, subsystems, and equipment.
2. Training in operation and maintenance of systems, subsystems, and equipment.

1.3 INFORMATIONAL SUBMITTALS

A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include outline for each training module.

B. Qualification Data: For instructor, demonstrating qualifications and ability to instruct on maintenance and care of system, equipment and products.

C. Schedule of Demonstration and Training: Prepare a schedule in tabular form of all demonstration and training required in individual Specification Sections including:

1. Specification Section number and title.
2. Description of required demonstration and training.

D. Attendance Record: For each training module, submit list of participants and length of instruction time.

1.4 QUALITY ASSURANCE

A. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Section 01 40 00 "Quality Requirements," experienced in operation and maintenance procedures and training. Manufacturer’s sales staff is not acceptable.

B. Pre-instruction Conference: Conduct conference at Project site to comply with requirements in Section 01 31 00 "Project Management and Coordination." Review methods and procedures related to demonstration and training.
2.1 INSTRUCTION PROGRAM

A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.

B. Training Modules: For each module, include instruction for the following as applicable to the system, equipment, or component:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.
 h. Performance curves.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Operations manuals.
 c. Maintenance manuals.
 d. Project record documents.
 e. Identification systems.
 f. Warranties and bonds.
 g. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Instructions on stopping.
 c. Shutdown instructions for each type of emergency.
 d. Operating instructions for conditions outside of normal operating limits.
 e. Sequences for electric or electronic systems.
 f. Special operating instructions and procedures.
 g. A tour of the installation identifying the location of all system components.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
 c. Routine and normal operating instructions.
 d. Regulation and control procedures.
 e. Control sequences.
 f. Safety procedures.
 g. Instructions on stopping.
 h. Normal shutdown instructions.
 i. Operating procedures for emergencies.
 j. Operating procedures for system, subsystem, or equipment failure.
 k. Seasonal and weekend operating instructions.
1. Required sequences for electric or electronic systems.
2. Special operating instructions and procedures.
3. Sequence of operation.

5. Adjustments: Include the following:
 a. Alignments.
 b. Checking adjustments.
 c. Noise and vibration adjustments.
 d. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
 b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
 b. Types of cleaning agents to be used and methods of cleaning.
 c. List of cleaning agents and methods of cleaning detrimental to product.
 d. Procedures for routine cleaning.
 e. Procedures for preventive maintenance.
 f. Procedures for routine maintenance.
 g. Instruction on use of special tools.

8. Repairs: Include the following:
 a. Diagnosis instructions.
 b. Repair instructions.
 c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 d. Instructions for identifying parts and components.
 e. Review of spare parts needed for operation and maintenance.
 f. Product support/service model.
 g. Purchasing of replacement parts.

9. Instruction specific to Instrumentation and Controls, Electrical Gateway, Network Lighting Controls, or any other new technology that is integrated with another system: Include the following:
 a. Overview and theory.
 b. Wiring diagrams, including the one line diagram.
 c. Creation, editing, and programming of the point database.
 d. Integration topology and platform for communication.
 e. Graphics packages and touch screens for the system.
 f. Alarms and diagnostics.
 g. Reporting functions dynamically and historically.
 h. Remote access to the system.
 i. Database back-up and maintenance.
 j. Replacement and re-programming of replacement parts.
 k. Point type and functionality for each type of point.
 l. Programming.
 m. Point/object editing.
 n. Loop tuning.
 o. Help files and other troubleshooting documentation.
Instruction is given by the staff that setup the integration.

C. Operation and Maintenance Manuals: Provide appropriate Operation and Maintenance manuals in each training session so that the detail drawings and maintenance activities are outlined and discussed for each application.

PART 3 - EXECUTION

3.1 PREPARATION

A. Assemble educational materials necessary for instruction, including documentation and training module.

B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

A. Engage qualified instructors to instruct University's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.

1. University will furnish Contractor with names and positions of participants.

B. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.

1. Coordinate schedule for all training with University Project Manager and provide the following:

 a. Minimum 3 weeks notification.
 b. Training matrix in calendar format.
 c. Training outline for each session.

2. Do not schedule training until equipment has been started up, commissioned, and is currently operating in its normal condition.

3. Do not schedule overlapping training sessions.

4. Schedule training sessions for a maximum of 4 hours per day; afternoons preferred.

5. Provide separate training session on each system for operational/maintenance groups and user groups.

6. Training sessions will be cancelled and rescheduled unless the following documentation is received:

 a. Instruction qualifications.
 b. Evidence that equipment has been started up, commissioned, and is currently operating in its normal condition.
 c. Operation and Maintenance manuals.

C. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.

D. Travel, Room and Board: Coordinate any out-of-state training with the University Project Manager.

E. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 22 38</td>
<td>OPERABLE PANEL PARTITIONS</td>
<td>Engage a factory-authorized service representative to train University’s maintenance personnel to adjust, operate, and maintain operable panel partitions.</td>
</tr>
<tr>
<td>12 24 13</td>
<td>ROLLER WINDOW SHADES</td>
<td>Engage a factory-authorized service representative to train University’s maintenance personnel to adjust, operate, and maintain motor-operated roller shades.</td>
</tr>
<tr>
<td>13 20 00</td>
<td>SPECIAL PURPOSE ROOMS</td>
<td>Engage a factory-authorized service representative to train and provide training video to University’s maintenance personnel to operate, adjust, maintain, and repair controlled environmental rooms and cold rooms.</td>
</tr>
<tr>
<td>23 00 00</td>
<td>HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)</td>
<td>Schedule instructional meetings for The University of Colorado Denver Facilities Operations maintenance personnel on the proper operation and maintenance of mechanical systems. Provide the project manager a minimum of 5 days notice prior to any testing.</td>
</tr>
<tr>
<td>23 05 13</td>
<td>MOTORS</td>
<td>Engage a factory-authorized representative to train the University’s representative for 2 hours for each variable frequency drive installed. Training includes startup, shutdown, emergency operation, maintenance and servicing.</td>
</tr>
<tr>
<td>23 09 00</td>
<td>INSTRUMENTATION AND CONTROLS</td>
<td>Engage a factory-authorized trained representative to conduct a minimum of 1-four hour on-site training course and an additional 1-four hour on-site training course per 25,000 sq. ft. for designated University personnel.</td>
</tr>
<tr>
<td>26 00 00</td>
<td>ELECTRICAL</td>
<td>Engage a factory-authorized service representative to train the University’s Operations personnel a minimum of 8 hours for each system. Provide an additional minimum of 4 hours for any electrical gateway or networked lighting controls.</td>
</tr>
<tr>
<td>28 31 00</td>
<td>FIRE DETECTION AND ALARM</td>
<td>Engage a factory-authorized service representative to train the University’s Operations personnel a minimum of 8 hours for each system.</td>
</tr>
</tbody>
</table>

END OF SECTION 01 79 00
SECTION 09 22 16 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Non-load-bearing steel framing systems for interior partitions.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Studs and Runners: Provide documentation that framing members' certification is according to SIFA’s “Code Compliance Certification Program for Cold-Formed Steel Structural and Non-Structural Framing Members.”

PART 2 - PRODUCTS

2.1 FRAMING SYSTEMS

A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.

1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.

B. Studs and Runners: ASTM C 645. Use either steel studs and runners or embossed steel studs and runners.

1. Steel Studs and Runners:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) CEMCO; California Expanded Metal Products Co.
 2) ClarkDietrich Building Systems.
 3) MBA Building Supplies.
 4) Phillips Manufacturing Co.
5) Steel Network, Inc. (The).
6) Telling Industries.

b. Minimum Base-Metal Thickness: As required by performance requirements for horizontal deflection.

c. Depth: 3 5/8”.

2. Embossed Steel Studs and Runners:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) CEMCO; California Expanded Metal Products Co.
2) ClarkDietrich Building Systems.
3) MarinoWARE.
4) MBA Building Supplies.
5) Phillips Manufacturing Co.
6) Steel Network, Inc. (The).
7) Telling Industries.

b. Minimum Base-Metal Thickness: As required by horizontal deflection performance requirements.

c. Depth: 3 5/8”.

C. Slip-Type Head Joints: Where indicated, provide one of the following:

1. Double-Runner System: ASTM C 645 top runners, inside runner with 2-inch-deep flanges in thickness not less than indicated for studs and fastened to studs, and outer runner sized to friction fit inside runner.

2. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.

D. Backing Track: Steel track for blocking and bracing cabinets and equipment.

1. Provide 0.0478 inch (18 gauge) x 6 inch wide backing track extended to nearest stud past cabinet or equipment on both sides. Secure backing to stud with (3) #10 SMS per stud, typical.

E. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.

1. Minimum Base-Metal Thickness: 0.0296 inch, 22 gauge.

2.2 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.

1. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.
B. Isolation Strip at Exterior Walls: Provide the following:

1. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Installation Standard: ASTM C 754.

1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.

B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.

C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, furnishings, or similar construction.

D. Install bracing at terminations in assemblies.

E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.3 INSTALLING FRAMED ASSEMBLIES

A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.

1. Single-Layer Application: 16 inches o.c. unless otherwise indicated.

B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

C. Install studs so flanges within framing system point in same direction.
D. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.

1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.

E. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

END OF SECTION 09 22 16
SECTION 09 29 00 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Interior gypsum board.
 B. Related Requirements:
 1. Section 09 22 16 "Non-Structural Metal Framing" for non-structural steel framing and suspension systems that support gypsum board panels.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 DELIVERY, STORAGE AND HANDLING
 A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.5 FIELD CONDITIONS
 A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.
 B. Do not install panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.
PART 2 - PRODUCTS

2.1 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.2 INTERIOR GYPSUM BOARD

A. Gypsum Wallboard: ASTM C 1396/C 1396M.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Thickness: 5/8 inch.

2.3 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.

1. Material: Galvanized or aluminum-coated steel sheet, rolled zinc, plastic, or paper-faced galvanized-steel sheet.
2. Shapes:
 a. Cornerbead.
 b. Curved-Edge Cornerbead: With notched or flexible flanges.
 c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 d. L-Bead: L-shaped; exposed long flange receives joint compound.
 e. Expansion (control) joint beads.

1) Architectural intersections.
 a) Where vertical and horizontal expansion (control) joints intersect, provide manufacturer's fabricated architectural intersection bead to match expansion (control) joint bead profile.

2.4 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

B. Joint Tape:

1. Interior Gypsum Board: Paper.
C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.

1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use drying-type, all-purpose compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.
3. Fill Coat: For second coat, use compound.
4. Finish Coat: For third coat, use drying-type, all-purpose compound.

2.5 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer’s written instructions.

B. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.

1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

A. Comply with ASTM C 840.

B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.

F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. Wood Framing: Install gypsum panels over wood framing, with floating internal corner construction. Do not attach gypsum panels across the flat grain of wide-dimension lumber, including floor joists and headers. Float gypsum panels over these members or provide control joints to counteract wood shrinkage.

J. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

A. Install interior gypsum board in the following locations:
 1. Wallboard Type: All surfaces except as otherwise indicated.

B. Single-Layer Application:
 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
2. On partitions/walls, apply gypsum panels horizontally (perpendicular to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.

3. On Z-shaped furring members, apply gypsum panels vertically (parallel to framing) with no end joints. Locate edge joints over furring members.

4. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

3.4 INSTALLING TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer’s written instructions.

B. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners unless otherwise indicated.
 2. LC-Bead: Use at exposed panel edges.
 3. L-Bead: Use where indicated.

3.5 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.

B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 1. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
3.6 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged.

1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.

2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 09 29 00
SECTION 09 51 13 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes:
 1. Acoustical panels and exposed suspension systems for interior ceilings.
 B. Products furnished, but not installed under this Section, include anchors, clips, and
 other ceiling attachment devices to be cast in concrete.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples for Verification: For each component indicated and for each exposed finish
 required, prepared on Samples of sizes indicated below:
 1. Acoustical Panels: Set of 6-inch-square Samples of each type, color, pattern,
 and texture.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Test Reports: For each acoustical panel ceiling, for tests performed by a
 qualified testing agency.
 B. Evaluation Reports: For each acoustical panel ceiling suspension system and anchor
 and fastener type, from ICC-ES.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For finishes to include in maintenance manuals.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.
2. Suspension-System Components: Quantity of each exposed component equal to percent of quantity installed.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver acoustical panels, suspension-system components, and accessories to Project site and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.

B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

1. Pressurized Plenums: Operate ventilation system for not less than 48 hours before beginning acoustical panel ceiling installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of acoustical ceiling panel and its supporting suspension system from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Ceiling products shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
1. Flame-Spread Index: Class A according to ASTM E 1264.
2. Smoke-Developed Index: 50 or less.

C. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273, ASTM D 3274, or ASTM G 21 and evaluated according to ASTM D 3274 or ASTM G 21.

2.3 Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E 1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.

A. Acoustical Panel:
2. Classification:
 a. Type and Form: Type IV, mineral base with membrane-faced overlay; Form 2, water felted.
 b. Pattern: E (lightly textured).
4. Light Reflectance (LR): Not less than 0.86.
5. Ceiling Attenuation Class (CAC): Not less than 38.
6. Noise Reduction Coefficient (NRC): Not less than 0.75.
8. Edge/Joint Detail: Square, Lay-in.
10. Modular Size: 24 inch x 48 inch.

2.4 METAL SUSPENSION SYSTEM

A. Metal Suspension-System Standard: Provide manufacturer's standard, direct-hung, metal suspension system and accessories according to ASTM C 635/C 635M and designated by type, structural classification, and finish indicated.

1. High-Humidity Finish: Where indicated, provide coating tested and classified for "severe environment performance" according to ASTM C 635/C 635M.

B. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized, G30 coating designation; with prefinished 15/16-inch-wide metal caps on flanges.

2. Face Design: Flat, flush.
3. Cap Material: Cold-rolled steel.
2.5 ACCESSORIES

A. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.

B. Wire Hangers, Braces, and Ties: Provide wires as follows:
 2. Size: Wire diameter sufficient for its stress at three times hanger design load (ASTM C 635/C 635M, Table 1, "Direct Hung") will be less than yield stress of wire, but not less than 0.106-inch-diameter wire.

2.6 ACOUSTICAL SEALANT

A. Acoustical Sealant: As specified in Section 07 92 19 "Acoustical Joint Sealants."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.

B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders unless otherwise indicated, and comply with layout shown on reflected ceiling plans.

B. Layout openings for penetrations centered on the penetrating items.

3.3 INSTALLATION

A. Install acoustical panel ceilings according to ASTM C 636/C 636M and manufacturer's written instructions.
B. Suspend ceiling hangers from building's structural members and as follows:

1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly to structure or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appropriate for both the structure to which hangers are attached and the type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.
6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
8. Do not attach hangers to steel deck tabs.
9. Do not attach hangers to steel roof deck. Attach hangers to structural members.
10. Space hangers not more than 48 inches o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.
11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.

C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs. Fasten bracing wires into concrete with cast-in-place or postinstalled anchors.

D. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.

1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends. Miter corners accurately and connect securely.
3. Do not use exposed fasteners, including pop rivets, on moldings and trim.

E. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.
F. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide precise fit.

1. Arrange directionally patterned acoustical panels as follows:
 a. As indicated on reflected ceiling plans.

2. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension-system runners and moldings.
3. For reveal-edged panels on suspension-system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
4. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.

3.4 ERECTION TOLERANCES

A. Suspended Ceilings: Install main and cross runners level to a tolerance of 1/8 inch in 12 feet, non-cumulative.

B. Moldings and Trim: Install moldings and trim to substrate and level with ceiling suspension system to a tolerance of 1/8 inch in 12 feet, non-cumulative.

3.5 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.

B. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 09 51 13
SECTION 09 65 13 - RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Resilient base.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Verification: For each type of product indicated and for each color, texture, and pattern required in manufacturer’s standard-size Samples, but not less than 12 inches long.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Furnish not less than 10 linear feet for every or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.

B. Transport resilient moldings in a manner to minimize stretching. Do not carry over-the-shoulder.
PART 2 - PRODUCTS

2.1 THERMOPLASTIC-RUBBER BASE

A. Product Standard: ASTM F 1861, Type TP (rubber, thermoplastic).

1. Style and Location:
 a. Style B, Cove:

B. Thickness: 0.125 inch.

C. Height: 4 inches.

D. Lengths: Coils in manufacturer's standard length.

E. Outside Corners: Preformed.

F. Inside Corners: Preformed.

G. Colors: As indicated on Drawings.

2.2 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Installation of resilient products indicates acceptance of surfaces and conditions.
3.2 PREPARATION

A. Prepare substrates according to manufacturer’s written instructions to ensure adhesion of resilient products.

B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

C. Do not install resilient products until they are the same temperature as the space where they are to be installed.

 1. At least 48 hours in advance of installation, move resilient products and installation materials into spaces where they will be installed.

D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.

3.3 RESILIENT BASE INSTALLATION

A. Comply with manufacturer’s written instructions for installing resilient base.

B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.

C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.

D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer’s recommended adhesive filler material.

G. Preformed Corners: Install preformed corners before installing straight pieces.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer’s written instructions for cleaning and protecting resilient products.

B. Perform the following operations immediately after completing resilient-product installation:

 1. Remove adhesive and other blemishes from exposed surfaces.
C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 09 65 13
SECTION 09 65 19 - RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Vinyl composition floor tile (VCT).

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples for Verification: Full-size units of each color and pattern of floor tile required.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Store floor tile and installation materials in dry spaces protected from the weather, with
 ambient temperatures maintained within range recommended by manufacturer, but not
 less than 50 deg F or more than 90 deg F. Store floor tiles on flat surfaces.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Fire-Test-Response Characteristics: For resilient tile flooring, as determined by testing
 identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.

2.2 VINYL COMPOSITION FLOOR TILE
 A. Products: Subject to compliance with requirements, provide Armstrong #51911 Classic
 White to match existing tile. Verify color match on site.
B. Wearing Surface: Smooth.

C. Size: 12 by 12 inches.

2.3 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.

C. Floor Polish: Provide protective, liquid floor-polish products recommended by floor tile manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.

B. Concrete Substrates: Prepare according to ASTM F 710.

1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.

2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.

C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

D. Do not install floor tiles until they are the same temperature as the space where they are to be installed.
1. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.

E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.3 FLOOR TILE INSTALLATION

A. Comply with manufacturer's written instructions for installing floor tile.

B. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.

C. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.

D. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting floor tile.

B. Perform the following operations immediately after completing floor tile installation:
 1. Remove adhesive and other blemishes from exposed surfaces.
 2. Sweep and vacuum surfaces thoroughly.
 3. Damp-mop surfaces to remove marks and soil.

C. Protect floor tile from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Floor Polish: Remove soil, adhesive, and blemishes from floor tile surfaces before applying liquid floor polish to solid vinyl floor tile and vinyl composition tile.
 1. Apply manufacturer's recommended number of coat(s).

E. Cover floor tile until Substantial Completion.

END OF SECTION 09 65 19
SECTION 09 91 23 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on the following interior substrates:

1. Gypsum board.
2. Interior gypsum board partitions and soffits.

1.3 DEFINITIONS

A. Gloss Levels:

1. To match existing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

1. For products not listed, include the current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
2. Indicate VOC content.

B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.

1. Submit Samples on rigid backing, 8 inches square.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Paint: percent, but not less than 1 gal. of each material and color applied.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products that match existing:

B. Basis-of-Design Product: Subject to compliance with requirements, provide, or comparable product by one of the following:
 1. Match existing paint on site.

2.2 PAINT, GENERAL

A. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

B. Low-Emitting Materials: For field applications that are inside the weatherproofing system, 90 percent of paints and coatings shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Colors: Match existing.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Gypsum Board: 12 percent.

C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

D. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

3.3 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.4 INTERIOR PAINTING SCHEDULE

A. Gypsum Board and Substrates:

1. Institutional Low-Odor/VOC Latex System:
 a. Prime Coat: Primer sealer, interior, institutional low odor/VOC.
 1) S-W ProMar 200 Zero VOC Latex Primer, B28W2600, at 4.0 mils wet, 1.5 mils dry.
SECTION 10 21 23 - CUBICLE CURTAINS AND TRACK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Curtain tracks and carriers.
2. Black-out cubicle curtains.
3. Curtain Valance

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include durability, laundry temperature limits, fade resistance, applied curtain treatment, and fire-test-response characteristics for each type of curtain fabric indicated.
2. Include data for each type of track.

B. Shop Drawings:

1. Show layout of curtains, sizes of curtains, number of carriers, anchorage details, and conditions requiring accessories. Indicate dimensions taken from field measurements.

C. Samples: For each exposed product and for each color and texture specified, 10 inches in size.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For curtains, track, and hardware to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Curtains: Provide curtain fabrics with the following characteristics:
1. Launderable to a temperature of not less than 90 deg F.
2. Flame resistant and identical to those that have passed NFPA 701 when tested by a testing and inspecting agency acceptable to authorities having jurisdiction.
 a. Identify fabrics with appropriate markings of a qualified testing agency.

2.2 CURTAIN SUPPORT SYSTEMS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Inpro Optitrac Cubicle Curtain Track CE5000 or comparable product by one of the following:
 2. C/S General Cubicle.
 5. Salsbury Industries.

B. Extruded-Aluminum Curtain Track: Not less than 1-1/4 inches wide by 3/4 inch high; with 0.058-inch minimum wall thickness.
 1. Finish: Baked enamel, acrylic, or epoxy.

C. Curtain Track Accessories: Fabricate splices, end caps, connectors, end stops, coupling and joining sleeves, wall flanges, brackets, ceiling clips, and other accessories from same material and with same finish as track.
 1. End Stop: Removable with carrier hook.

D. Curtain Carriers: Two nylon rollers and nylon axle with chrome-plated steel hook.

E. Exposed Fasteners: Stainless steel.

F. Concealed Fasteners: Hot-dip galvanized.

2.3 BLACK-OUT CURTAINS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. C/S General Cubicle.
 5. Salsbury Industries.

B. Black-Out Cubicle Curtain Fabric: 100% light blocking material, curtain manufacturer's standard, 100 percent polyester; inherently and permanently flame resistant, stain resistant, and antimicrobial.
1. Color: As selected by Architect from manufacturer's full range.

C. Curtain Grommets: Two-piece, rolled-edge, rustproof, nickel-plated brass; spaced not more than 6 inches o.c.; machined into top hem.

D. Curtain Tieback: Nickel-plated brass chain; one at each curtain termination.

2.4 CURTAIN FABRICATION

A. Fabricate curtains as follows:

1. Width: Equal to track length from which curtain is hung plus 20 percent added fullness, but not less than 18 inches added fullness.
2. Length: Equal to floor-to-ceiling height, minus depth of track and carrier at top.
3. Top Hem: Not less than 1 inch and not more than 1-1/2 inches wide, triple thickness, reinforced with integral web, and double lockstitched.
4. Bottom Hem: Not less than 1 inch and not more than 1-1/2 inches wide, triple thickness, reinforced, and double lockstitched, with heavy weight tape.
5. Side Hems: Not less than 1/2 inch and not more than 1-1/4 inches wide, with double turned edges, and single lockstitched. Velcro sewn to side hems of curtain to attach to side walls.
6. Valance: 12" high to be fastened to side edge of curtain track.

B. Vertical Seams: Not less than 1/2 inch wide, double turned and double stitched.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install tracks level and plumb, according to manufacturer's written instructions.

B. Up to 20 feet in length, provide track fabricated from single, continuous length.

1. Curtain Track Mounting: Surface.

C. Surface-Track Mounting: Fasten tracks to ceilings at intervals recommended by manufacturer. Fasten tracks to structure at each splice and tangent point of each corner. Center fasteners in track to ensure unencumbered carrier operation. Attach track to ceiling as follows:
1. Attach track to suspended ceiling grid with manufacturer's proprietary clip.

D. Track Accessories: Install splices, end caps, connectors, end stops, coupling and joining sleeves, and other accessories as required for a secure and operational installation.

E. Curtain Carriers: Provide curtain carriers adequate for 6-inch spacing along full length of curtain plus an additional carrier.

F. Curtains: Hang curtains on each curtain track. Secure with curtain tieback.

END OF SECTION 10 21 23
SECTION 10 26 00 - WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Corner guards, plastic, opaque.

1.3 ACTION SUBMITTALS
 A. Product Data: Include construction details, material descriptions, impact strength, dimensions of individual components and profiles, and finishes for each impact-resistant wall protection unit.
 B. Shop Drawings: For each impact-resistant wall protection unit showing locations and extent. Include sections, details, and attachments to other work.
 C. Samples for Initial Selection: For each type of impact-resistant wall protection unit indicated.

1.4 INFORMATIONAL SUBMITTALS
 A. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For each impact-resistant wall protection unit to include in maintenance manuals.
 1. Include recommended methods and frequency of maintenance for maintaining optimum condition of plastic covers under anticipated traffic and use conditions. Include precautions against using cleaning materials and methods that may be detrimental to plastic finishes and performance.

1.6 QUALITY ASSURANCE
 A. Source Limitations: Obtain impact-resistant wall protection units from single source from single manufacturer.
B. Surface-Burning Characteristics: Provide impact-resistant, plastic wall protection units with surface-burning characteristics as determined by testing identical products per ASTM E 84, NFPA 255, or UL 723 by UL or another qualified testing agency.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store impact-resistant wall protection units in original undamaged packages and containers inside well-ventilated area protected from weather, moisture, soiling, extreme temperatures, and humidity.

1. Maintain room temperature within storage area at not less than 70 deg F during the period plastic materials are stored.
2. Store plastic wall protection components for a minimum of 72 hours, or until plastic material attains a minimum room temperature of 70 deg F.

 a. Store corner-guard covers in a vertical position.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install impact-resistant wall protection units until building is enclosed and weatherproof, wet work is complete and dry, and HVAC system is operating and maintaining temperature at 70 deg F for not less than 72 hours before beginning installation and for the remainder of the construction period.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Polycarbonate Plastic Sheet: ASTM D 6098, S-PC01, Class 1 or 2, abrasion resistant; with a minimum impact-resistance rating of 15 ft-lbf/in. of notch when tested according to ASTM D 256, Test Method A.

2.2 CORNER GUARDS

A. Surface-Mounted, Opaque-Plastic Corner Guards: Fabricated from PVC plastic, acrylic-modified vinyl sheet or opaque polycarbonate sheet; with formed edges; fabricated with 90- or 135-degree turn to match wall condition.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Basis-of-Design Product: Subject to compliance with requirements, provide IPC 150 Surface Mount High Impact Corner Guards with Aluminum Retainer or comparable product by one of the following:
a. Balco, Inc.
b. Construction Specialties, Inc.
c. Korogard Wall Protection Systems; a division of RJF International Corporation.

3. Wing Size: 3 by 3 inches.
4. Mounting: Screws fasteners at aluminum receiver with snap-on vinyl guard cover.
5. Color and Texture: As selected by Architect from manufacturer’s full range.
6. Length: 4 feet high guard lengths, mounted at 4” above finish floor to accommodate rubber base.

2.3 FABRICATION

A. Assemble components in factory to greatest extent possible to minimize field assembly. Disassemble only as necessary for shipping and handling.

B. Fabricate components with tight seams and joints with exposed edges rolled. Provide surfaces free of wrinkles, chips, dents, uneven coloration, and other imperfections. Fabricate members and fittings to produce flush, smooth, and rigid hairline joints.

2.4 METAL FINISHES

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 1. Remove tool and die marks and stretch lines, or blend into finish.
 2. Grind and polish surfaces to produce uniform finish, free of cross scratches.
 3. Run grain of directional finishes with long dimension of each piece.
 4. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

B. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and wall areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work.

B. Examine walls to which impact-resistant wall protection will be attached for blocking, grounds, and other solid backing that have been installed in the locations required for secure attachment of support fasteners.
 1. For impact-resistant wall protection units attached with adhesive or foam tape, verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Complete finishing operations, including painting, before installing impact-resistant wall protection system components.

B. Before installation, clean substrate to remove dust, debris, and loose particles.

3.3 INSTALLATION

A. General: Install impact-resistant wall protection units level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.

1. Install impact-resistant wall protection units in locations and at mounting heights indicated on Drawings or, if not indicated, at heights indicated below:

2. Provide splices, mounting hardware, anchors, and other accessories required for a complete installation.
 a. Provide anchoring devices to withstand imposed loads.
 b. Adjust end and top caps as required to ensure tight seams.

3.4 CLEANING

A. Immediately after completion of installation, clean plastic covers and accessories using a standard, ammonia-based, household cleaning agent.

B. Remove excess adhesive using methods and materials recommended in writing by manufacturer.

END OF SECTION 10 26 00
SECTION 12 24 13 - ROLLER WINDOW SHADES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Manually operated roller shades with [single] [double] [single and double] rollers.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, features, finishes, and operating instructions for roller shades.

 B. Shop Drawings: Show fabrication and installation details for roller shades, including shadeband materials, their orientation to rollers, and their seam and batten locations.
 1. Motor-Operated Shades: Include details of installation and diagrams for power, signal, and control wiring.

 C. Samples for Initial Selection: For each type and color of shadeband material.
 1. Include Samples of accessories involving color selection.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For roller shades to include in maintenance manuals.

 B. Manufacturer's warranties.
1.6 QUALITY ASSURANCE
A. Installer Qualifications: Fabricator of products.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver roller shades in factory packages, marked with manufacturer, product name, and location of installation using same designations indicated on Drawings.

1.8 FIELD CONDITIONS
A. Environmental Limitations: Do not install roller shades until construction and finish work in spaces, including painting, is complete and dry and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

B. Field Measurements: Where roller shades are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Allow clearances for operating hardware of operable glazed units through entire operating range. Notify Architect of installation conditions that vary from Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1.9 WARRANTY
A. Limited Lifetime Warranty: Provide manufacturer's warranty against original defects in materials and workmanship for the life of the shade not to exceed 25 years from date of substantial completion.

B. Motor and Controls Warranty: Provide manufacturer's warranty for motor and control system for five years from date of substantial completion.

PART 2 - PRODUCTS

2.1 MANUALLY OPERATED SHADES WITH SINGLE ROLLERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide MechoShade Systems Inc. "Mecho/5" Extended Bracket with Fascia or comparable product by one of the following:

1. Draper Inc.
3. Lu-Tek Inc.
B. Chain-and-Clutch Operating Mechanisms: With continuous-loop bead chain and clutch that stops shade movement when bead chain is released; permanently adjusted and lubricated.
 a. Loop Length: Full length of roller shade.
 b. Limit Stops: Provide upper and lower ball stops.
 c. Chain-Retainer Type: Chain tensioner, jamb mounted; Chain tensioner, sill mounted.

C. Rollers: Corrosion-resistant steel or extruded-aluminum tubes of diameters and wall thicknesses required to accommodate operating mechanisms and weights and widths of shadebands indicated without deflection. Provide with permanently lubricated drive-end assemblies and idle-end assemblies designed to facilitate removal of shadebands for service.
 1. Shadeband-to-Roller Attachment: Manufacturer's standard method.

D. Mounting Hardware: Brackets or endcaps, corrosion resistant and compatible with roller assembly, operating mechanism, installation accessories, and mounting location and conditions indicated.

E. Shadebands:
 2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
 a. Type: Exposed with endcaps and integral light seal at bottom where it meets the sill.
 b. Color and Finish: As selected by Architect from manufacturer's full range.

F. Installation Accessories:
 1. Exposed Headbox: Rectangular, extruded-aluminum enclosure including front fascia, top and back covers, endcaps, and removable bottom closure.
 a. Height: Manufacturer's standard height required to enclose roller and shadeband assembly when shade is fully open, but not less than 4 inches.
 2. Endcap Covers: To cover exposed endcaps.
 3. Side Channels: With light seals and designed to eliminate light gaps at sides of shades as shades are drawn down. Provide side channels with shadeband guides or other means of aligning shadebands with channels at tops.
 4. Bottom (Sill) Channel or Angle: With light seals and designed to eliminate light gaps at bottoms of shades when shades are closed.
 5. Installation Accessories Color and Finish: As selected from manufacturer's full range.
2.2 SHADEBAND MATERIALS

A. Shadeband Material Flame-Resistance Rating: Comply with NFPA 701. Testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1. Source: Roller shade manufacturer.
 2. Type: Fiberglass textile with PVC film bonded to both sides.
 3. Color: As selected by Architect from manufacturer's full range.

2.3 ROLLER SHADE FABRICATION

A. Product Safety Standard: Fabricate roller shades to comply with WCMA A 100.1, including requirements for flexible, chain-loop devices; lead content of components; and warning labels.

B. Unit Sizes: Fabricate units in sizes to fill window and other openings as follows, measured at 74 deg F:
 1. Outside of Jamb Installation: Width and length as indicated, with terminations between shades of end-to-end installations at centerlines of mullion or other defined vertical separations between openings.

C. Shadeband Fabrication: Fabricate shadebands without battens or seams to extent possible, except as follows:
 1. Vertical Shades: Where width-to-length ratio of shadeband is equal to or greater than 1:4, provide battens and seams at uniform spacings along shadeband length to ensure shadeband tracking and alignment through its full range of movement without distortion of the material.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ROLLER SHADE INSTALLATION

A. Install roller shades level, plumb, and aligned with adjacent units according to manufacturer's written instructions.
B. Roller Shade Locations: As indicated on Drawings.

3.3 ADJUSTING
A. Adjust and balance roller shades to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.

3.4 CLEANING AND PROTECTION
A. Clean roller shade surfaces, after installation, according to manufacturer's written instructions.

B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that roller shades are without damage or deterioration at time of Substantial Completion.

C. Replace damaged roller shades that cannot be repaired, in a manner approved by Architect, before time of Substantial Completion.

3.5 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain motor-operated roller shades.

END OF SECTION 12 24 13
SECTION 21 05 00 - FIRE SUPPRESSION

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. This Section specifies automatic sprinkler systems for buildings and structures. Materials and equipment specified in this Section include:

- Pipe, fittings, valves and specialties.
- Sprinklers and accessories.

B. Products furnished but not installed include sprinkler head cabinet with spare sprinkler heads. Furnish to the Owner's maintenance personnel.

C. The work of this section includes engineering by the Contractor. The Contractor shall act as Engineer of record for all fire protection work.

D. Refer to Section 23 05 00 for additional requirements. All work of Division 21 shall be in accordance with Section 23 05 00, unless otherwise addressed in this Division.

1.2 REFERENCES:

A. Section 230000 – Plumbing, Heating, Ventilating and Air Conditioning (HVAC)

B. Section 230553 – Mechanical Identification

1.3 DESIGN REQUIREMENTS:

A. Automatic Fire Sprinklers:

1. Zone system according to location. Annunciate each zone at the building fire annunciator in accordance with NFPA regulations. Provide separate zones for each flow switch and each tamper switches.

2. Install recessed sprinklers in 8-foot ceilings. Provide wire guards on sprinklers, which protrude beyond the ceiling and are lower than 8 feet. Wire guards may be painted.

3. The type of sprinkler to be installed must be specified and approved no later than final design completion.

4. Consult the University CBO, through the University Project Manager, for fire protection and life safety concerns.

5. Provide fire sprinkler systems for every building. Provide sprinklers throughout the building. Discuss areas without sprinklers with the University Project Manager.

B. System Design:

1. General:
a. Base design on requirements of NFPA 13, including Appendices.

b. Verify fire hydrant flow test according to NFPA 13 and NFPA 291. Use hydrant flow results for system design calculations.

c. Base design of sprinkler system on hydraulic calculations for group and occupancy listed in NFPA 13. Include outside hose flows upon the same hazard as the building. No allowance will be made for inside hose station flows. Include a safety factor of 10 psi in hydraulic calculations.

d. Room design method is not acceptable.

e. Size flow velocity in underground water mains not to exceed 16 feet per second. Size velocity in above ground sprinkler systems not to exceed 20 feet per second

f. Protect all areas of each facility with an automatic sprinkler system unless specifically waved by the University Project Manager.

g. Provide a separate zone on each floor for buildings exceeding 3 floor levels including the basement.

2. Wet Pipe Systems:

a. Use wet pipe systems for the majority of system applications.

b. Use electronic vane type water flow detectors except for the following:

 1) Alarm check valve assemblies may be used for systems installed in buildings if there is no approved fire alarm control panel installed and the system protects only one zone.

1.4 DEFINITIONS:

A. Pipe sizes used in this Specification are Nominal Pipe Size (NPS).

B. Other definitions for fire protection systems are listed in NFPA Standards 13, 14 and 24.

C. Working plans as used in this Section means those documents (including drawings and calculations) prepared pursuant to the requirements contained in NFPA 13 and 14 for obtaining approval of the authority having jurisdiction.

1.5 PROJECT SEISMIC REQUIREMENTS:

A. All fire protection systems shall be installed to meet NFPA and IBC Seismic Zone 1 requirements.

1. Where any conflicts arise the more stringent requirements shall be applicable.

1.6 SUBMITTALS:

A. Product data for each type of sprinkler head including sample with finish and escutcheon plate, valve, piping and piping specialty, fire protection specialty, fire department connection and any equipment installed in accordance with the Contract Documents. Index per specification chapter and item number.

B. Shop drawings prepared in accordance with NFPA 13 identified as "working plans," including detailed riser schematics indicating pipe sizes and lengths; and hydraulic calculations where applicable, which have been approved by the authority having jurisdiction. Do not proceed with the installation of the work until the Architect/Engineer review of shop drawings is received.

C. Contractor shall stamp shop drawings indicating compliance with applicable codes and contract drawings. Contractor shall stamp drawing "Approved for Construction."
D. If more than two submittals (either for shop drawings or for record drawings) are made by the contractor, the Owner reserves the right to charge the contractor for subsequent reviews by their consultants. Such extra fees shall be deducted from payments by the Owner to the contractor.

E. Maintenance data for each type sprinkler head, valve, piping specialty, fire protection specialty, fire department connection and hose valve specified, for inclusion in operating and maintenance manual specified in Division 1 and Division-23 Section "Basic Mechanical Requirements."

F. Welder's qualification certificate.

G. Test reports and certificates including "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Materials and Test Certificate for Underground Piping" as described in NFPA 13.

H. Hydraulic calculations and drawings submitted to the Engineer shall be prepared under the direct supervision of and bear the signed stamp of a professional engineer registered in the State of Colorado and familiar with this type of installation and with previous similar experience (practicing in the Fire Protection field) certifying that the fire sprinkler system has been designed and hydraulically calculated in compliance with NFPA and governing codes.

I. Fire sprinkler piping design drawings shall show all ductwork, air devices, lighting and electrical panels.

J. Shop drawings and hydraulic calculations shall be stamped and signed by the local fire prevention authority prior to submitting shop drawings to the Architect/Engineer.

1.7 QUALITY ASSURANCE:

A. Installer Qualifications: Installation and alterations of fire protection piping, equipment, specialties, and accessories, and repair and servicing of equipment shall be performed only by qualified installer. The term qualified means experienced in such work (experienced shall mean having a minimum of 5 previous projects similar in size and scope to this project), familiar with all precautions required, and has complied with all the requirements of the authority having jurisdiction. The contractor shall be licensed for the design and installation for the specific type of system in the jurisdiction where the work is to be performed and the State of Colorado. Upon request, submit evidence of such qualifications to the Engineer. Refer to Division-1 Section: "Definitions and Standards" for definitions for "Installers."

B. Qualifications for Welding Processes and Operators: Comply with the requirements of AWS D10.9, Specifications of Qualifications of Welding Procedures and Welders for Piping and Tubing, Level AR-3."

C. Regulatory Requirements: Comply with the requirements of the following codes:

1. NFPA 13 - Standard for the installation of Sprinkler System, including applicable seismic requirements.
2. NFPA 14 - Standard for the Installation of Standpipe and Hose Systems.
3. NFPA 24 - Installation of Private Fire Service Mains and their applications.
5. UL and FM Compliance: All fire protection system materials and components shall be Underwriter's Laboratories and Factory Mutual listed as well as labeled for the application anticipated.
7. International Building Codes, including applicable seismic requirements.
8. Requirements of the local Building Department and Fire Department.
D. Reference and standards listed are minimum requirements. Where more stringent requirements are specified or noted on the drawings, this shall be applicable.

1.8 SEQUENCING AND SCHEDULING:

A. Schedule rough-in installations with installations of other building components.

B. Minimum time frame for notice of inspections, tests and meetings is five (5) days and list the persons to be notified.

1.9 EXTRA STOCK:

A. Heads: For each style and temperature range (and length for dry heads) required, furnish additional sprinkler heads per NFPA-13.

1. Obtain receipt from Owner that extra stock has been received.

B. Wrenches: Furnish 2 spanner wrenches for each type and size of valve connection and fire hose coupling.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide fire protection system products from one of the following:

1. Gate Valves:
 a. Nibco
 b. Mueller
 c. Grinnell

2. Butterfly and Ball Valves:
 a. Mueller
 b. Victaulic
 c. Nibco Inc.

3. Grooved Mechanical Couplings:
 a. Gruvlok
 b. Victaulic Company of America
 c. Or approved equal per Division 1 requirements

4. Sprinklers:
 a. Reliable
 b. Viking Corp.
 c. Grinnell

5. Fire Protection Specialties:
c. Guardian Fire Equipment, Inc.

6. Check Valves:
 a. Central Sprinkler Corp.
 b. Mueller
 c. Viking

2.2 MATERIALS, GENERAL:

A. Piping:
 1. Black steel pipe for wet pipe systems and standpipes. Hot dipped galvanized pipe for dry pipe,
 drain risers, pre-action and deluge systems. US manufacturer.
 2. Schedule 40 for pipe 2-inch and smaller and joined with threaded or cut grooved fittings.
 3. Schedule 10 for pipe sizes up to 5 inch and 0.134 inches for 6 inch pipe for pipe joined by
 welding or roll grooved fittings.
 4. Other pipe thickness is acceptable provided the pipe UL corrosion resistance ratio (CRR)
 exceeds 1.00. Schedule 40 black steel has a CRR of 1.0.

B. Fittings: Provide hot dipped galvanized fittings for dry pipe, pre-action, and deluge systems. Threaded
 fittings are preferred in architecturally exposed or sensitive areas.
 1. Do not use Copper pipe or fittings.
 Threads shall conform to ANSI B1.20.1.
 Threads shall conform to ANSI B1.20.1. Install steel pipe with threaded joints and fittings for
 2inches and smaller and where shown on drawings.
 4. Steel Fittings: ASTM A234, seamless or welded, for welded joints.
 5. Grooved Mechanical Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47 Grade
 32510 malleable iron; or ASTM A53, Type F or Types E or S.
 6. Grooved Mechanical Couplings: Consist of ductile or malleable iron housing, a synthetic rubber
 gasket of a central cavity pressure-responsive design; with nuts, bolts, locking pin, locking
 toggle, or lugs to secure roll- grooved pipe and fittings. Grooved mechanical couplings
 including gaskets used on dry-pipe systems shall be listed for dry-pipe service.
 7. Grooved Mechanical Fittings and Couplings for the entire fire protection system shall be of the
 same manufacturer as submitted in shop drawing equipment review.
 9. Cast Bronze Flanges: ANSI B16.24, Class 300; raised ground face, bolt holes spot faced.
 10. Plain end, hooker type, or push-on fittings or couplings shall not be allowed.
 11. Bushings and reducing couplings shall not be allowed.
 12. UL listed and Factory Mutual approved segmentally welded fittings are acceptable. Friction loss
 and flow data shall accompany hydraulic calculations.

C. General: Equipment shall bear the UL listing for the intended use.

2.3 BASIC IDENTIFICATION:

A. General: Provide identification complying with Division-23 "Mechanical Identification", in accordance
 with the following listing:
3. Fire Protection Signs: Provide the following signs:
 a. At each sprinkler valve, sign indicating what portion of system valve controls.
 b. At each drain or test, sign indicating its purpose.

B. Attach to the riser a metal sign indicating the name, address and telephone number of the fire protection contractor. Also indicate the date of installation.

2.4 BASIC PIPING SPECIALTIES:
A. General: Provide piping specialties complying with Division-23 Basic Mechanical Materials and Methods section "Piping Specialties", in accordance with the following listing:
 1. Pipe escutcheons.
 2. Dielectric unions.
 3. Drip pans.
 4. Pipe sleeves.
 5. Sleeve seals.
 6. Fire Barrier Penetration Seals.

2.5 BASIC SUPPORTS AND ANCHORS:
A. General: Provide supports and anchors complying with Division-23 "Supports and Anchors" in accordance with the following listing:
 1. Adjustable steel clevis hangers, adjustable steel band hangers, or adjustable band hangers, for horizontal-piping hangers and supports.
 2. Two-bolt riser clamps for vertical piping supports.
 3. Steel turnbuckles and malleable iron sockets for hanger-rod attachments.
 4. Concrete inserts, top-beam C-clamps, side beam or channel clamps or center beam clamps for building attachments.
 5. Concrete inserts and other type hangers penetrating into or through structural members shall be submitted (by the Fire Protection Contractor) to and have the approval of the structural engineer contracted for this project.
 6. Powder driven studs shall not be allowed.
 7. Hangers (which are acceptable for project) and hanger spacing shall be in accordance with NFPA-13.

2.6 JOINING MATERIALS:
A. Welding Materials: Comply with Section II, Part C, ASME Boiler and Pressure Vessel Code for welding materials appropriate for the wall thickness and chemical analysis of the pipe being welded.
B. Gasket Materials: Thickness, materials and type suitable for fluid or gas to be handled, and design temperatures and pressures.

2.7 GENERAL DUTY VALVES:
A. Gate Valves - 2 Inch and Smaller: Body and bonnet of cast bronze, 175 pound cold water working pressure - non-shock, threaded ends, solid wedge, outside screw and yoke, rising stem, screw-in bonnet, and malleable iron handwheel. Valves shall be capable of being repacked under pressure, with valve wide open.

B. Ball Valves: 1-1/2inches and smaller shall be threaded, forged brass construction, with Teflon seats and blow out proof stem. Ball shall be full port with chrome plated ball.

C. Ball Valves: 2inches to 3inches shall be listed to 300 p.s.i. with optional internal tamper switch. Body shall be ductile iron with corrosion resistant coating. Ball shall be 316 stainless steel, standard port design.

2.8 BASIC METERS AND GAUGES:

A. General: Provide meters and gauges complying with Division- 23 "Meters and Gauges", in accordance with the following listing

1. Pressure gauges, 0-250 psi range.
2. Water Pressure: Brass bourdon tube with 3-1/2 inch diameter case rated for 300 psi water pressure in 5 pound increments. Equip with 1/4-inch shut-off valve.
3. Air Pressure: Brass bourdon tube with 3-1/2 inch diameter case rated for 100 psi air pressure in 1 psi increments. Equip with 1/4-inch shut-off valve.

2.9 AUTOMATIC SPRINKLERS:

A. Sprinkler Heads: Fusible link or frangible bulb type, and style as indicated or required by the application. Unless otherwise indicated, provide heads with nominal ½ inch discharge orifice, for "ordinary" temperature range with a minimum temperature of 155 degrees F. Provide "intermediate" temperature heads in Electrical rooms, where required as noted in NFPA 13, and as required by the Authority having jurisdiction.

B. Sprinkler Head Finishes: Provide heads with the following finishes:

1. Upright, Pendent and Sidewall Styles: Factory brass, rough bronze finish for heads in unfinished spaces. Heads shall be stainless steel where installed exposed to acids, chemicals, or other corrosive fumes.

2. Semi Recessed: Chrome finish, standard spray.

3. Concealed Style: Rough brass, adjustable, with painted white cover plate in finished spaces. (GEM Models FR946 and F946 Clean Line Sprinklers are not acceptable.)

4. Recessed Style: Bright chrome, with bright chrome escutcheon plate. GEM Models FR948 and F948 recessed sprinklers are not acceptable.

5. Localized areas with potential for freezing: dry pendant or dry pendant sidewall sprinklers.

6. See drawings for additional sprinkler type requirements. Provide guards on sprinklers subject to damage or located within 7 feet of the floor or as indicated.

C. Sprinkler Head Cabinet and Wrench: Finished steel cabinet, suitable for wall mounting, with hinged cover and space for spare sprinkler heads plus sprinkler head wrench. Provide amounts of each style per NFPA-13. Locate head cabinet on shop drawing submittal.
D. Plastic fire sprinkler escutcheons are not acceptable.

PART 3 - EXECUTION

3.1 EXAMINATION:

A. Do not proceed until unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL:

A. Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of piping systems. So far as practical, install piping as indicated. Drawings are diagrammatic in character and do not necessarily indicate every required offset, valve, fitting, etc. Where mounting heights are not detailed, install overhead fire protection services to provide maximum headroom possible.

1. Deviations from approved "working plans" for sprinkler piping require written approval of the authority having jurisdiction. Written approval shall be on file with the Engineer prior to deviating from the approved "working plans."

B. Install sprinkler piping to provide for system drainage in accordance with NFPA 13.

C. Use approved fittings to make all changes in direction, branch takeoffs from mains, and reductions in pipe sizes. Welded outlet branch pipe fittings are acceptable.

D. Install unions in pipe 2 inch and smaller, adjacent to each valve. Unions are not required on flanged devices or in piping installations using grooved mechanical couplings.

E. Install flanges or flange adapters on valves, apparatus, and equipment having 2-1/2 inch and larger connections.

F. For welded pipe, all cutouts (coupons) shall be removed prior to installation.

G. Hangers and Supports: Comply with the requirements of NFPA 13. Hanger and support spacing and locations for piping joined with grooved mechanical couplings shall be in accordance with the grooved mechanical coupling manufacturer's written instructions, for rigid systems. Provide protection from damage where subject to earthquake in accordance with NFPA 13.

H. All piping penetrating walls to structure shall be sleeved and sealed per specification Section 23 05 09.

I. Install test connections sized and located in accordance with NFPA 13 complete with shutoff valve. Test connections may also serve as drain pipes.

J. The fire protection contractor shall be responsible for the coordination of his installation with all other contractors. See Section 23 00 00 for prioritized components.

K. Protect adjacent area where pipe cutting and threading takes place (e.g. floors, ceilings, walls, etc.).

L. There shall be no fire sprinkler piping in electrical rooms (other than piping serving sprinklers directly in that room) or installed over any electrical panels.

M. Install hangers straight and true and piping parallel to building lines.

3.3 PIPE JOINT CONSTRUCTION:
A. Welded Joints: AWS D10.9, Level AR-3.

B. Threaded Joints: Conform to ANSI B1.20.1, tapered pipe threads for field cut threads. Join pipe, fittings, and valves as follows:

1. Note the internal length of threads in fittings or valve ends, and proximity of internal seat or wall, to determine how far pipe should be threaded into joint.

2. Align threads at point of assembly.

3. Apply appropriate tape or thread compound to the external pipe threads.

4. Assemble joint to appropriate thread depth. When using a wrench on valves place the wrench on the valve end into which the pipe is being threaded.

5. Damaged Threads: Do not use pipe with threads which are corroded or damaged. If a weld opens during cutting or threading operations, that portion of pipe shall not be used.

C. Flanged Joints: Align flange surfaces parallel. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly to appropriate torque specified by the bolt manufacturer.

D. Mechanical Grooved Joints: Roll grooves on pipe ends dimensionally compatible with the couplings.

E. End Treatment: After cutting pipe lengths, remove burrs and fins from pipe ends.

3.4 VALVE INSTALLATIONS:

A. General: Install fire protection specialty valves, fittings and specialties in accordance with the manufacturer's written instructions, NFPA 13 and the authority having jurisdiction.

B. Gate Valves: Install electronically supervised-open indicating valves so located to control all sources of water supply except fire department and roof manifolds connections. Where there is more than one control valve, provide permanently marked identification signs indicating the portion of the system controlled by each valve. Refer to Division-23 Section "Mechanical Identification" for valve tags and signs.

3.5 SPRINKLER HEAD INSTALLATIONS:

A. Any sprinkler heads with any paint on them shall be replaced. The sprinkler system shall then be hydrostatically tested again at the contractor's expense.

B. Sprinkler heads shall be positioned so as to comply with NFPA-13 for any obstructions. This includes, but is not limited to, soffits, surface mounted lights and indirect lighting arrangements. The Fire Protection Contractor is responsible for identifying these obstructions and designing the system accordingly.

C. Run piping concealed above heated furred ceilings and in joists to minimize obstructions. Expose only heads.

D. Protect exposed sprinkler heads against mechanical injury with standard guards. Provide sprinkler head guards in all mechanical, electrical or storage rooms as well as exposed pendant heads which are installed less than 8feet-0inches A.F.F.
E. Provide 1 inch diameter nipple and 1 inch x 1/2 inch reducing fitting for each upright head. (Excluding mechanical equipment rooms.)

F. Provide heads in "pocketed" areas caused by exposed duct, piping or beams.

G. Sprinkler head deflector distance from face of finished ceiling shall not exceed 4 inches.

H. Sprinkler heads shall be located in the center of all 2 foot x 2 foot ceiling tiles and quarter points, along the center line lengthwise of 2 foot x 4 foot ceiling tiles.

I. Use proper tools to prevent damage during installations.

J. Install sprinkler piping in a manner such that mechanical equipment, ceiling tiles or lights can be accessed and easily removed. The sprinkler piping shall be installed to provide a minimum of 6 inches above the top of a finished ceiling.

3.6 INSTALLATION OF BASIC IDENTIFICATION:

A. General: Install mechanical identification in accordance with other Division-23 sections.

B. Install fire protection signs on piping in accordance with NFPA 13 and NFPA 14 requirements.

C. Miscellaneous Fire Lines: Label inspector's test drain, main drain and fire lines.

D. Nameplate: Mount hydraulic design information at alarm valve and include information in accordance with NFPA 13.

3.7 INSTALLATION OF METERS AND GAUGES:

A. Install meters and gauges in accordance with Division-23 "Meters and Gauges".

3.8 FIELD QUALITY CONTROL:

B. The Fire Protection Contractor shall conduct and bear the costs of all necessary tests of the fire protection work, furnish all labor, power and equipment. All piping shall be tested with water as required, the tests witnessed by the authority having jurisdiction.

C. The fire protection piping shall be tested under a hydrostatic pressure of not less than 200 psig, for a duration of not less than 2 hours.

D. Replace piping system components which do not pass the test procedures specified, and retest repaired portion of the system at Fire Protection Contractor's expense.

E. All piping tests (pneumatic and hydrostatic) shall be conducted prior to the application of any painting materials. This will prevent hidden leaks and/or repainting of repaired/ALTERED piping.

3.9 SYSTEM CERTIFICATION:

A. The Contractor shall provide the Owner with written certification prior to final inspection, that all new equipment:
1. Has been visually inspected and functionally tested as required by the Specifications.

2. Is installed entirely in accordance with the manufacturer's recommendations within the limitations of the system's UL listings and NFPA criteria.

3. Is in proper working order.

3.10 FINAL INSPECTION AND TESTING:

A. The Contractor shall make arrangements with the Owner for final inspection and witnessing of the final acceptance tests. The Fire Protection Contractor, the Alarm System Contractor and the Owner will conduct the final inspection and witness the final acceptance test.

B. All tests and inspections required by the referenced Codes and Standards, and the Owner shall be performed by the Contractor.

C. The inspecting committee as referenced above will visit the job site to inspect the work and witness the final acceptance tests when they have been advised by the Contractor that the work is completed and ready for test. If the work is not complete or the test is unsatisfactory, the Contractor shall be responsible for the Consultant's extra time and expenses for re-inspection and witnessing the re-testing of the work. Such extra fees shall be deducted from payments by the Owner to the Contractor.

D. After the system has been inspected and tested, a certificate, "Contractor's Material and Test Certificate Sprinkler System - Water Spray System," shall be provided by the contractor and shall be signed by him or his representative, the Owner's representative and by a representative of the fire department if appropriate. Sufficient copies shall be prepared to ensure the Engineer, Owner, all inspecting authorities and the contractor have a copy for their files. The Contractor shall prepare one (1) test report for each inspection performed whether successful or not.

E. The signing of the certificate by the Owner's representative shall in no way prejudice any claim against the contractor for faulty material, poor workmanship, or failure to comply with inspecting authority's requirements or local ordinances.

F. Contractor shall provide at least five (5) working days notice for all tests.

G. All sprinkler supervisory initiating devices shall be functionally tested to verify proper operation.

H. All supervisory functions of each initiating device shall be functionally tested.

I. Receipt of all alarm and trouble signals, initiated during the course of the testing, shall be verified at the fire alarm control panel.

3.11 WORK BY OTHERS:

A. Wiring of all water flow switches and tamper switches on valves to central alarm panel are by Division 26.

3.12 OPERATION AND MAINTENANCE MANUAL:

A. The Contractor shall provide the Owner with a loose-leaf manual containing:

1. A detailed description of the systems.
2. A detailed description of routine maintenance required or recommended or which would be provided under a maintenance contract including a maintenance schedule and detailed maintenance instructions for each type of device installed.

3. One copy of NFPA-25.

4. Manufacturers' data sheets and installation manuals/instructions for all equipment installed.

5. A list of recommended spare parts.

6. Service directory, listing the specific equipment items and where parts can be obtained, with name, address and telephone number.

7. Full size sepias of the record drawings (stamped and signed per section 1.6).

8. Hydraulic calculations (stamped and signed per section 1.6).

B. Refer to Division 1 and Section 23 00 00 for additional requirements.

C. Within 15 days of the completion of the work, six (6) copies of the manual shall be submitted for approval.

3.13 RECORD DRAWINGS:

A. The Contractor shall provide and maintain on the site an up-to-date record set of approved shop drawing prints which shall be marked to show each and every change made to the sprinkler system from the original approved shop drawings. This shall not be construed as authorization to deviate from or make changes to the shop drawings approved by the Owner without written instruction from the Owner in each case. This set of drawings shall be used only as a record set.

B. Upon completion of the work, the record set of prints shall be used to prepare complete, accurate final record drawings reflecting any and all changes and deviations made to the sprinkler system.

C. The Owner, at his option and at the Contractor's expense, may require revised hydraulic calculations depending on the extent and nature of field changes.

D. The Record Drawings and Hydraulic Calculations shall have the signed stamp of a professional engineer registered in the State of Colorado certifying the Record Drawings and the Hydraulic Calculations accurately represent the completed fire protection system.

E. Upon completion of the work, two sets of blueline record drawings shall be submitted to the Owner for review.

F. Upon review of the blueline record drawings, before final approval, one (1) set of reproducible mylar record drawings and four (4) additional sets of blue line record drawings shall be delivered to the Owner.

3.14 GUARANTEE PERIOD:

A. Guarantee: The Contractor shall guarantee all materials and workmanship for a period of one year beginning with the date of final acceptance by the Owner. The Contractor shall be responsible during
the design, installation, testing and guarantee periods for any damage caused by him (or his subcontractors) or by defects in his (or his subcontractors') work, materials, or equipment.

B. Emergency Service: During the installation and warranty period, the Contractor shall provide emergency repair service for the sprinkler system within four hours of a request by the Owner for such service. This service shall be provided on a 24 hour per day, seven days per week basis.

3.15 COMMISSIONING (DEMONSTRATION):

A. Provide four hours of instruction to the University Facilities Operations personnel. Include valve and drain locations, pipe routing, maintenance and testing procedures.

3.16 WATER DAMAGE:

A. The Fire Protection Contractor shall be responsible for any damage to the work of others, to building and property/ materials of others caused by leaks in automatic sprinkler equipment, unplugged or disconnected pipes or fittings, and shall pay for necessary replacement or repair of work or items so damaged during the installation, testing or guarantee periods of the automatic sprinkler work.

END OF SECTION
SECTION 22 30 00 - PLUMBING EQUIPMENT

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK:

A. Extent of plumbing fixtures work required by this section is indicated on drawings, schedules and by specified requirements of this section.

B. See Plumbing Fixture Schedule on drawings for types of fixtures specified.

C. Refer to Section 23 05 00 for additional requirements. All work of Division 22 shall be in accordance with Section 23 05 00, unless otherwise addressed in this Division.

1.2 QUALITY ASSURANCE:

A. Codes and Standards:

1. International Plumbing Code.

2. NSF Standard 61: "Drinking Water System Components."

4. ARI Standard 1010: "Self Contained, Mechanically Refrigerated Drinking Water Coolers."

5. UL Standard 399: "Drinking Water Coolers."

7. Colorado Department of Public Health and Environment Regulations.

B. Where fixtures are indicated on the architectural drawings and intended to be ADA compliant, it shall be the sole responsibility for all manufacturers and/or suppliers to provide plumbing fixtures and related trim which meets the ADA requirements. Such indication may be shown by note on floor plans or schedules, by clearance dimensions or areas on the plans or other graphics or notes on elevations.
C. Manufacturer's Qualifications: Firms regularly engaged in manufacturer of interceptors of types and capacities required, whose products have been in satisfactory use in similar service for not less than 5 years.

1.3 SUBMITTALS:

A. Product Data: Submit product data and installation instructions for each fixture, faucet, specialty, accessory and trim specified or shown on plumbing fixture schedule; clearly indicate rated capacities of selected models.

B. Shop Drawings: Submit rough-in drawings with brand names on each sheet and item. Detail dimensions, rough-in requirements, required clearances and methods of assembly of components and anchorages. Coordinate requirements with architectural casework shop drawings specified in Division 6 for fixtures installed in countertops and cabinets. Furnish templates for use in casework shop drawings.

C. Wiring Diagrams: Submit manufacturer's electrical requirements and wiring diagrams for power supply to units. Clearly differentiate between portions of wiring that are factory installed and field installed. Coordinate and provide matrix of mechanical and electrical requirements as specified in Division 22.

D. Color Charts: Coordinate fixture color with Architect and submit manufacturer's standard color charts for cabinet finishes and fixture colors.

E. Maintenance Data: Submit maintenance data and spare parts lists for each type of manufactured plumbing fixture, valve and trim. In addition to providing in the submittals, include this data, product data and shop drawings with operations and maintenance manuals.

F. Submit certification of compliance with specified performance verification requirements and IPC, NSF, ANSI, UL and ASHRAE Standards.

1.4 DELIVERY, STORAGE AND HANDLING:

A. Store fixtures where environmental conditions are uniformly maintained within the manufacturer’s recommended temperatures to prevent damage.

B. Store fixtures and trim in the manufacturer's original shipping containers. Do not stack containers or store in such a manner that may cause damage to the fixture or trim. Keep covered and protected at all times.

1.5 SEQUENCING AND SCHEDULING:

A. Schedule rough-in installations with the installation of other building components. Provide access as required or as shown in the manufacturer’s guidelines.

1.6 MAINTENANCE:

A. Extra Stock:

1. Furnish special wrenches and other devices necessary for servicing plumbing fixtures and trim to Owner with receipt in a quantity of one device for each 10 fixtures, minimum of one wrench and one device.
2. For each type of faucet, furnish faucet repair kits complete with all necessary washers, springs, pins, retainers, packings, O-rings, sleeves, cartridges and seats in a quantity of 1 kit for each 20 faucets, minimum one repair kit per faucet type.

PART 2 – PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer subject to compliance with requirements, provide products by one of the following specified manufacturers:

1. Under Lavatory/Sink Protective Pipe Covers:
 a. McGuire
 b. True Bro

2. Drainage Piping Specialties, including drains, cleanouts, flashing flange and vent flashing sleeve.
 c. Tyler Pipe; Subs. of Tyler Corp.
 d. Zurn Industries Inc; Hydromechanics Div.
 e. Wade
 f. Woodford
 g. Precision Plumbing Products
 h. Mifab

2.2 FITTINGS, TRIM, AND ACCESSORIES:

A. All ADA accessible lavatories and sinks shall have the supply and waste piping insulated with under lavatory/sink ADA covers.

2.3 CLEANOUTS:

A. Cleanout Plugs: Cast brass, threads complying with ANSI B2.1, and local plumbing code.

B. Floor Cleanout: Round, cast iron body with recessed bronze closure plug; scoriated polished bronze frame and cover plate.

C. Wall Cleanout: Cleanout tee with raised head brass plug tapped for 1/4-20 thread; flat style chrome plated wall cover plate with holes for 1/4inch bolt; 1/4-20 threaded bolt with chrome plated flat head.

D. Surface Cleanout: Cast iron body ferrule with raised head brass plug. Medium duty cast iron manhole cover and ring 12inch diameter to be set in concrete pad, Neenah No. R-1791-A.

E. Line Cleanout: Cast iron tapped cleanout ferrule with raised head brass plug.

PART 3 – EXECUTION

3.1 EXAMINATION:
A. Verify all dimensions by field measurements. Verify that all plumbing fixtures may be installed in accordance with codes & regulations, the intended design and the referenced standards.

B. Examine rough-in for potable water and waste piping systems to verify actual locations of piping connections prior to installing fixtures.

C. Examine walls, floors and cabinets for suitable conditions where fixtures are to be installed.

D. Do not proceed until unsatisfactory conditions have been corrected.

E. Examine areas and conditions under which interceptors are to be installed, and substrate which will support interceptors. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

F. General: Install piping in accordance with governing authorities having jurisdiction, except where more stringent requirements are indicated.

G. Inspect piping before installation to detect apparent defects. Mark defective materials with white paint and promptly remove from site.

H. Verify all dimensions by field measurements. Verify that all drainage and vent piping and specialties may be installed in accordance with pertinent codes and regulations, the original design, and the referenced standards.

I. Verify all existing grades, inverts, utilities, obstacles, and topographical conditions prior to installations.

J. Examine rough-in requirements for plumbing fixtures and other equipment having drain connections to verify actual locations of piping connections prior to installation.

K. Examine walls, floors, roof, and plumbing chases for suitable conditions where piping and specialties are to be installed.

L. Do not proceed until unsatisfactory conditions have been corrected.

3.2 INSTALLATION:

A. Install plumbing fixtures level and plumb in accordance with fixture manufacturer's written instructions, rough-in drawings, codes & regulations, the intended design and the referenced standards. All exposed piping serving plumbing fixtures that may be used for ADA purposes shall have traps and supplies insulated per ADA requirements.

B. All wall hung fixtures shall be supported from the building structure with floor mounted carriers. Do not support from walls.

C. Securely fasten the fixture carrier or support to the building structure using ½” all-thread rods and bolts. Fasten plumbing fixtures securely to supports or building structure as specified. Secure supplies within wall and cabinet construction to provide rigid installation.

D. Provide wax or neoprene waste outlet sealing ring for floor set and wall hung fixtures.

E. Install fixture water stop valves in accessible locations. Hot water supply shall always be located on the left side of fixture and the cold supply shall always be located on the right side of the fixture.

F. Provide cleanouts as shown on drawings or per the applicable Plumbing Code.
G. Install escutcheons at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork. Seal pipe penetration prior to installing. Use correct size of escutcheon to cover entire opening.

H. Seal fixtures to walls and floors using non-hardening silicone sealant with coved finish as specified in Division 7. Match sealant color to fixture color, except for stainless steel sinks.

I. Chrome plated cap nuts for wall hung fixtures shall be installed with strap wrench to prevent marring.

J. Fixtures shall be product of one manufacturer and must be manufactured in the USA per Division 22.

K. Provide a tempering valve that conforms to ASSE 1070 for all lavatories and sinks used as a public hand wash facility.

L. General Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of the piping systems. Location and arrangement of piping layout take into account many design considerations. So far as practical, install piping as indicated.

M. Lubricate cleanout plugs with mixture of graphite and linseed oil. Prior to building turnover remove cleanout plugs, relubricate and reinstall using only enough force to ensure permanent leakproof joint.

N. Provide flashing for all floor cleanouts in wet areas. Make watertight with Chloraloy 240 underslab moisture vapor barrier as manufactured by the Nobel Co. of Grand Haven, Michigan. Flashing shall extend at least 24 inches from drain rim into floor membrane or on structural floor. Fasten flashing to drain clamp device and make watertight, durable joint. Provide flashing collar extension with all drains and cleanouts.

3.3 EQUIPMENT CONNECTIONS:

A. Piping Runouts to Fixtures: Provide hot and cold water piping runouts to fixtures of sizes indicated, but in no case smaller than required by Plumbing Code. For fixtures with hot water service, extend hot water recirculation line out to fixtures greater than 20’ away from main or loop hot water line down to the fixture.

B. Mechanical Equipment Connections: Connect hot and cold water piping system to mechanical equipment as indicated. Provide shutoff valve and union for each connection, provide drain valve on drain connection. Provide back-flow preventer as shown as required. For connections 2-1/2” and larger, use flanges instead of unions.

3.4 PIPING INSTALLATION:

A. Refer to Division 22 for materials and methods for installation of piping.

B. Install pressure reducing valves to limit maximum static pressure at plumbing fixtures to 65 psig.

3.5 HANGERS AND SUPPORTS:

A. Refer to Division 23 for installation of supports and anchors.

3.6 PIPE AND TUBE JOINT CONSTRUCTION:

A. Refer to Division 23 for materials and methods for pipe joints.
3.7 VALVE APPLICATIONS:

A. General Duty Valve Applications: The drawings indicate valve types to be used. Where specific valve types are not indicated the following requirements apply:

2. Throttling duty: Use ball and butterfly valves.

3.8 INSTALLATION OF VALVES:

A. Sectional Valves: Install sectional valves on each branch and riser, close to main, where branch or riser serves 2 or more plumbing fixtures or equipment connections, and elsewhere as indicated. For sectional valves 2” and smaller, use ball valves; for sectional valves 2½” and larger, use butterfly valves.

B. Shutoff Valves: Install shutoff valves on inlet of each plumbing equipment item, on inlet of each plumbing fixture and elsewhere as indicated. For shutoff valves 2” and smaller, use ball valves; for shutoff valves 2½” and larger, use butterfly valves.

C. Drain Valves: Install drain valves on each plumbing equipment item, located to completely drain equipment for service or repair. Install drain valves at the base of each riser, at low points of horizontal runs, and elsewhere as required to completely drain distribution piping system. For drain valves 2” and smaller, use ball valves; for drain valves 2½” and larger, use butterfly valves.

D. Check Valves: Install non-slam spring loaded check valves on discharge side of each pump and elsewhere as indicated. See Division 22 for valve application.

E. Balance Cocks: Install in each hot water recirculating loop, discharge side of each pump, and elsewhere as indicated.

3.9 INSTALLATION OF PIPING SPECIALTIES:

A. Above Ground Cleanouts: Install in above ground piping and building drain piping as indicated, and extend cleanouts to wall or floor above.

1. As required by plumbing code;
2. At each change in direction of piping greater than 45 degrees below slab;
3. At minimum intervals of 50 feet;
4. At base of each vertical soil or waste stack;
5. At each water closet or toilet group

B. Cleanouts Covers: Install floor and wall cleanout covers, types as indicated, and in accessible locations.

C. Flashing Flanges: Install flashing flange and clamping device with each stack and cleanout passing through waterproof membranes.

D. Vent Flashing Sleeves: Install on stacks passing through roof, secure over stack flashing in accordance with manufacturer’s instructions.

3.10 PIPE AND TUBE JOINT CONSTRUCTION:

A. Install pipes and pipe joints in accordance with section 23 20 00.

3.11 ADA ACCESSIBILITY:
A. Review Mechanical and Architectural drawings to determine fixtures requiring ADA accessibility. Notify Architect/Engineer of any physical conflicts preventing full dimensional compliance prior to beginning work.

B. Comply with the installation requirements of ANSI A117.1-1998 and Public Law 90-480-1968 with respect to plumbing fixtures for the physically handicapped. Arrange flush valve/flush tank handles with proper orientation to meet ADA requirements.

3.12 FIELD QUALITY CONTROL:

A. Test fixtures to demonstrate proper operation upon completion of installation and after units are water pressurized. Replace malfunctioning units, then retest.

B. Inspect each installed unit for damage. Replace damaged fixtures.

C. Inspections: Inspect water distribution piping as follows:

1. Do not enclose, cover, or put into operation water distribution piping system until it has been inspected and approved by the authority having jurisdiction.

2. During the progress of the installation, notify the Local Authority Having Jurisdiction, at least 48 hours prior to the time such inspection must be made. Perform tests specified below in the presence of the plumbing official.

 a. Rough-in Inspection: Arrange for inspection of the piping system after the system is roughed-in but before concealing or closing in piping and prior to setting fixtures.

 b. Final Inspection: Arrange for a final inspection by the plumbing official to observe the tests specified below and to ensure compliance with the requirements of the plumbing code.

3. Reinspections: Whenever the plumbing official finds that the piping system will not pass the test or inspection, make the required corrections and arrange for reinspection by the plumbing official.

4. Reports: Prepare inspection reports, signed by the plumbing official.

D. Test water distribution piping as follows: Refer to Division 23 for materials and methods for performing pipe tests.

3.13 ADJUSTING:

A. Adjust water pressure at faucets to provide proper flow and stream.

B. Replace leaking or dripping faucets and stops.

C. Provide copies of State backflow preventer certification tests.

3.14 CLEANING:

A. Clean fixtures, trim and strainers using manufacturer's recommended cleaning methods and materials prior to final turnover to Owner.
B. Clean and disinfect water distribution piping as follows:

1. Purge all new water distribution piping systems and parts of existing systems, which have been altered, extended or repaired prior to use.

2. Use the purging and disinfecting procedure prescribed by the authority having jurisdiction, or in case a method is not prescribed by that authority, the procedure described in either AWWA C651, AWWA C652 or as described below:
 a. Flush the piping system with clean, potable water until dirty water does not appear at the points of outlet.
 b. Fill the system or part thereof, with a water/chlorine solution containing at least 50 parts per million of chlorine. Isolate (valve off) the system, or part thereof, and allow to stand for 24 hours.
 c. Drain the system, or part thereof, of the previous solution, and refill with a water/chlorine solution containing at least 200 parts per million of chlorine and isolate and allow to stand for 3 hours.
 d. Following the allowed standing time, flush the system with clean potable water until chlorine does not remain in the water coming from the system.
 e. Submit water samples in sterile bottles to the authority having jurisdiction. Repeat the procedure if the biological examination made by the authority shows evidence of contamination.

C. Prepare reports for all purging and disinfecting activities.

3.15 PROTECTION:

A. Provide protective covering for installed fixtures and trim as required by this section.

B. Do not allow use of fixtures for temporary facilities unless expressly approved in writing by the Owner.

C. Protect interceptors during remainder of construction period, to avoid clogging with construction materials and debris, and to prevent damage from construction debris and traffic.

3.16 FIXTURE MOUNTING HEIGHT SCHEDULE:

A. Fixture mounting height and rough-in dimensions shall be per ADA requirements or as indicated on the architectural drawings and specifications.

END OF SECTION
SECTION 23 00 00 - PLUMBING, HEATING, VENTILATING AND AIR CONDITIONING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS AND REFERENCES:

A. All drawings associated with the entire project, including general provisions of the Contract, including The General Conditions of the Contract for Construction, General and Supplementary Conditions and Division-1 Conditions specification sections shall apply to the Division 23 specifications and drawings. The Contractor shall be responsible for reviewing and becoming familiar with the aforementioned and all other Contract Documents associated with the project.

B. Related Sections: Refer to all sections in Division 23. Refer to Division 26 specification sections and Division 26 drawings.

C. Where contradictions occur between this section and Division 1, the more stringent requirement shall apply.

D. Contractor shall be defined as any and all entities involved with the construction of the project.

1.2 SUMMARY:

A. This Section specifies the basic requirements for mechanical installations and includes requirements common to more than one section of Division 23. It expands and supplements the requirements specified in Division 1.

1.3 MECHANICAL INSTALLATIONS:

A. The Contract Documents are diagrammatic, showing certain physical relationships which must be established within the mechanical work and its interface with all other work. Such establishment is the exclusive responsibility of the Contractor. Drawings shall not be scaled for the purpose of establishing material quantities.

B. Drawings and specifications are complementary. Whatever is called for in either is binding as though called for in both. Report any discrepancies to the Engineer and obtain written instructions before proceeding. Where any contradictions occur between the specifications and the drawings the more stringent requirement shall apply. The contractor shall include pricing for the more stringent and expensive requirements.

C. Drawings shall not be scaled for rough-in measurements or used as shop drawings. Where drawings are required for these purposes or have to be made from field measurement, Contractor shall take the necessary measurements and prepare the drawings.

D. The exact location for some items in this specification may not be shown on the drawings. The location of such items may be established by the Engineer during the progress of the work.

E. The contract documents indicate required size and points of terminations of pipes, and suggest proper routes to conform to structure, avoid obstructions and preserve clearances. It is not intended that drawings indicate necessary offsets. The contractor shall make the installation in such a manner as to
conform to the structure, avoid obstructions, preserve headroom and keep openings and passageways clear, without further instructions or costs to the Owner. All equipment shall be installed so access is maintained for serviceability.

F. Before any work is installed, determine that equipment will properly fit the space; that required piping grades can be maintained and that ductwork can be run as intended without interferences between systems, structural elements or work of other trades.

G. Verify all dimensions by field measurements.

H. Coordinate installation in chases, slots and openings with all other building components to allow for proper mechanical installations.

I. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the work. Give particular attention to large equipment requiring positioning prior to closing-in the building.

J. Where mounting heights are not detailed or dimensioned, install mechanical services and overhead equipment to provide the maximum headroom possible.

K. Install mechanical equipment to facilitate maintenance and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations.

L. Make allowance for expansion and contraction for all building components and piping systems that are subject to such.

M. The ceiling space shall not be “layered”. It is the contractor’s responsibility to offset and system as required to allow installation within the identified ceiling cavity. The contractor shall include labor and material in the base bid to accommodate such offsets.

N. In general, all “static” piping systems shall be routed as high as possible, i.e. fire protection systems. Keep all equipment in accessible areas such as corridors and coordinate with systems and equipment from other sections.

O. The Contractor shall provide all labor and material necessary but not limited to the starting/stopping of all mechanical equipment, opening/closing of all valves, draining/refilling all mechanical systems and operating/verifying the operation of all mechanical systems controls as required to accomplish all work necessary to meet construction document requirements. Contractor shall submit records of such activities to engineer and include in the O & M manuals.

1.4 COORDINATION:

A. Work out all installation conditions in advance of installation. The Contractor shall be responsible for preparing coordination drawings, showing all work, in all areas. The Contractor shall be responsible for providing all labor and material, including but not limited to all fittings, isolation valves, offsets, hangers, control devices, etc., necessary to overcome congested conditions at no increase in contact sum. The Contractors base bid shall include any and all time and manpower necessary to develop such coordination efforts and drawings. Increases to contract sum or schedule shall not be considered for such effort.

B. Provide proper documentation of equipment, product data and shop drawings to all entities involved in the project. Coordination shall include, but not be limited to the following:
1. Fire Protection and Fire Alarm Contractor shall provide shop drawings to all other Division 23 Contractors.

2. Automatic Temperature Controls, Building Management and Testing, Adjusting and Balancing Contractors shall be provided with equipment product data and shop drawings from other Division 23 and Division 26 Contractors and shall furnish the same information involving control devices to the appropriate Division 23 Contractor.

C. Coordination Drawings:

1. Coordination drawings shall be prepared by the Contractor for his utilization and are his responsibility to assure systems will be installed in a manner to allow all systems to function properly.

2. Submit drawings for all areas, pay special attention to those places where clearances are limited, where space problems exist, for places where several elements of work (or combinations of mechanical and other work) must be located with precision in order to fit into available space, where sequencing is of importance to the efficient flow of work and as specified, and required.

3. Coordination drawings are informational submittals. Submit coordination drawings to Engineer for information only to document proper coordination of all portions of work and that coordination issues have been identified and resolved prior to submitting to the Engineer and prior to commencing construction in each affected area. The review of the coordination drawings by the Engineer does not constitute a relief of responsibility of the Contractor or a change to the contract documents. The Contractor shall have sole responsibility in developing a fully coordinated and integrated ceiling cavity.

4. The Contractor shall take the lead in coordinating and drawing Division 26 and other Division 23 components such as fire protection, plumbing, piping, sheet metal, etc. Where appropriate, the Contractor shall include medical gas, conduit, cable trays, pneumatic tube and any other system which may occupy the ceiling cavity.

5. Clearly indicate solutions to space problems. Identification of space problems without solutions is not acceptable. Only areas clearly identified will be reviewed.

6. All coordination drawings shall be 3D, with provision for collision check. The contractor is responsible for obtaining the architectural and structural files in 3D, if not available, the contractor shall develop them from the 2D architectural and structural drawings. All 3D drawing development, collision check, coordination, etc. shall be included as part of the Contractors base bid.

7. Prepare 3D Coordination Drawings (Shop Drawings) at a suitable scale, showing the required dimensions. In addition to the mentioned areas above, also submit the following:

 a. All mechanical equipment rooms such as fan rooms, boiler rooms, fire protection system rooms, etc. (1/4”=1'-0” scale).

 b. All building floor plans (1/8”=1'-0” scale). Include all shafts with clearances.

 c. Air handling unit, etc. main duct connections and transitions in ceiling space and to shafts or horizontal ducts. (1/4”=1'-0”).
d. Required access for all equipment requiring code or maintenance access.

e. All sections and elevations necessary for clarification.

f. Indicate all seismic restraint and support systems to be used for all mechanical equipment throughout the project.

g. Indicate duct and pipe elevations. Indicate clearances for installing and maintaining insulation.

h. Servicing and maintaining equipment, valve stem movement, and similar requirements.

i. Indicate movement and positioning of large equipment into the building during construction. Indicate pipe and duct size. Indicate equipment tags.

8. CADD Drawings: Electronic mechanical AutoCAD drawings are available for purchase by the Contractor from the Engineer. Contact Engineer for further information in acquiring CADD drawings. The Engineer's Construction documents cannot be used directly for coordination drawings. They are for information and initial coordination only.

D. Existing service connections:

1. Coordinate all mechanical service interruptions one week in advance with the Owner. Plan work so that duration of the interruption is kept to a minimum.

1.5 COORDINATION WITH OTHER DIVISIONS:

A. General:

1. Coordinate all work to conform with the progress of the work of other trades.

2. Complete the entire installation as soon as the condition of the building will permit. No extras will be allowed for corrections of ill timed work, when such corrections are required for proper installation of other work.

B. Coordinate ceiling cavity space carefully with all trades. In the event of conflict, install mechanical and electrical systems within the cavity space allocation in the following order of priority:

1. Equipment and required clearances
2. Plumbing waste, cooling coil drain piping and roof drain mains and leaders.
3. Cable Trays
4. Ductwork mains
5. Fire sprinkler mains
6. Plumbing vent piping
7. Domestic hot and cold water, med gas/lab gas systems
8. Branch piping and drops (locate as tight to structure as possible)
9. Low pressure ductwork and air devices.
10. Electrical and communication conduits, raceways and cable tray.
11. Hydronic piping
12. DDC control wiring and other low voltage systems.
13. Fire alarm systems.

C. Chases, Inserts and Openings:
1. Provide measurements, drawings and layouts so that openings, inserts and chases in new construction can be built in as construction progresses.

2. Check sizes and locations of openings provided. Including the access panels for equipment in hard lid ceilings and wall cavities.

3. Any cutting and patching made necessary by failure to provide measurements, drawings and layouts at the proper time shall be done at no additional cost in contract sum.

D. Support Dimensions: Provide dimensions and drawings so that concrete basis and other equipment supports to be provided under other sections of the specifications can be built at the proper time.

E. Coordinate the installation of required supporting devices and sleeves to be set in poured in place concrete and other structural components, as they are constructed.

F. Coordinate the cutting and patching of building components to accommodate the installation of mechanical equipment and materials. Refer to Division 1 and Division 23.

G. Modifications required as result of failure to resolve interferences, provide correct coordination drawings or call attentions to changes required in other work as result of modifications shall be paid for by responsible Contractor/Subcontractor.

H. Coordination with Electrical Work: Refer to Division 1 and 26.

1.6 DESIGN WORK REQUIRED BY CONTRACTOR:

A. The construction of this project requires the Contractor to include the detailing and design of several systems and/or subsystems. All such design work associated with the development of the coordination drawings shall be the complete responsibility of the Contractor.

B. The Contractor shall take the full responsibility to develop and complete routing strategies which will allow fully coordinated system to be installed in a fully functional manner. The Engineers contract drawings shall be for system design intent and general configurations.

C. Systems or subsystems which require design responsibility by the contractor include but are not limited to:

1. Final coordinated distribution of duct, hydronic, plumbing and other systems within the ceiling cavity.
2. Any system not fully detailed
3. Fire protection systems
4. Equipment supports, hangers, anchors and seismic systems not fully detailed nor specified in these documents, or catalogued by the manufacturer.
5. Temperature controls systems

D. Design Limitations:

1. The Contractor shall not modify the Engineers design intent in any way.
2. The Contractor shall not change any pipe size or equipment size without prior written approval from the Engineer.
3. The Contractor shall conform to the SMACNA Duct Construction Standards when modifying the ductwork layout to avoid collisions.
4. Back to back 90° fittings on duct system shall not be installed under any circumstance.
5. Bull nosed tees on piping systems shall not be installed under any circumstance.

1.7 PROJECT CONDITIONS:

A. The Contractor shall be required to attend a mandatory pre-bid walk-thru and shall make themselves familiar with the existing conditions. No additional costs to the Owner shall be accepted for additional work for existing conditions.

B. Field verify all conditions prior to submitting bids.

C. Protect all mechanical and electrical work against theft, injury or damage from all causes until it has been tested and accepted.

D. Be responsible for all damage to the property of the Owner or to the work of other contractors during the construction and guarantee period. Repair or replace any part of the work which may show defect during one year from the final acceptance of all work, provided such defect is, in the opinion of the Architect, due to imperfect material or workmanship and not due to the Owner's carelessness or improper use.

E. The Contractor shall coordinate and co-operate with Owner at all times for all new to existing connections, system shutdowns and start-ups, flushing and filling both new and existing systems.

F. Provide temporary ductwork and piping services. Where required, to maintain existing areas operable.

G. Coordinate all services shut-down with the Owner; provide temporary services. Coordinate any required disruptions with Owner, one week in advance.

H. Minimize disruptions to operation of mechanical systems in occupied areas.

1.8 SAFETY:

A. Refer to Division 1.

1.9 EQUAL EMPLOYMENT OPPORTUNITY REQUIREMENTS:

A. Refer to Division 1 and conform with the Owner's requirements.

1.10 REQUIREMENTS OF REGULATORY AGENCIES:

A. Refer to Division 1.

B. Execute and inspect all work in accordance with all Underwriters, local and state codes, rules and regulations applicable to the trade affected as a minimum, but if the plans and/or specifications call for requirements that exceed these rules and regulations, the greater requirement shall be followed. Follow recommendations of NFPA, SMACNA, EPA, OSHA and ASHRAE.

C. Comply with standards in effect at the date of these Contract Documents, except where a standard or specific date or edition is indicated.

D. The handling, removal and disposal of regulated refrigerants shall be in accordance with U.S. EPA, state and local regulations.
E. The handling, removal and disposal of lead based paint and other lead containing materials shall comply with EPA, OSHA, and any other Federal, State, or local regulations.

F. After entering into contract, Contractor will be held to complete all work necessary to meet these requirements without additional expense to the Owner.

1.11 PERMITS AND FEES:

A. Refer to Division 1.

B. The Contractor shall pay all tap, development, meter, etc., fees required for connection to municipal and public utility facilities, unless directed otherwise by the General Contractor/Owner – IN WRITING.

C. Contractor shall arrange for and pay for all inspections, licenses and certificates required in connection with the work.

1.12 PROJECT SEISMIC REQUIREMENTS:

A. All systems shall be installed to meet NFPA and IBC Seismic requirements.

1. Where any conflicts arise the more stringent requirements shall be applicable.

2. The design of the seismic requirements shall be the full responsibility of the Contractor.

1.13 TEMPORARY FACILITIES:

A. Light, Heat, Power, Etc.: Responsibility for providing temporary electricity, heat and other facilities shall be as specified in Division 1.

B. Use of Permanent Building Equipment for Temporary Heating or Cooling: Permanent building equipment shall not be used without written permission from the University Project Manager. If this equipment is used for temporary heating or cooling, it shall be adequately maintained per manufacturer's instructions and protected with filters, strainers, controls, reliefs, etc. Steam and hydronic systems shall be flushed and chemically treated. (Ductwork and air moving equipment shall be cleaned to an “AS New” condition). All filters required for the construction period shall be equivalent to the filters required for the final installation. All filters shall be replaced at the time of substantial completion. The guarantee period of all equipment used shall not start until the equipment is turned over to the Owner for his use. A written record of maintenance, operation and servicing shall be turned over to the owner prior to final acceptance.

1.14 PRODUCT OPTIONS AND SUBSTITUTIONS:

A. Refer to the Instructions to Bidders and Division 1.

B. Materials and equipment of equivalent quality may be submitted for substituted prior to bidding. This may be done by submitting to the Architect/Engineer at least ten (10) working days prior to the bid date a letter in triplicate requesting prior review. This submittal shall include all data necessary for complete evaluation of the product.

1. Substitutions shall be allowed only upon the written approval of the Architect/Engineer NO EXCEPTIONS.
2. The Contractor shall be responsible for removal, replacement and remedy of any system or equipment which has been installed which does not meet the specifications or which does not have prior approval.

1.15 MECHANICAL SUBMITTALS:

A. General

1. Refer to the Conditions of the Contract (General and Supplementary), Division 1.

2. The submittals shall be submitted as one package identified by the specification section. Submittals that are not complete with the required information will be sent back to be corrected.

3. The Contractor shall identify any "long lead time" items which may impact the overall project schedule. If these submittal requirements affect the schedule, the Contractor shall identify the impacts and confer with the Engineer within two weeks of entering into the contract.

4. At least one copy of the first submittal package shall be provided in expandable, 3 post, hard back binders, sized to fit all future submittals for this job. The cover shall be identified with the job name, Owner's project number, date, Prime Contractor's name, etc.

5. Submittals may be provided electronically. All electronic submittals need to be complete with all design information and stamped for conformity by the contractor. Any submittal not stamped or complete will be sent back. Submittals that are submitted electronically will be reviewed, marked appropriately and returned by the same means received.

6. An index shall be provided which includes:
 a. Product
 b. Plan Code (if applicable)
 c. Specification Section
 d. Manufacturer and Model Number

7. Fire protection and coordination drawings do not apply to the above. These drawings may be submitted in a separate submittal.

B. The manufacturer's material or equipment listed in the schedule or identified by name on the drawings are the types to be provided for the establishment of size, capacity, grade and quality. If alternates are used in lieu of the scheduled names, the cost of any changes in construction required by their use shall be borne by Contractor.

C. All equipment shall conform to the State and/or local Energy Conservation Standards.

D. Submittal of shop drawings, product data and samples will be accepted only when submitted by and stamped by the General Contractor. Data submitted from Subcontractors and material suppliers directly to the Engineer will not be processed unless prior written approval is obtained by the General Contractor.

E. Before starting work, prepare and submit to the Architect/Engineer (6) sets of all shop drawings and descriptive equipment data required for the project. Unless each item is identified with specification section and sufficient data to identify its compliance with the specifications and drawings, the item will be returned "Revise and Resubmit". Where an entire submittal package is returned for action by the Contractor, the Engineer will summarize comments in letter format and return the entire set. Continue to submit six (6) sets of any individual shop drawings, product data or samples which were returned.
without a "make corrections noted" or "no exceptions taken" action, until they are so marked. When a "Make Corrections Noted" is received, make the required corrections for inclusion in the operation and maintenance manual. Submittals marked "Make Corrections Noted" shall not be resubmitted during the submittal process.

F. The Design Professional’s review and appropriate action on all submittals and shop drawings is only for the limited purpose of checking for conformance with the design concept and the information expressed in the contract documents. This review shall not include:

1. Accuracy or completeness of details, such as quantities, dimensions, weights or gauges, fabrication processes
2. Construction means or methods
3. Coordination of the work with other trades
4. Construction safety precautions

G. The Design Professional’s review shall be conducted with reasonable promptness while allowing sufficient time in the Design Professional’s judgment to permit adequate review. Review of a specific item shall not indicate that the Design Professional has reviewed the entire assembly of which the item is a component.

H. The Design Professional shall not be responsible for any deviations from the contract documents not brought specifically to the attention of the Design Professional in writing by the Contractor. This shall clearly identify the design and the specific element which vary from the Design. The Contractor shall be responsible for all remedy for lack of strict conformance associated with this criteria.

I. The Design Professional shall not be required to review partial submissions or those for which submissions of correlated items have not been received.

1.16 SPECIFIC CATEGORY SUBMITTAL REQUIREMENTS:

A. Product Data:

1. Where pre-printed data covers more than one distinct product, size, type, material, trim, accessory group or other variation, mark submitted copy with black pen to indicate which of the variations is to be provided.

2. Delete or mark-out portions of pre-printed data which are not applicable.

3. Where operating ranges are shown, mark data to show portion of range required for project application.

4. For each product, include the following:
 a. Sizes.
 b. Weights.
 c. Speeds.
 d. Capacities.
 e. Piping and electrical connection sizes and locations.
 f. Statements of compliance with the required standards and regulations.
 g. Performance data.
 h. Manufacturer's specifications.

B. Shop Drawings:
1. Shop Drawings are defined as mechanical system layout drawings prepared specifically for this project, or fabrication and assembly type drawings of system components to show more detail than typical pre-printed materials.

2. Prepare Mechanical Shop Drawings, except diagrams, to accurate scale, min 1/8”-1’-0”, unless otherwise noted.
 a. Show clearance dimensions at critical locations.
 b. Show dimensions of spaces required for operation and maintenance.
 c. Show interfaces with other work, including structural support.

C. Test Reports:
 1. Submit test reports which have been signed and dated by the accredited firm or testing agency performing the test.
 2. Prepare test reports in the manner specified in the standard or regulation governing the test procedure (if any) as indicated.
 3. Submit test reports as required for O & M manuals.

D. Product Listing:
 1. Prepare listing of major mechanical equipment and materials for the project, within (2) two weeks of signing the Contract Documents and transmit to the Architect. A sample schedule is included at the end of this section to complete this requirement.
 a. Provide all information requested.
 b. Submit this listing as a part of the submittal requirement specified in Division 1, "PRODUCTS AND SUBSTITUTION."
 2. Unless otherwise specified, all materials and equipment shall be of domestic (USA) manufacture and shall be of the best quality used for the purpose in commercial practice.
 3. When two or more items of same material or equipment are required (plumbing fixtures, pumps, valves, air conditioning units, etc.) they shall be of the same manufacturer. Product manufacturer uniformity does not apply to raw materials, bulk materials, pipe, tube, fittings (except flanged and grooved types), sheet metal, wire, steel bar stock, welding rods, solder, fasteners, motors for dissimilar equipment units and similar items used in work, except as otherwise indicated.
 a. Provide products which are compatible within systems and other connected items.

E. Coordination Drawings: See section 1.4 of this specification section.

F. Required Submittals: Provide submittals for each item of equipment specified or scheduled in the contract documents. See table at the end of this section.

G. If more than two submittals (either for product data, shop drawings, record drawings, or test and balance reports) are made by the Contractor, the Owner reserves the right to charge the Contractor for subsequent reviews by their consultants. Such extra fees shall be deducted from payments by the Owner to the Contractor.

1.17 DELIVERY, STORAGE, AND HANDLING:
A. Refer to Division 1.

B. Deliver products to project properly identified with names, model numbers, types, grades, compliance labels and similar information needed for distinct identifications; adequately packaged and protected to prevent damage or contamination during shipment, storage, and handling.

C. Check delivered equipment against contract documents and submittals.

D. Store equipment and materials at the site, unless off-site storage is authorized in writing. Protect stored equipment and materials from damage, dirt, dust, freezing, heat and moisture.

E. Coordinate deliveries of mechanical materials and equipment to minimize construction site congestion. Limit each shipment of materials and equipment to the items and quantities needed for the smooth and efficient flow of installations.

F. Provide factory-applied plastic end-caps on each length of pipe and tube, except for concrete, corrugated metal, hub-and-spigot, clay pipe. Maintain end-caps through shipping, storage and handling to prevent pipe-end damage and prevent entrance of dirt, debris and moisture.

G. Protect stored ductwork, pipes and tubes. Elevate above grade and enclose with durable, waterproof wrapping. When stored inside, do not exceed structural capacity of the floor.

H. Protect flanges, fittings and specialties from moisture and dirt by inside storage and enclosure, or by packaging with durable, waterproof wrapping.

I. Protect sheet metal ductwork and fittings. Elevate and store above grade and cover ends with waterproof wrapping.

1.18 CUTTING AND PATCHING:

A. This Article specifies the cutting and patching of mechanical equipment, components and materials to include removal and legal disposal of selected materials, components and equipment.

B. Refer to Division 1.

C. Do not endanger or damage installed work through procedures and processes of cutting and patching.

D. Arrange for repairs required to restore other work, because of damage caused as a result of mechanical installations.

E. No additional compensation will be authorized for cutting and patching work that is necessitated by ill-timed, defective or non-conforming installations.

F. Perform cutting, fitting and patching of mechanical equipment and materials required to:

1. Uncover work to provide for installation of ill-timed work;
2. Remove and replace defective work;
3. Remove and replace work not conforming to requirements of the Contract Documents;
4. Remove samples of installed work as specified for testing;
5. Install equipment and materials in existing structures;
6. Upon written instructions from the Architect, uncover and restore work to provide for Architect observation of concealed work.
1.19 ROUGH-IN:

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

B. Refer to equipment shop drawings and manufacturer's requirements for actual provided equipment for rough-in requirements.

C. Work through all coordination before rough-in begins.

1.20 ACCESSIBILITY:

A. Install equipment and materials to provide required access for servicing and maintenance. Coordinate the final location of concealed equipment and devices requiring access with final location of required access panels and doors. Allow ample space for removal of all parts that require replacement or servicing.

B. Extend all grease fittings to an accessible location.

C. Furnish hinged steel access doors with concealed latch, whether shown on drawings or not, in all walls and ceilings for access to all concealed valves, shock absorbers, air vents, motors, fans, balancing cocks, and other operating devices requiring adjustment or servicing. Refer to Division 1 for access door specification and Division 23 for duct access door requirements.

D. The minimum size of any access door shall not be less than the size of the equipment to be removed or 12 inches x 12 inches if used for service only.

E. Furnish doors to trades performing work in which they are to be built, in ample time for building-in as the work progresses. Whenever possible, group valves, cocks, etc., to permit use of minimum number of access doors within a given room or space.

F. Factory manufactured doors shall be of a type compatible with the finish in which they are to be installed. In lieu of these doors, approved shop fabricated access doors with DuroDyne hinges may be used.

G. Access doors in fire-rated walls and ceilings shall have equivalent U.L. label and fire rating.

1.21 BELTS, SHEAVES, IMPELLERS:

A. The Mechanical Contractor shall coordinate with the Test and Balance Contractor and supply correctly-sized drive belts, sheaves, and trimmed impellers.

1.22 NAMEPLATE DATA:

A. Provide permanent operational data nameplate, refer to the section on Mechanical Identification, on each item of mechanical equipment, indicating manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and similar essential data. Locate nameplates in an accessible location. Coordinate with Owner for specific requirements.

1.23 LUBRICATION OF EQUIPMENT:

A. Refer to Division 1. The following paragraphs supplement the requirements of Division 1.
B. Contractor shall properly lubricate all mechanical pieces of equipment which he provided before turning the building over to the Owner. He shall attach a linen tag or heavy duty shipping tag on the piece of equipment showing the date of lubrication and the type and brand of lubricant used.

C. Furnish the Engineer with a typewritten list included in the O and M manuals of each item lubricated and type of lubricant used, no later than two (2) weeks before completion of the project, or at time of acceptance by the Owner of a portion of the building and the mechanical systems involved.

1.24 CLEANING:

A. Refer to Division 1.

B. Refer to Division 23, "TESTING, ADJUSTING AND BALANCING" for requirements for cleaning filters, strainers, and mechanical systems prior to final acceptance.

1.25 RECORD DOCUMENTS:

A. Refer to Division 1. The following paragraphs supplement the requirements of Division 1.

B. Keep a complete set of record document prints in custody during entire period of construction at the construction site. Documents shall be updated on a weekly basis.

C. Mark Drawing Prints to indicate revisions to piping and ductwork, size and location both exterior and interior; including locations of coils, dampers and other control devices, filters, boxes, and similar units requiring periodic maintenance or repair; actual equipment locations, dimensioned from column lines; actual inverts and locations of underground piping; concealed equipment, dimensioned to column lines; mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (i.e., traps, strainers, expansion compensators, tanks, etc.); Change Orders; concealed control system devices. Changes to be noted on the drawings shall include final location of any piping or ductwork relocated more than 1 foot-0 inches from where shown on the drawings.

D. Mark shop drawings to indicate approved substitutions; Change Orders; actual equipment and materials used.

E. Mark equipment and fixture schedules on drawings to indicate manufacturer and model numbers of installed equipment and fixtures.

F. Revisions to the Contract Documents shall be legible and shall be prepared using the following color scheme:

1. Red shall indicate new items, deviations and routing.
2. Green shall indicate items removed or deleted.
3. Blue shall be used for relevant notes and descriptions.

G. At the completion of the project, obtain from the Architect a complete set of the Mechanical Contract Documents in a read-only electronic format (.pdf unless otherwise noted). This set will include all revisions officially documented through the Architect/Engineer. Plot these drawings and using the above color scheme, transfer any undocumented revisions from the construction site record drawings to this complete set. Submit original hardcopies of both sets of marked up documents to the Architect/Engineer. This contract will not be considered completed until these record documents have been received and reviewed by the Architect/Engineer.
1.26 OPERATION AND MAINTENANCE DATA:

A. Refer to Division 1. The following paragraphs supplement the requirements of Division 1.

1. Submit one (1) copy of the manual to the Engineer for preliminary review prior to the production of the final manual.

2. Following review of the preliminary manual by the Engineer, prepare and submit final copies of the manual complying with the Engineer's comments noted on the preliminary manual.

B. The testing and balancing report shall be submitted and received by the Engineer at least fifteen calendar days prior to the contractor's request for final observation time frame requirements. Include in the O & M Manual after review with "No Exceptions Taken" has been accomplished.

C. In addition to the information required above or by Division 1 for Maintenance Data, include the following information:

1. Description of mechanical equipment, function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of all replaceable parts.

2. Manufacturer's printed operating procedures to include start-up, break-in, routine and normal operating instructions; regulation, control, stopping, shut-down, and emergency instructions; and summer and winter operating instructions. Provide any test reports and start-up documents.

3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

4. Servicing instructions, lubrication charts and schedules, including Contractor lubrication reports.

5. Manufacturer's service manuals for all mechanical equipment provide under this contract.

6. Include the valve tag list.

7. Name, Address and Telephone number of party to be contacted for 24-hour service for each item of equipment.

8. Starting, stopping, lubrication, equipment identification numbers and adjustment clearly indicated for each piece of equipment.

9. Complete parts list. Provide to Owner, recommended spare parts list.

10. Mechanical warranties.

11. Final schedule of values with all mechanical change order costs included and identified.

D. This contract will not be considered completed nor will final payment be made until all specified material, including testing and balancing report and final schedule of values with all mechanical change order costs included and identified, is received in this operating and maintenance report and the manual is reviewed by the Architect/Engineer.

1.27 PROJECT CLOSEOUT:
A. In addition to the requirements specified in Division 1, complete the requirements listed below.

B. The Contractor shall be responsible for the following Mechanical Checklist either by performing and/or coordinating such items prior to applying for certification of substantial completion. Refer to individual specification sections for additional requirements.

C. Mechanical Checklist

1.28 WARRANTIES:

A. Refer to the Division 1 for procedures and submittal requirements for warranties. Refer to individual equipment specifications for warranty requirements. In any case the entire mechanical system shall be warranted no less than one year from the time of acceptance by the Owner.

B. Compile and assemble the warranties specified in Division 23, into the operating and maintenance manuals.

C. Provide complete warranty information for each item to include product or equipment to include date or beginning of warranty or bond; duration of warranty or bond; and names, addresses, and telephone numbers and procedures for filing a claim and obtaining warranty services.

<table>
<thead>
<tr>
<th>SPEC SECTION</th>
<th>ITEM</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SUBMITTALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shop drawings</td>
</tr>
<tr>
<td>210500</td>
<td>FIRE SUPPRESSION</td>
<td>X</td>
</tr>
<tr>
<td>223000</td>
<td>PLUMBING EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>230000</td>
<td>EQUIPMENT WARRANTIES</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>O&M MANUALS</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>COORDINATION DRAWINGS</td>
<td>X</td>
</tr>
<tr>
<td>230509</td>
<td>MECHANICAL FIRE STOPPING</td>
<td>X</td>
</tr>
<tr>
<td>230519</td>
<td>METERS AND GAUGES</td>
<td>X</td>
</tr>
<tr>
<td>230523</td>
<td>GENERAL DUTY VALVES FOR PIPING</td>
<td>X</td>
</tr>
<tr>
<td>230800</td>
<td>VIBRATION CONTROL FOR</td>
<td>X</td>
</tr>
<tr>
<td>SPEC SECTION</td>
<td>ITEM</td>
<td>REQUIREMENTS</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUBMITTALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shop drawings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>230553</td>
<td>MECHANICAL IDENTIFICATION</td>
<td>X</td>
</tr>
<tr>
<td>230593</td>
<td>TESTING ADJUSTING AND BALANCING</td>
<td>X</td>
</tr>
<tr>
<td>230700</td>
<td>MECHANICAL INSULATION</td>
<td>X</td>
</tr>
<tr>
<td>230900</td>
<td>INSTRUMENTATION AND CONTROLS</td>
<td>X</td>
</tr>
<tr>
<td>230913</td>
<td>INSTRUMENTATION AND CONTROL DEVICES</td>
<td>X</td>
</tr>
<tr>
<td>230993</td>
<td>SEQUENCE OF OPERATION</td>
<td>X</td>
</tr>
<tr>
<td>231123</td>
<td>FACILITY NATURAL GAS PIPING</td>
<td>X</td>
</tr>
<tr>
<td>232000</td>
<td>PIPING</td>
<td>X</td>
</tr>
<tr>
<td>232116</td>
<td>PIPING SPECIALTIES</td>
<td>X</td>
</tr>
<tr>
<td>233000</td>
<td>HVAC AIR DISTRIBUTION</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236000</td>
<td>LABORATORY PIPING SYSTEMS</td>
<td>X</td>
</tr>
<tr>
<td>238000</td>
<td>DECENTRALIZED HVAC EQUIPMENT</td>
<td>X</td>
</tr>
</tbody>
</table>

1 For Soft Starters and Variable Frequency Drives
2 Requires Review & Approval from T & B Contractor
3 Warranty Report/Warranty
4 Kitchen Exhaust Hood
5 See Specific Specification Section for Test & Certification Requirements

END OF SECTION
SECTION 23 05 09 - MECHANICAL FIRE STOPPING

PART 1 GENERAL

1.1 DESCRIPTION OF WORK:

A. Extent of firestopping required by this section is indicated on the drawings and by the requirements of this section.

B. Types of firestopping systems specified in this section include:

1. Bare metal pipe
2. Insulated metal pipe
3. Plastic piping
4. Metal conduit
5. Metal duct

1.2 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in the manufacturing of firestopping systems for mechanical/electrical penetrations, whose products have been in satisfactory use for not less than 5 years, with published application data for all types of penetrations to be encountered on this job, and with local representation capable of providing training and technical assistance at the job site.

B. Installer's Qualifications: Personnel installing firestopping systems shall have been specifically trained by the manufacturer in the application of the materials to comply with the listing of the tested assembly.

C. Codes and Standards: Comply with the applicable codes pertaining to firestopping. Firestopping systems shall be tested and listed in accordance with the following:

1. Underwriter's Laboratory:
 a. UL 1479 test method for fire tests of through-penetration firestops.
 b. UL Fire Resistance Directory

1.3 SUBMITTALS:

A. Product Data: Manufacturer's specifications and technical data including the following:

1. Detailed specification of construction and fabrication.
2. Manufacturer's installation instructions.

B. Shop Drawings: Indicate dimensions, description of materials and finishes, general construction, specific modifications, component connections, anchorage methods, hardware and installation procedures, plus the following specific requirements:

1. Details of each proposed assembly, for all types of fire rated construction and penetrating items encountered, identifying intended products and applicable UL System Number, or UL classified devices.
2. Manufacture or manufacturer's representative shall provide qualified engineering judgments and drawings relating to non-standard applications as needed.

1.4 DELIVERY, STORAGE AND HANDLING:

A. Packing and Shipping:
 1. Deliver products in original, unopened packaging with legible manufacturer's identification.
 2. Coordinate delivery with scheduled installation date, allow minimum storage at site.

B. Storage and Protection: Store materials in a clean, dry ventilated location. Protect from soiling, abuse, moisture and freezing when required. Follow manufacturer's instructions.

1.5 PROJECT CONDITIONS:

A. Environmental Requirements:
 1. Furnish adequate ventilation if using solvent.
 2. Furnish forced air ventilation during installation if required by manufacturer.
 3. Keep flammable materials away from sparks or flame.
 4. Provide masking and drop cloths to prevent contamination of adjacent surfaces by firestopping materials.
 5. Comply with manufacturing recommendations for temperature and humidity conditions before, during and after installation of firestopping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Subject to compliance with the requirements of this specification, provide products by one of the following:
 1. 3M, Fire Protection Products
 2. Nelson Firestop Products
 3. TREMCO Construction Products
 4. Metalines
 5. Hilti Corporation
 6. Specified technologies, Inc. (STI)

2.2 GENERAL:

A. Provide fire stop systems listed in the UL Fire Resistance Directory. Provide systems with fire resistance "F" ratings equal to the fire resistance rating of the wall or floor assembly for all penetrations. In addition, provide systems with a "T" rating equal to the fire resistance rating of the wall or floor assembly in the following applications.

 1. All floor penetrations not within the cavity of a wall.

2.3 ACCESSORIES:

A. Provide forming and damming materials and sleeves as required by the firestopping system installation instructions.
PART 3 - EXECUTION

3.1 GENERAL:

A. Review all project drawings, Owner’s records and existing conditions to determine location, rating, and construction of all fire resistive construction.

B. Coordinate location of penetrations to allow for the maximum and minimum annular space around the penetrating item. Allow a minimum of 1” undisturbed building material between penetrations, or provide a firestopping system listed for multiple penetrations. Penetrating items shall be centered in hole as much as practical, unless firestopping system is listed for point contact between the wall/floor assembly and the penetrating item.

C. Neatly form, saw cut, hole saw or core drill openings. Size openings to conform with the maximum and minimum annular space requirements of the firestopping system.

3.2 APPLICATION:

A. The Contractor shall determine the most appropriate firestopping system which complies with these specifications.

B. All insulation shall be continued through the penetration. Provide intumescent caulk or collar firestopping systems. Where the insulation thickness specified in Section 23 07 00 exceeds the allowable insulation thickness for the firestopping system, reduce the insulation thickness 6 inches on either side of the penetration. Do not reduce insulation to less than 50 percent of the specified thickness.

C. Provide collar type firestopping systems where shown on drawings, and for hot piping systems at penetrations where significant thermal movement can be expected, such as near expansion compensation loops or joints.

D. Provide a firestopping system for ducts penetrating fire resistive construction without fire or fire/smoke dampers.

1. Do not provide firestopping between fire or fire/smoke damper sleeves and the opening.

E. Anchor wiring not within conduit on each side of a penetration to prevent it from being pulled out of the firestopping system.

END OF SECTION
SECTION 23 05 19 - METERS AND GAUGES

PART 1 GENERAL

1.1 DESCRIPTION OF WORK:

A. Extent of meters and gauges required by this section is indicated on drawings and/or specified in other Division-23 sections.

B. Types of meters and gauges specified in this section include the following:

1. Temperature Gauges and Fittings:
 a. Temperature Gauge Connector Plugs.

2. Pressure Gauges and Fittings:
 a. Pressure Gauges.
 b. Pressure Gauge Cocks.
 c. Pressure Gauge Connector Plugs.

3. Flow Measuring Meters:
 b. Automatic Balancing Valves

C. Meters and gauges furnished as part of factory-fabricated equipment, are specified as part of equipment assembly in other Division-23 sections.

1.2 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacturer of meters and gauges, of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. UL Compliance: Comply with applicable UL standards pertaining to meters and gauges.

2. ANSI and ISA Compliance: Comply with applicable portions of ANSI and Instrument Society of America (ISA) standards pertaining to construction and installation of meters and gauges.

C. Certification: Provide meters and gauges whose accuracies, under specified operating conditions, are certified by manufacturer.
1.3 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data, including installation instructions for each type of meter and gauge. Include scale range, ratings, and calibrated performance curves, certified where indicated. Submit meter and gauge schedule showing manufacturer's figure number, scale range, location, and accessories for each meter and gauge.

B. All flow measuring devices to be provided shall be reviewed and approved by the test & balance contractor and the temperature control contractor for proper scale, rangeability and function prior to submitting shop drawings. The test & balance contractor and temperature control contractor shall provide a typed letter stating this review has been completed and included with shop drawing submittals.

C. Maintenance Data: Submit maintenance data and spare parts lists for each type of meter and gauge. Include this data and product data in Maintenance Manual; in accordance with requirements of Division 23.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

1. Temperature Gauge Connector Plugs:
 a. Fairfax Company
 b. Peterson Equipment Co.
 c. Universal Lancaster

2. Pressure Gauges:
 b. Marsh Instrument Co.; Unit of General Signal.
 c. Weiss Instruments, Inc.

3. Pressure Gauge Connector Plugs:
 a. Fairfax Company
 b. Peterson Equipment Co.
 c. Universal Lancaster

4. Calibrated Balancing Valves:
 a. FDI (Preferred)
 b. HCI
 c. Gerand

2.2 TEMPERATURE AND PRESSURE GAUGE CONNECTOR PLUGS:

A. General: Provide temperature gauge connector plugs pressure rated for 500 psi and 200 degrees F (93 degrees C). Construct of brass and finish in nickel-plate, equip with 1/2 inch NPS fitting, with self-sealing valve core type neoprene gasketed orifice suitable for inserting 1/8 inch O.D. probe assembly from dial type insertion thermometer. Equip orifice with gasketed screw cap and chain. Provide extension, length equal to insulation thickness, for insulated piping.
2.3 PRESSURE GAUGES:

A. General: Provide pressure gauges of materials, capacities, and ranges indicated, designed and constructed for use in service indicated.

B. Type: General use, 1 percent accuracy, ANSI B40.1 grade A, phospher bronze bourdon type, bottom connection.

C. Case: Drawn steel or brass, glass lens, 4-1/2 inch diameter.

D. Connector: Brass with 1/4 inch male NPT. Provide protective syphon when used for steam service.

E. Scale: White coated aluminum, with permanently etched markings.

F. Range: Conform to the following:

1. Vacuum: 30 inches Hg - 15 psi.
2. Water: 0 - 200 psi.
3. Steam: 0 - 150 psi. – High Pressure
 0 – 25 psi. – Low Pressure

2.4 PRESSURE GAUGE COCKS:

A. General: Provide pressure gauge cocks between pressure gauges and gauge tees on piping systems. Gauge cock shall be ¼ inch female NPT on each end and "T" handle brass plug.

B. Syphon: ¼ inch straight coil constructed of brass tubing with ¼ inch male NPT on each end.

C. Snubber: ¼ inch brass bushing with corrosion resistant porous metal disc, through which pressure fluid is filtered. Select disc material for fluid served and pressure rating.

2.5 CALIBRATED BALANCE VALVES:

A. General: Provide as indicated, calibrated balance valves equipped with readout valves to facilitate connecting of differential pressure meter to balance valves. Equip each readout port with a quick connect valve designed to minimize system fluid loss during monitoring process. Provide balance valves with preformed insulation suitable for use on heating and cooling systems, and to protect balance valves during shipment.

B. Design, variable orifice type:

2. Multiple turns of handwheel from full closed to full open.
4. Schraeder type taps upstream and downstream.
5. Memory stop device to allow valve to be returned to balanced position after being closed. (Note: this does not take the place of isolation valves shown on drawings)
6. Provide slide rule type flow calculator, include in Operation and Maintenance Manual.

C. Design, valve and venturi type:

1. Ball or butterfly type valve.
2. Bubble-tight shut-off.
3. Fixed venturi, upstream of valve.
4. Schraeder type taps on venturi, upstream and downstream.
5. Memory stop device to allow valve to be returned to balanced position after being closed. (Note: this does not take the place of isolation valves shown on drawings)
6. Provide metal tag with flow curve for each valve.
2.6 PORTABLE FLOW METER READ-OUT KITS:

A. Provide flow meter read-out kits with bellows type differential pressure element and minimum 5 inch diameter indicating dial.

B. Design pressure elements for full scale pressure differential of 50 inches or 100 inches water gauge. Design shall incorporate rupture-proof metal beryllium or stainless steel bellows and torque tube drive requiring no lubrication. Design forged bodies for not less than 150 percent of maximum surge pressure, fully protected against surges, with full provision for venting and draining. Provide integral, adjustable pulsation dampers.

C. Dials of portable meters shall have square root scales not less than 12 inches in developed length. Dials shall read from 0 to 10 gpm to which multiplier is to be applied, as required; also provide with uniform scale reading from 0 inches to 10 inches w.g., to which multiplier of 10 to be applied (100 inches at full scale), or from 0 inches to 5 inches w.g., to which multiplier of 10 is to be applied (50 inches at full scale).

D. Engineer and manufacture in accordance with ASME recommendations for flowmeters. Provide portable meters with overall accuracy of ± 2 percent between 20 to 80 percent of range.

E. Provide flow meter with factory-fabricated carrying case with integral carrying handle. Case shall be fitted to hold meter and following accessories.
 1. Two 12 feet lengths of connecting hose with suitable female connectors for connecting to venturi tube pressure tap nipples. Design hose for operating pressure of minimum of 150 percent of maximum system operating pressure.
 2. Completely assembled 3-value manifold with 2 block valves and vent and drain valves shall be piped and mounted on base, which shall be designed for use laying flat on stationary base.
 3. Bound set of descriptive bulletins, installation and operating instructions, parts list, and set of curves showing flow verses pressure differential for each orifice or venturi tube with which meter is to be used.
 4. Metal instruction plate, secured inside cover, illustrating use of meter. Deliver meter with case to Owner.

PART 3 EXECUTION

3.1 INSPECTION:

A. Examine areas and conditions under which meters and gauges are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 INSTALLATION OF PRESSURE GAUGES:

A. General: Install pressure gauges in piping tee with pressure gauge cock, located on pipe at most readable position.

B. Locations: Install in the following locations, and elsewhere as indicated:
 1. At water service outlet.
 2. At BAS heating or coding differential pressure sensor.
C. Pressure Gauge Cocks: Install in piping tee with snubber. Install syphon for steam pressure gauges.

D. Pressure Gauge Connector Plugs: Install in piping tee where indicated, located on pipe at most readable position. Secure cap. Provide portable pressure gauge for each plug connection.

3.3 INSTALLATION OF FLOW MEASURING METERS:

A. General: Install flow measuring meters on piping systems located in accessible locations at most readable position.

B. Locations: Install in the following locations, and elsewhere as indicated.

1. At inlet of each hydronic coil in built-up control systems.

C. Wafer-Type Flow Meters: Install between 2 Class 125 pipe flanges, ANSI B16.1 (cast-iron) or ANSI B16.24 (cast-bronze). Provide minimum straight lengths of pipe upstream and downstream from meter in accordance with manufacturer's installation instructions.

D. Calibrated Balance Valves: Install on piping with readout valves in vertical upright position. Maintain minimum length of straight unrestricted piping equivalent to 5 pipe diameters upstream of valve and/or fitting.

3.4 TESTING, CLEANING AND CERTIFICATION:

A. Adjusting: Adjust faces of meters and gauges to proper angle for best visibility.

B. Cleaning: Clean windows of meters and gauges and factory-finished surfaces. Replace cracked or broken windows, repair any scratched or marred surfaces with manufacturer's touch-up paint.

C. Certification: Provide meters and gauges whose accuracies, under specified operating conditions, are certified by manufacturer.

END OF SECTION
SECTION 23 05 23 - GENERAL DUTY VALVES FOR PIPING

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. This Section includes general duty valves common to most mechanical piping systems.

B. Valves tags and charts are specified in Division 23 Section "Mechanical Identification."

1.2 SUBMITTALS:

A. Product Data: including body material, valve design, pressure and temperature classification, end connection details, seating materials, trim material and arrangement, dimensions and required clearances, and installation instructions.

1.3 QUALITY ASSURANCE:

A. Single Source Responsibility: Comply with the requirements specified in Division-23 Section "Basic Mechanical Requirements," under "Product Options."

B. MSS Standard Practices: Comply with the following standards for valves:

1. MSS SP-45: Bypass and Drain Connection Standard
2. MSS SP-67: Butterfly Valves
3. MSS SP-70: Cast Iron Gate Valves, Flanged and Threaded Ends
4. MSS SP-71: Cast Iron Swing Check Valves, Flanged and Threaded Ends
5. MSS SP-72: Ball Valves with Flanged or Butt-Welding Ends for General Service
6. MSS SP-78: Cast Iron Plug Valves, Flanged and Threaded Ends
7. MSS SP-80: Bronze Gate, Globe Angle and Check Valves
8. MSS SP-84: Steel Valves - Socket Welding and Threaded Ends
9. MSS SP-85: Cast Iron Globe and Angle Valves, Flanged and Threaded Ends
10. MSS SP-92: MSS Valve User Guide

C. NSF Standard 61: Drinking Water System Components.

1.4 DELIVERY, STORAGE, AND HANDLING:

A. Preparation for Transport: Prepare valves for shipping as follows:

1. Ensure valves are dry and internally protected against rusting and galvanic corrosion.
2. Protect valve ends against mechanical damage to threads, flange faces and weld end preps.
3. Set valves in best position for handling. Globe and gate valves shall be closed to prevent rattling; ball and plug valves shall be open to minimize exposure of functional surfaces; butterfly valves shall be shipped closed or slightly open; and swing check valves shall be blocked in either closed or open position.

B. Storage: Use the following precautions during storage:

1. Valves shall be stored and protected against all dirt, debris and foreign material at all times.
2. Do not remove valve end protectors unless necessary for inspection; then reinstall for storage.

3. Protect valves against weather. Where practical store valves indoors. Maintain valve temperature higher than the ambient dew point temperature. If outdoor storage is necessary, support valves off the ground or pavement and protect in watertight enclosures.

C. Handling: Valves whose size requires handling by crane or lift shall be slung or rigged to avoid damage to exposed valve parts. Handwheels and stems, in particular, shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by the manufacturers listed.

1. Ball Valves:
 a. Apollo
 b. Crane
 c. Jamesbury
 d. Jenkins

2. Eccentric Plug Valves:
 a. Keystone/Tyco
 b. DeZurik
 c. Milliken
 d. Homestead

3. Globe Valves:
 a. Stockham
 b. Crane
 c. Jenkins
 d. Walworth

4. Butterfly Valves:
 a. Keystone
 b. DeZurik
 c. Crane
 d. Jenkins
 e. Stockham
 f. Centerline

5. Swing Check Valves
 a. Apollo
 b. Anvil
 c. Nibco
 d. Watts (screwed)

6. Non-Slam Check Valves:
2.2 VALVE FEATURES:

A. General: Comply with MSS-92 1980 "Valve Users Manual".

B. Valve Design: Valves shall have rising stem, or rising stem outside screw and yoke design; except, non-rising stem valves may be used where headroom prevents full operation of rising stem valves.

C. Sizes: Unless otherwise indicated, provide valves of same size as upstream pipe size. (Control valves shall be sized for required flow.)

D. Operators: Provide the following special operator features:

1. Handwheels, fastened to valve stem for valves other than quarter turn.

2. Lever handle on quarter turn valves 6 inch and smaller, except plug valves. Provide a wrench for every plug valve.

3. Chainwheel operators for valves 4" and larger that are installed 84" or higher above finished floor elevation. Provide chains to an elevation of 6'-0" above finished floor elevation.

4. Worm gear operators of an enclosed weather-proof design shall be provided on all quarter turn valves 8 inches and larger.

E. Extended Stems: Where insulation is indicated or specified, provide extended stems to allow full operation of the valve without interference by the insulation.

F. Bypass and Drain Connections: Comply with MSS SP-45.

G. End Connections: As specified in the individual valves specifications.

 a. Caution: Where soldered end connections are used, use solder having a melting point below 840 °F for gate, globe, and check valves and below 421 °F for ball valves.

2.3 BALL VALVES:
 A. Blowout proof stems 3-piece, full port type, brass or bronze body, chrome plated or stainless steel ball, Teflon seals and seat, vinyl covered handle with memory stop. Pressure rating 150 psi SWP and 600 psi WOG.
 B. Ball valves shall be 2" or less. Larger pipe sizes shall require butterfly valves.
 C. Ball valve options/accessories: Provide the following as required or as specifically indicated:
 1. Tee handle for tight fit applications (within enclosures, etc.).
 2. Locking handle.
 3. Drain.
 4. Stem extension.
 5. Mounting pads.

2.4 ECCENTRIC PLUG VALVES:
 A. 2 inches and Smaller: 125 psi, cast iron body, straightway pattern, EPDM or C11R Encapsulated Eccentric plug, tight shut-off seals, square head, threaded ends. Provide memory stop feature.
 Dezurik PEC
 B. 2-1/2 inches and Larger Sizes: 125 psi, cast iron body, straightway pattern, EPDM or C11R Encapsulated Eccentric plug, lever actuators, except handwheels where indicated, and flanged ends. Provide memory stop feature.
 Dezurik PEC

2.5 GLOBE VALVES:
 A. Renewable disc, rising stem. Install where throttling may be.

2.6 CHECK VALVES:
 A. Swing Check Valves - 2-1/2 Inch and Smaller: MSS SP-80; Class 125 WSP 200, cast bronze body and cap conforming to ASTM B 62, ASTM B61 for 200bronce, horizontal swing design, Y-pattern, with a bronze disc, stainless steel pin and having threaded or solder ends. Class 150 valves meeting the above specifications may be used where pressure requires or Class 125 are not available.
 B. Swing Check Valves - 2-1/2 to 3 Inch: MSS SP-71; Class 125 (Class 175 FM approved for fire protection piping systems), cast iron body and bolted cap conforming to ASTM A 126, Class B; horizontal swing, with a bronze disc or cast iron disc with bronze disc ring, and flanged ends. Valve shall be capable of being refitted while the valve remains in the line. For sewage ejector and sump pump discharge swing check valves 2-1/2 inches and larger, provide outside lever with weight or spring to assist disc to close rapidly.
 C. Non-Slam Check Valves - 2 Inch and smaller: Bronze body, 200 psi @ 250 °F., threaded ends, resilient seats, center guided spring loaded disk.
D. Non-Slam Check Valves - 2-1/2 Inch and Larger: Class 125 cast iron or stainless steel body, replaceable lapped bronze seat and balanced twin bronze flappers or bronze center guided disc and stainless steel trim. Valve shall be designed to open and close at approximately one foot differential pressure. Twin flappers or center guided disc shall be loaded with a stainless steel spring to assure even non-slam checking action. Seals shall be EPDM.

E. Lift Check Valves 2 Inch and Smaller: Class 125, cast bronze body and cap conforming to ASTM B 62, horizontal or angle pattern, lift type valve, with stainless steel spring, bronze disc holder with renewable "Teflon" disc, and threaded ends. Valve shall be capable of being refitted and ground while the valve remains in the line.

2.7 DRAIN VALVES:

A. For Hydronic and Plumbing Systems: Provide ball valve with threaded hose end and cap with chain.

Apollo Fig. 78-165-01

PART 3 - EXECUTION

3.1 EXAMINATION:

A. Install valves in accordance with manufacturer’s instructions.

B. Examine valve interior through the end ports, for cleanliness, freedom from foreign matter and corrosion. Remove special packing materials, such as blocks used which prevents disc movement during shipping and handling.

C. Actuate valve through an open-close and close-open cycle. Examine functionally significant features, such as guides and seats made accessible by such actuation. Following examination, return the valve closure member to the position in which it was shipped.

D. Examine threads on both the valve and the mating pipe for form (out-of-round or local indentation) and cleanliness.

E. Examine mating flange faces for conditions which might cause leakage. Check bolting for proper size, length, and material. Check gasket material for proper size and material, and for freedom from defects and damage.

F. Prior to valve installation, examine the piping for cleanliness, freedom from foreign materials, and proper alignment.

3.2 VALVE SELECTION:

A. Selection of Valve Ends (Pipe Connections): Except as otherwise indicated, select valves with the following ends or types of pipe/tube connections:

1. Copper Tube Size 2 Inch and Smaller: Solder ends, except in heating hot water service which shall have threaded ends.

2. Steel Pipe Sizes 2 Inch and Smaller: Threaded or grooved-end.

3. Steel Pipe Sizes 2-1/2 Inch and Larger: Flanged or grooved end.

3.3 VALVE INSTALLATIONS:
Valve Application Table

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>VALVE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbing Water Services; 2" or smaller</td>
<td>Ball Valve</td>
</tr>
<tr>
<td>Plumbing Pressure Reducing Bypass; all sizes</td>
<td>Globe Valve</td>
</tr>
<tr>
<td>Plumbing Balancing Service; 2" and smaller</td>
<td>Calibrated Balancing Valve See Section 23 05 19</td>
</tr>
<tr>
<td>HVAC Hydronic Piping; 2" and smaller</td>
<td>Ball Valve</td>
</tr>
<tr>
<td>HVAC Hydronic Pressure Reducing Valve Bypass; all sizes</td>
<td>Globe Valve</td>
</tr>
<tr>
<td>HVAC Hydronic Balancing valve; 2" and smaller</td>
<td>Calibrated Balancing Valve See Section 23 05 19</td>
</tr>
<tr>
<td>HVAC & Plumbing Check Valves; 2" and smaller</td>
<td>Swing Check</td>
</tr>
<tr>
<td>HVAC & Plumbing Check Valves; 2-1/2" and larger</td>
<td>Swing Check</td>
</tr>
<tr>
<td>HVAC & Plumbing Pump Discharge Check Valve; 3" and larger</td>
<td>Non-Slam Spring Loaded</td>
</tr>
</tbody>
</table>

A. Locate valves for easy access and provide separate support where necessary.

B. Install valves and unions for each fixture and item of equipment in a manner to allow equipment removal without system shut-down. Unions are not required on flanged devices.

C. Install 3-valve bypass around each pressure reducing valve using throttling type valves.

D. Globe valves shall be installed with the stem in the upright position. In overhead horizontal piping, ball valves shall be installed with the handle in the side or bottom of the piping. Butterfly valves shall be installed with the stem within 45 degrees of the horizontal position. The handle of quarter turn valves shall open in the direction of flow. Quarter turn valves with hand wheels or chain wheels shall be located so that the position indicator is visible from the floor without the use of a ladder or climbing on equipment or piping.

E. Installation of Check Valves: Install for proper direction of flow as follows:
 1. Swing Check Valves: Install in horizontal position with hinge pin level.
 2. Wafer Check Valves: Install between 2 flanges in horizontal or vertical upward flow position.
 3. Lift Check Valve: Install in piping line with stem upright and plumb.

3.4 SOLDER CONNECTIONS:

A. Cut tube square and to exact lengths.

B. Clean end of tube to depth of valve socket, using steel wool, sand cloth, or a steel wire brush to a bright finish. Clean valve socket in same manner.

C. Apply proper soldering flux in an even coat to inside of valve socket and outside of tube.

D. Open globe valves to fully open position.
E. Remove the cap and disc holder of swing check valves with composition discs.

F. Insert tube into valve socket making sure the end rests against the shoulder inside valve. Rotate tube or valve slightly to insure even distribution of the flux.

G. Apply heat evenly to outside of valve around joint until solder will melt upon contact. Feed solder until it completely fills the joint around tube. Avoid hot spots or overheating the valve. Once the solder starts cooling, remove excess amounts around the joint with a cloth or brush.

3.5 BRAZED CONNECTIONS:

A. Protect valves from temperatures which exceed the valve material temperature limitations as recommended by the valve manufacturer.

B. Disassemble 3 piece ball valves prior to brazing.

3.6 THREADED CONNECTIONS:

A. Note the internal length of threads in valve ends, and proximity of valve internal seat or wall, to determine how far pipe should be threaded into valve.

B. Align threads at point of assembly.

C. Apply appropriate tape or thread compound to the external pipe threads (except where dry seal threading is specified).

D. Assemble joint wrench tight. Wrench on valve shall be on the valve end into which the pipe is being threaded.

3.7 FLANGED CONNECTIONS:

A. Align flanges surfaces parallel.

B. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly using a torque wrench.

3.8 GROOVED CONNECTIONS:

A. Grooved connections shall be provided only where specified or approved by the Engineer.

B. Assembly valves with grooved end in accordance with manufacturers published instructions.

C. Clean pipe ends from indentations, projections, burrs and roll marks from pipe to groove.

D. Provide gasket, flanges, fittings, bolts, nuts, lubrication applied per manufacturer’s instructions for intended service.

3.9 FIELD QUALITY CONTROL:

A. Testing: After piping systems have been tested and put into service, but before final adjusting and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks; replace valve if leak persists.
3.10 ADJUSTING AND CLEANING:

A. Cleaning: Clean mill scale, grease, and protective coatings from exterior of valves and prepare to receive finish painting or insulation.

END OF SECTION
SECTION 23 05 53 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacturer of identification devices of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. ANSI Standards: Comply with ANSI A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data and installation instructions for each identification material and device required.

B. Schedules: Submit valve schedule for each piping system, typewritten and reproduced on 8-1/2" x 11" bond paper. Tabulate valve number, piping system, system abbreviation (as shown on tag), location of valve (room or space), size of valve, and variations for identification (if any). Only tag valves which are intended for emergency shut-off and similar special uses, such as valve to isolate individual system risers, individual floor branches or building system shut off valves. In addition to mounted copies, furnish extra copies for Maintenance Manuals as specified in Division 23.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

B. Mechanical Identification:

1. Seton Name Plate Corp.
2. Marking Systems, Inc. (MSI)

C. Paint:

1. Benjamin Moore
2. Devoe
3. Glidden

2.2 MECHANICAL IDENTIFICATION MATERIALS:

A. General: Provide manufacturer's standard products of categories and types required for each application as referenced in other Division-23 sections. Where more than single type is specified for application, selection is Installer's option, but provide single selection for each product category.
2.3 PAINTED IDENTIFICATION MATERIALS:
A. Stencils: Standard metal stencils, prepared for required applications with letter sizes generally complying with recommendations of ANSI A13.1 for piping or to match existing size in existing building, but not less than 1-1/4” high letters for ductwork and not less than 3/4” high letters for access door signs and similar operational instructions.
B. Stencil Paint: Standard exterior type oil based alcolloid glass spray paint color complying with NEMA 2535.1.
C. Identification Paint: Standard identification enamel of colors indicated or, if not otherwise indicated comply with ANSI A13.1 for colors or to match existing building standard identification.

2.4 PLASTIC PIPE MARKERS:
A. Snap-On Type: Provide manufacturer's standard pre-printed, semi-rigid snap-on, color-coded pipe markers, complying with ANSI A13.1.
B. Insulation: Furnish 1 inch thick molded fiberglass insulation with jacket for each plastic pipe marker to be installed on uninsulated pipes subjected to fluid temperatures of 125 degrees F. (52 degrees C.) or greater. Cut length to extend 2 inches beyond each end of plastic pipe marker.
C. Small Pipes: For external diameters less than 6 inches (including insulation if any), provide full-band pipe markers, extending 360 degrees around pipe at each location taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 3/4 inch wide; full circle at both ends of pipe marker, tape lapped 1-1/2 inch.
D. Large Pipes: For external diameters of 6 inches and larger (including insulation if any), provide either full-band or strip-type pipe markers, but not narrower than 3 times letter height (and of required length), taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 1-1/2 inches wide; full circle at both ends of pipe marker, tape lapped 3 inches.
E. Lettering: Comply with piping system nomenclature as specified, scheduled, shown, or to match existing building lettering nomenclature system and abbreviate only as necessary for each application length.
F. Arrows: Print each pipe marker with arrows indicating direction of flow, either integrally with piping system service lettering (to accommodate both directions), or as separate unit of plastic.

2.5 PLASTIC DUCT MARKERS:
A. General: Provide manufacturer's standard laminated plastic, duct markers.
B. For hazardous exhausts, use colors and designs recommended by ANSI A13.1.
C. Nomenclature: Include the following:
 1. Direction of air flow.
 2. Duct service (supply, return, exhaust, etc.)

2.6 PLASTIC TAPE:
A. General: Provide manufacturer's standard color-coded pressure-sensitive (self-adhesive) vinyl tape, not less than 3 mils thick.
B. Width: Provide 1-1/2 inches wide tape markers on pipes with outside diameters (including insulation, if any) of less than 6 inches, 2-1/2 inches wide tape for larger pipes.

C. Color: Comply with ANSI A13.1, except where another color selection is indicated.

2.7 VALVE TAGS:

A. Engraved Anodized Aluminum or Plastic Valve Tags: Provide manufacturer's standard 3/32 inch thick valve tags, with piping system abbreviation in ¼ inch high letters and sequenced valve numbers ½ inch high, and with 5/32 inch hole for fastener.

1. Provide 2" diameter black tags with white lettering, except as otherwise indicated.

B. Valve Tag Fasteners: Provide manufacturer's standard solid brass chain (wire link or beaded type), and solid brass S-hooks of the sizes required for proper attachment of tags to valves, and manufactured specifically for that purpose.

C. Access Panel Markers: Provide manufacturer's standard 1/16 inch thick engraved plastic laminate access panel markers, with abbreviations and numbers corresponding to concealed valve. Include 1/8 inch center hole to allow attachment.

2.8 VALVE SCHEDULE FRAMES:

A. General: For each page of valve schedule, provide glazed display frame, with screws for removable mounting on masonry walls. Provide frames of finished hardwood or extruded aluminum, with non-glare type sheet glass.

2.9 ENGRAVED PLASTIC-LAMINATE SIGNS:

A. General: Provide engraving stock melamine plastic laminate, complying with FS L-P-387, in the sizes and thicknesses indicated, engraved with engraver's standard letter style of the sizes and wording indicated, black with white core (letter color) except as otherwise indicated, punched for mechanical fastening except where adhesive mounting is necessary because of substrate.

B. Thickness: 1/16 inch, except as otherwise indicated.

C. Fasteners: Self-tapping stainless steel screws, except contact-type permanent adhesive where screws cannot or should not penetrate the substrate.

2.10 PLASTICIZED TAGS:

A. General: Manufacturer's standard pre-printed or partially pre-printed accident-prevention tags, of plasticized card stock with matt finish suitable for writing, approximately 3-1/4 inch x 5-5/8 inch, with brass grommets and wire fasteners, and with appropriate pre-printed wording including large-size primary wording (as examples; DANGER, CAUTION, DO NOT OPERATE).
2.11 LETTERING AND GRAPHICS:

A. General: Coordinate names, abbreviations and other designations used in mechanical identification work, with corresponding designations shown, specified, scheduled and approved by the Owner/Engineer. Provide numbers, lettering and wording as indicated and approved by the Owner/Engineer for proper identification and operation/maintenance of mechanical systems and equipment.

B. Multiple Systems: Where multiple systems of same generic name are shown and specified, provide identification which indicates individual system number as designated on the drawings or schedule as well as service.

PART 3 - EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS:

A. Coordination: Where identification is to be applied to surfaces which require insulation, painting or other covering or finish including valve tags in finished mechanical spaces, install identification after completion of covering and painting. Install identification prior to installation of acoustical ceilings and similar removable concealment.

3.2 DUCTWORK IDENTIFICATION:

A. General: Identify air supply, return, exhaust, intake and relief ductwork and duct access doors with duct markers; or provide stenciled signs and arrows, showing ductwork service and direction of flow, in black or white (whichever provides most contrast with ductwork color). Existing building identification shall match the existing method which exists in the building.

B. Location: In each space where ductwork is exposed, or concealed only by removable ceiling system, locate signs near points where ductwork originates or continues into concealed enclosures (shaft, underground or similar concealment), and at 50 foot spacing along exposed runs.

C. Access Doors: Provide duct markers or stenciled signs on each access door in ductwork and housings, indicating purpose of access (to what equipment), other maintenance and operating instructions, and appropriate safety and procedural information.

D. Concealed Doors: Where access doors are concealed above acoustical ceilings or similar concealment, plasticized tags may be installed for identification in lieu of specified signs, at Installer's option.

3.3 PIPING SYSTEM IDENTIFICATION:

A. General: Install pipe markers of the following type on each system indicated to receive identification, and include arrows to show normal direction of flow. Existing building identification shall match the existing method which exists in the building.

B. Plastic pipe markers, with application system as indicated under "Materials" in this section. Install on pipe insulation segment where required for hot non-insulated pipes.

C. Locate pipe markers and color bands as follows wherever piping is exposed to view in occupied spaces, machine rooms, accessible maintenance spaces (shafts, tunnels, crawl spaces plenums) and exterior non-concealed locations.

D. Within 3 inches of each valve and control device.
E. Near each branch, excluding short take-offs for fixtures and terminal units; mark each pipe at branch, where there could be question of flow pattern.

F. Near locations where pipes pass through walls or floors/ceilings, or enter non-accessible enclosures.

G. At access doors, manholes and similar access points which permit view of concealed piping.

H. Near major equipment items and other points of origination and termination.

I. Spaced intermediately at maximum spacing of 25 feet along each piping run, except reduce spacing to 15’ in congested areas of piping and equipment.

J. On piping above removable acoustical ceilings.

K. Pipes under ¾" O.D. fasten tags securely at specified legend locations.

L. Legend on gas and vacuum systems: Include working pressure or vacuum.

3.4 VALVE IDENTIFICATION:

A. General: Provide valve tag on valves in each piping system. List each tagged valve in valve schedule for each piping system.

1. Building services main shut-off valves.
2. Each individual system main shut-off valves.
3. Each individual system riser shut-off valves.
4. Each individual system floor shut-off valves.
5. Each individual system major branch shut-off valves.

B. Mount valve schedule frames and schedules in mechanical equipment rooms where directed by University Project Manager.

C. Where more than one major mechanical equipment room is shown for project, install mounted valve schedule in each major mechanical equipment room, and repeat only main valves which are to be operated in conjunction with operations of more than single mechanical equipment room.

3.5 MECHANICAL EQUIPMENT IDENTIFICATION:

A. General: Install minimum 2 inch x 4 inch engraved plastic laminate equipment marker on each individual items of mechanical equipment. Install nameplate or stencil as to plan code number, services and areas or zones served. Provide marker for the following general categories of equipment.

1. Main building systems control and operating valves, including safety devices and hazardous units such as gas outlets.
2. Room thermostats, except gun tag labels are acceptable for room thermostats.
3. Fans and blowers.
4. Air terminal units.

B. Lettering Size: Minimum 1/4 inch high lettering for name of unit.

C. Text of Signs: In addition to the identified unit, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.
D. Identify locations of air handling devices which have filters and are above accessible ceilings by a blue circular dot or tack at least ¾" in diameter, or embossed tape, adhered to the nearest T-bar.

3.6 ACCESS DOORS:

A. Provide engraved nameplates or painted stencils to identify concealed valves, controls, dampers or other similar concealed mechanical equipment above accessible ceilings.

B. Access door for fire damper shall be painted red. Location above accessible ceilings shall be identified with a red circular dot at least ¾" in diameter, or embossed tape, adhered to the nearest T-bar.

3.7 LIFT-OUT CEILINGS:

Provide engraved nameplates on ceiling tee stem (screwed or riveted, adhesive not allowed) to identify concealed valves, terminal boxes, fans, fire/smoke dampers or similar concealed mechanical equipment that is directly above nameplate in ceiling space.

A. Obtain the University Project Manager's approval before installation.

3.8 SCHEDULES:

A. Piping Identification:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Color of Field</th>
<th>The Campus Letters</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Inherently Hazardous:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammable or Explosive:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Yellow</td>
<td>Black</td>
<td>NG</td>
</tr>
<tr>
<td>Lab Waste</td>
<td>Yellow</td>
<td>Black</td>
<td>AW</td>
</tr>
<tr>
<td>Extreme Temperatures or Pressures:</td>
<td>Yellow</td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Yellow</td>
<td>Black</td>
<td>Dom HW</td>
</tr>
<tr>
<td>Domestic Hot Water, Circulating</td>
<td>Yellow</td>
<td>Black</td>
<td>Dom HWC</td>
</tr>
<tr>
<td>Heating Water Supply</td>
<td>Yellow</td>
<td>Black</td>
<td>HWS</td>
</tr>
<tr>
<td>Heating Water Return</td>
<td>Yellow</td>
<td>Black</td>
<td>HWR</td>
</tr>
<tr>
<td>Materials of Inherently Low Hazard:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid or Liquid Admixture:</td>
<td>Green</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Distilled Water</td>
<td>Green</td>
<td>White</td>
<td>DW</td>
</tr>
<tr>
<td>Domestic Cold Water</td>
<td>Green</td>
<td>White</td>
<td>Dom CW</td>
</tr>
<tr>
<td>Service Type</td>
<td>Color 1</td>
<td>Color 2</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sanitary Sewer</td>
<td>Green</td>
<td>White</td>
<td>SAN</td>
</tr>
<tr>
<td>Waste Vent</td>
<td>Green</td>
<td>White</td>
<td>V</td>
</tr>
<tr>
<td>Chilled Water Supply</td>
<td>Green</td>
<td>White</td>
<td>CWS</td>
</tr>
<tr>
<td>Chilled Water Return</td>
<td>Green</td>
<td>White</td>
<td>CWR</td>
</tr>
<tr>
<td>Condenser Water Supply</td>
<td>Green</td>
<td>White</td>
<td>CS</td>
</tr>
<tr>
<td>Condenser Water Return</td>
<td>Green</td>
<td>White</td>
<td>CR</td>
</tr>
<tr>
<td>Gas or Gaseous Admixture:</td>
<td>Blue</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Vacuum</td>
<td>White</td>
<td>Black</td>
<td>VAC</td>
</tr>
<tr>
<td>Fire Quenching Materials:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Lines</td>
<td>Red</td>
<td>White</td>
<td>FL</td>
</tr>
</tbody>
</table>

B. Mechanical Equipment Naming Strategy:

1. Equipment identification numbers may be up to 32 characters. Equipment naming strategy is:

 System – Bld – Number

 ###-########-###-####

2. The first three placeholders are reserved for the system designation (alpha characters)
3. The fourth character is a hyphen.
4. The fifth through ninth placeholders are reserved for the building designation (alpha and/or numeric)
5. The tenth character is a hyphen
6. The eleventh through sixteenth placeholders are a “smart number.” It is composed of a two-digit, alpha or numeric, floor location designator followed by a hyphen and a three digit numeric sequential indicator.
7. The seventeenth character is a hyphen
8. In some instances the point name will be followed by a hyphen and a sub-point name
9. All device and point names will be assigned by the Facilities Operations, Building Operations Department.
10. All references to equipment and devices in drawings, labels, equipment tags, BAS system, etc., must use this naming convention.
11. Equipment designation, for prints may exclude the building designator.

3.9 **ADJUSTING AND CLEANING:**

A. Adjusting: Relocate any mechanical identification device which has become visually blocked by work of this division or other divisions.

B. Cleaning: Clean face of identification devices, and glass frames of valve charts.

END OF SECTION
SECTION 23 05 93 - TESTING, ADJUSTING AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. This section covers testing and balancing of environmental systems described herein and specified under Division 23. The testing and balancing of all environmental systems shall be the responsibility of one Testing, Balancing and Adjusting firm.

1. Test, adjust and balance the following mechanical systems and the mechanical equipment associated with these systems:

b. Air Side Systems and Equipment
 1) Supply/Return Air Systems
 2) Air Handling Units (Includes Fan Coil and Terminal Units)
 3) General Exhaust Systems
 4) Laboratory Facility Systems

c. Hydronic Systems and Equipment
 1) Heating/Chilled water systems
 2) Hydronic coils

d. Plumbing
 1) General

e. Electrical Components
 1) Manual and magnetic starters

f. Control Systems and Equipment
 1) General

B. Items such as start-up, initial testing, cleaning, and calibration of controls, electrical testing, etc., are to be completed prior to the commencement of TAB work.

1.2 QUALIFICATIONS OF CONTRACTOR:

A. The Mechanical Contractor shall procure the services of an independent testing and balancing agency specializing in the testing, adjusting and balancing of environmental systems to perform the above mentioned work. An independent contractor is defined as an organization that is not engaged in engineering design or is not a division of a mechanical contractor entity, which installs mechanical systems.

B. The actual fieldwork shall be performed by qualified technicians who are currently certified by the National Environmental Balancing Bureau (NEBB), or the Associated Air Balance Council (AABC) certification agencies.
C. The Testing & Balancing Contractor shall have a minimum of three years experience in testing and balancing mechanical systems.

D. The Test & Balance Contractor shall have previous experience in testing and balancing variable air volume laboratory fume hood systems in the last two years. Qualification submission must include a detailed resume describing past project experience in laboratory variable air volume systems, a list of projects, including peoples’ names, phone numbers and addresses of references.

E. Testing and balancing work shall be directly supervised by a Registered Engineer, NEBB or AABC certified supervisor and the results attested to by a Registered Professional Engineer or certified supervisor on the Testing & Balancing Contractor’s staff. The Engineer/Supervisor shall represent the Testing & Balancing Contractor in progress meetings as requested, and shall be available for interpreting all material found in the balance report.

1.3 APPROVAL OF CONTRACTOR:

A. The following firms are preferred contractors to complete the work. Any Testing and Balancing firm desiring to offer their services for this work and who are not listed below, shall submit their qualifications to the [Architect/Engineer], not less than [seven (7) working days before the bid date. Approval or disapproval will be given on each request and this action will be given in writing prior to bidding the work.

1. Complete Mechanical Balancing
2. JPG Engineering
3. Griffith Engineering
4. Lawrence H. Finn & Assoc.
5. TAB Services, Inc.
6. Superior Balancing and Commissioning
7. JEDI Balancing

B. Firms who are not listed, or who have not received prior approval shall not be approved to complete work on this project.

1.4 CODES AND STANDARDS:

1.5 PRELIMINARY SUBMITTALS:

A. Within ten (10) days of award of the contract the Mechanical Contractor shall submit the name of the Test and Balance Contractor who will be performing the work. The submittal shall include a resume of the agency, a complete list of all technicians who will be performing the field work and include a photocopy of their current certification by either NEBB or AABC certification agencies. Only those technicians included in the submittal shall perform the work. Any personnel or staff used to perform the work without prior approval of the Engineer, who are not included in the submittal, shall be grounds for rejecting the test and balance report and the project in whole.

B. Meet all requirements of Section 230000 as applicable.

C. Submit a list of all instrumentation to be used on an individual project and include calibration dates. Submit calibration curves. If more than one instrument of a similar type is used, a comparison of
individual readings should be made. The variation between instrument readings should not exceed plus or minus 5%.

D. Prior to the start of any test and balance work of the mechanical system, the Contractor shall submit, for approval, a written procedure of how balance will be performed and a description and manufacturer’s name of equipment and instruments to be used. The submittal shall include, but not necessarily be limited to the following:

1. List of preliminary checks to be performed at the job site such as confirmation that manual volume dampers are present, filters are installed, frequency drive units operational, location of control sensors, etc.
2. Identify how the air outlets will be measured and the type of instruments to be used.
3. Locations of pilot traverses and the type of instruments to be used.
4. Modes of operation that the system will be placed in during balancing and testing, i.e., full cooling and heating, minimum cooling and heating, etc.
5. Position of doors and windows during balance, i.e., some labs should be balanced with doors shut.
6. Operating static pressures for terminal devices and pressure sensors for controlled devices.
8. Final test procedures.
9. List of deficiencies in mechanical system that could hinder the balance work such as missing or leaky dampers, incomplete systems, inadequate fans, etc.
10. Sample of data sheets and test forms to be used in final report.
11. Identification and manufacturer’s name of equipment to be used on project and proof of last calibration on each piece.

E. Progress Report(s) – Report, in writing, any deficiencies or problems with air or water systems that have affected balance work. Include items that affect system performance such as broken thermostats, damaged ductwork, excessive noise, etc.

1.6 FINAL REPORTS:

A. Refer to Division 1 for supplemental requirements.

B. The Testing and Balancing Contractor shall submit six (6) bound copies of the final testing and balancing report at least fifteen (15) calendar days prior to substantial completion, unless noted otherwise in Division 1. Report contents shall be per Part 3 of this Section.

C. Meet all requirements of Section 23 00 00 as applicable.

D. If more than two reports are made by the contractor, the Owner reserves the right to charge the contractor for subsequent reviews by their consultants. Such extra fees shall be deducted from payments by the Owner to the contractor.

E. Guarantee of Work: TAB contractor shall guarantee the balancing for a period of 90 days from date of acceptance of final report. During this period, the TAB contractor shall make personnel available at no cost to the university to verify measurements and/or correct deficiencies in the balance. During this period, emergency adjustments shall not void this warranty.

1.7 SEQUENCING AND SCHEDULING:

A. Notify Contractor/Engineer/Architect in writing of conditions detrimental to the proper completion of the test and balance work. Provide the Contractor/Architect/Engineer with a copy of the notification.
B. Prepare a project schedule. Schedule shall indicate critical path of the balancing process and shall incorporate both requirements of other contractors necessary to meet test and balance commitments and process flow of test and balance work. Coordinate with general and mechanical contractors and insert critical steps into project master schedule.

PART 2 - PRODUCTS

2.1 BELTS, SHEEVES:

A. Refer to specific equipment sections and Section 23 00 00 for additional requirements.

B. The Testing & Balancing Contractor shall coordinate with the Mechanical Contractor to supply correctly sized drive belts and sheaves.

C. The Test & Balance Contractor shall determine the fan belt and sheave replacement necessary for final balance condition for specified air quantity without placing the motor over its nameplate amp rating.

PART 3 - EXECUTION

3.1 PRELIMINARY PROCEDURES:

A. Testing and balancing shall not begin until the system has been completed and is in full working order and the following project conditions have been determined suitable for start of work.

1. Pre-Balancing Conference: Before beginning testing, adjusting, and balancing procedures, schedule and conduct a conference with University Project Manager, Facilities Operations Representative(s) and representatives of installers of mechanical and control systems. Conference objective is final coordination and verification of system operation and readiness for testing, adjusting, and balancing, and assigning testing responsibilities of each installer.

2. Preliminary Testing & Balancing Contractor requirements shall be ascertained prior to the commencement of work through a review of the project plans and specifications. In addition, visual observations at the site during construction shall be made to determine the location of required balancing devices, that they are being installed properly, and in an accessible location for the need. Report in writing any deficiencies to the Contractor/Engineer/Architect immediately.

3. Systems shall be complete and fully operational prior to beginning procedures. Insure all items such as thermometer wells, pressure test-cocks, access doors, etc., are installed to facilitate tests and adjustments.

4. Before any air balance work is done, the system shall be checked for duct leakage (obtain pressure test results), assure filters are installed, verify filters are changed if they are dirty, check for correct fan rotation, equipment vibration, and check automatic dampers for proper operation. All volume control dampers and outlets shall be wide open at this time.

5. Before any Hydronic, domestic water or applicable system balancing work is done, the systems shall be checked for plugged strainers, proper pump rotation, proper control valve installation and operation, air locks, proper system static pressure to assure a full system, proper flow meter and check valve installation. All throttling devices and control valves shall be open at this time.

6. Verify systems do not exhibit excessive sound and/or vibration levels. Report in writing any deficiencies to the Contractor/Engineer/Architect immediately.

3.2 GENERAL SYSTEM AND EQUIPMENT PROCEDURES:
A. Balance all air and heating water flows at terminals within +10% to -10% of design flow quantities, cooling water shall be balanced to within ±5% of design flow rates. Notify Contractor/Engineer/Architect in writing of conditions detrimental to the proper completion of the test and balance work. Provide the Contractor/Architect/Engineer with a copy of the notification.

B. Pressure relationships indicated on drawings shall take priority over air quantities.

C. Cut insulation, ductwork, and piping for installation of test probes to minimum extent necessary to allow adequate performance of procedures.

D. Mark equipment settings with paint, including damper control positions, balancing cocks, circuit setters, valve indicators, fan speed control settings and similar controls and devices, to show final settings at completion of test-adjust-balance work.

E. Patch holes in insulation, ductwork and housings, which have been cut or drilled for test purposes, in a manner recommend by the original installer. Test for and repair leaks. Reseal insulation to re-establish integrity of the vapor barrier.

F. Measure, adjust and report equipment running motor amps and power factor, KW, rated motor amperage, listed motor power factor, voltage, and all nameplate data. Perform these measurements for all equipment operational modes.

G. Check and adjust equipment belt tensioning.

H. Check keyway and setscrew tightness. Report any loose screws and notify Mechanical Contractor prior to equipment balancing.

I. Record and include in report all equipment nameplate data.

J. Verify that all equipment safety and operating controls are in place, tested, adjusted and set prior to balancing.

K. Verify that manufacturer start-up has occurred per specification prior to balancing.

L. Retest, adjust, and balance systems subsequent to significant system modifications, and resubmit test results.

M. Sequencing and Scheduling:

1. Systems shall be fully operational before beginning procedures.
2. Conduct tests in the presence of the University Project Manager after providing 7-day notice before any test is to be conducted. Provide water and electricity required for tests. Determine that all dampers, registers, and valves are in a set or full open position.

3.3 AIR SIDE SYSTEMS AND EQUIPMENT PROCEDURES:

A. In addition to the procedures identified under each specific heading below, provide general data required by 3.2 above.

B. Adjust automatic damper linkages to provide air flow quantities shown. Check all automatic dampers in normal operation to verify proper operation. Verify return, relief air, and fresh air intake dampers operate as designed to produce desired room comfort.
C. Filters shall be restricted to increase pressure drop to 50% of span between initial pressure drop and final recommended pressure drop for setting final airflows for fans. Check fan motor amps with clean filters and simulated loaded filters to guard against overload, fan rotation, operability of static pressure limit switch, automatic dampers for proper position, air and water resets operating to deliver required temperatures and air leaks in casing and around coils and filter frames, and report for each piece of equipment. Equipment shall be supplied with clean filters upon completion of balance. Balance and report air quantities.

D. Place all fans (supply, return and exhaust) in operation.

E. Supply/Return Air Systems:
 1. Balance and report supply and return diffuser/grille quantities. Air diffusion patterns shall be set as noted on drawings and to minimize objectionable drafts and noise.
 2. Provide full pitot traverses in duct mains downstream of supply fans, upstream of return fans, and in each zone duct downstream of a multizone unit. For VAV systems perform these at the system diversity condition (if any). Balance and report air quantities. Mark locations of traverses on reduced drawings in final report.
 a. Note temperature and barometric pressure. Corrections shall be made for systems operating at 5200-foot elevation.
 b. After establishing total air being delivered, adjust fan speed to obtain design airflow. Check power and speed to see that motor power and critical fan speed have not been exceeded.
 c. Proportionally adjust branch dampers until each has proper air volume.
 d. With all dampers and registers in system open and with supply, return, and exhaust fans operating at design cfm or speed, set minimum outdoor and return air ratio.
 3. Provide full pitot traverses at each air terminal or duct coil. For VAV systems, perform these at zone maximum air condition. Balance and report air quantities.
 4. Report design air device inlet or outlet size, actual inlet or outlet size, design and actual velocity through the orifice, for each terminal in the system. Balance terminal outlets in each control zone in proportion to each other. Use branch dampers for major adjusting and terminal dampers for trim or minor adjustment only.
 5. Balance and report the above measurements in all system operational/modes.
 a. VAV maximum zone air condition and system diversity condition.
 b. Unoccupied mode.
 c. Two-speed fan, both speeds.

F. Fan Coil Units:
 1. Balance and report supply fan CFM, upstream static pressure and downstream static pressure.
 2. After system and fan balance is complete, perform pitot traverses on all coils in 100% heating and cooling modes.
 3. Report fan and motor information as previously indicated.
4. Balance all fan coil unit coils and report per hydronic portions of this section.

5. Balance and report all temperatures of airside and hydronics during normal operating modes.

6. Measure, adjust, set, balance and report air quantities.

Air quantities shall be determined by pitot traverse/direct airflow measuring procedures where ever possible.

In addition to the direct measuring of airflow quantities, measure and record return air temperatures, determine thermal/mass energy balance and provide calculations to verify measured airflow quantities.

7. Once total design air has been balanced in branches and at outlets, verify and record the following:
 a. Fan motor amperage.
 b. Fan speed
 c. Fan cfm.
 d. Fan outlet velocity.
 e. External and total static pressure.
 f. Supply, return air temperatures.
 g. Static pressure across each component (intake, filters, coils).
 h. Take a final duct traverse.

8. Final adjustments shall include, but not be limited to the following:
 a. Adjust RPM on belt drive fans. Include sheave and belt exchange to deliver air flow within limits of installed motor horsepower and mechanical stress limits of the fan.
 b. Determine limiting fan tip speed before increasing RPM. Final fan speed setting shall allow for filter loading and shall establish proper duct pressures for operation of zone cfm regulators.
 Replace all variable pitched sheaves with fixed pitched sheaves.

9. Adjust rpm on Direct Drive Fans:
 a. For motors with speed taps, set fan speed on tap which most closely approaches design cfm. Report tap setting on equipment data sheet as high, medium, or low.
 b. For motors with speed control, set output of fan at design cfm by adjusting control. Ensure the fans restart after shut down. Increase setting as required for proper setting. Mark control to indicate final setting position.

10. Terminal Boxes:
 a. For variable air volume (VAV), constant volume boxes, or dual duct boxes, set regulators to provide design minimum and maximum airflow rates. Adjust thermostat to assure proper damper operation.
 b. For VAV, or constant volume boxes with reheat, set regulators to provide design minimum and maximum air flow rates. Check control sequence operation to assure proper sequencing.
 c. Air flow performance of boxes for both primary and secondary balance settings shall be verified by flow measuring hood measurements at diffuser outlets.

G. General Exhaust Systems:

2. Provide full pitot traverses at each individual exhaust riser and at each exhaust fan. Balance and report.

3. Report design air device inlet or outlet size, actual inlet or outlet size, design and actual velocity through the orifice, for each terminal in the system.

H. Laboratory System Requirements

1. General Requirements:
 a. Balance all rooms to required pressure relationships as noted on the drawings. Document in the test and balance report that all pressure relationships have been set as specified.
 b. Performance testing of the Room Pressurization Control System shall be performed after the entire mechanical system for the building is complete. All systems shall have been calibrated, tested and balanced before performance testing begins.
 c. Performance testing shall be done by the balancing contractor in the presence of the Owner, user groups, and a representative from the Department of Environmental Health and Safety.
 d. The performance testing must be successfully completed before the Owner will accept control of the building’s mechanical system.

2. Room Pressurization Control System Performance Evaluation:
 a. The Balancing Contractor shall demonstrate with smoke that the correct relative pressure relationship is being maintained in each area. Every room for which a relative pressure value was assigned on the mechanical plans shall be tested.
 b. The testing shall be performed in each room under the following conditions:
 a) Door closed
 b) Door open
 c) In labs with fume hoods or bio-safety cabinets:
 1. Hood sash completely open
 2. Hood sash closed
 3. Hood sash partially open
 d) Thermostat set to its minimum set point
 e) Thermostat set to its maximum set point
 f) If the correct pressure relationships cannot be demonstrated for a particular room, the room shall be retested after the problem has been corrected.

3.4 HYDRONIC SYSTEMS AND EQUIPMENT:

A. Heating/chilled water systems:

1. Hydronic Systems with Meters: The system shall be balanced proportionally using the flow meters. On completion of the balance, the following information shall be recorded in the report: Flow meter size and brand, required flow rate and pressure drop, valve settings on meters with a readable scale, flow rate in both full coil flow and full bypass modes. Contractor shall verify the meters are installed per the manufacturer’s recommendations and shall notify the Mechanical Contractor of any deficiencies before utilizing meter.

2. Hydronic Systems without Meters (thermal or terminal rated pressure drop balance): The system shall be balanced proportionally to the terminal ratings. On completion of the balance the following information shall be recorded in the report: Design entering and leaving water temperature/pressure, final balanced entering and leaving water temperature/pressure drop.

3. For 3-way valve terminals/heat exchangers, set bypass flow to equal coil flow.

B. Hydronic Coils:
1. Balance, measure and report inlet and outlet dry and wet bulb air temperatures for cooling and/or heating design air quantities. Calculate capacity in Btu-h.
2. Balance, measure and report coil water flow, inlet and outlet water pressure and temperature.
3. Calculate and report face velocities across chilled water cooling coils.

3.5 PLUMBING SYSTEMS AND EQUIPMENT:

A. General:
1. Check, adjust and set temperature control devices to 110°F domestic hot water temperature and as indicated on drawings.
2. Verify proper location and operation of ASME pressure and temperature relief valves.
3. Measure and report residual pressure at full flow at most remote plumbing fixture; requiring highest operating pressure (usually flush valve water closets).
4. Verify that most remote fixture has hot water available semi-instantaneously with recirculation system operating. Report.

3.6 ELECTRICAL COMPONENTS ASSOCIATED WITH MECHANICAL SYSTEMS:

A. Manual and Magnetic Starters:
1. Check all new and existing thermal overloads. Identify improperly protected equipment in report. Furnish and exchange thermals as required for proper motor protection.
3. Two-speed Starters: In addition to the above, set time delay between changes of speeds for proper operation.
 a. Verify windings of motor and starter is compatible prior to starting any equipment.

3.7 CONTROL SYSTEMS AND EQUIPMENT:

A. General:
1. Operate all temperature control systems with the temperature control contractor’s representative for proper sequence of operation. Be responsible for calibration of flow measurement devices used as input to the temperature control system. All air system flow measurement stations including VAV terminals shall be calibrated against a Pitot tube traverse or air diffuser capture hood. Balancing Contractor shall assure accuracy of all flow measurement devices or shall report their failure to be accurate.
2. Work with the Controls Contractor/Vendor on all work.

3. Work with the Controls Contractor/Vendor to optimize VAV duct static pressure and building pressure.

4. Check location of transmitters and controllers. Note adverse conditions that would affect control and suggest relocation as necessary to University Project Manager.

5. Note settings on controllers. Note discrepancies between set point for controller and actual measured variable.

6. Verify operation of all limiting controllers, positioners, and relays (e.g., high and low temperature thermostats, high and low differential pressure switches, etc.).

7. Activate controlled devices, checking for free travel and proper operation of stroke for dampers and valves. Verify and note normally open (NO) or normally closed (NC) operation.

8. Verify sequence of operation of controlled devices. Note line pressures and controlled device positions. Correlate to air or water flow measurements. Note speed of response to step change.

9. Confirm interaction of interlock and lockout systems.

10. Provide set-point for every hydronic and air system pressure sensor. Coordinate closely with Division 23 09 00.

11. Provide differential pressure set-point for dirty filter replacement for each filter bank installed in the building.

3.8 SOUND AND VIBRATION:

A. Sound Inspection and Testing:

1. Prior to sound testing, all equipment that can potentially impact sound testing shall be put into operation. Examples include humidifiers, air handling units, and equipment in adjacent mechanical spaces.

2. Prior to sound testing the mechanical test and balance of all systems shall be completed.

3. Report audible tonal characteristics such as whine, whistle, hum or rumble. Also report time varying sound levels or beats induced from aerodynamic instability, perform this for all rooms.

4. Perform sound testing on sound sensitive rooms within the project area, including lab spaces.

B. Vibration Inspection and Testing:

1. Prior to vibration testing, all equipment shall be put into operation. On variable speed equipment, testing shall occur at low, medium and high speeds.

2. Prior to vibration testing, the mechanical test and balance of all systems shall be completed.

3. Report excessive vibrations from any equipment. Inspect upstream and downstream duct and piping systems and report excessive vibrations.
4. Verify that all spring and elastomeric isolation systems are installed “free-floating” and are not short circuited to structure by obstructions.

3.9 REPORT OF WORK:

A. The Testing and Balancing Contractor shall submit a preliminary report within 30 days of the final testing and balancing work. Report shall include the following information:

1. A general discussion preface section. This section shall summarize all abnormalities or problems encountered during the project and what course of action was taken. This summary should be assembled from the written progress reports described earlier, except that it will be expanded to include responses from the Engineer, the University Project Manager and Contractor regarding each problem indicated in the progress reports.

2. Copies of correspondence if related to the performance and balance of the systems.

3. Status of doors, windows and equipment static pressures during balance work.

4. Reduced 11” x 17”, readable, as-built drawings obtained from the University Project Manager. All devices and equipment shall be clearly labeled.

5. Belt and sheave information, fan and motor nameplates information, full load operating voltage and amperage indicate sheave diameter as pitch diameter.

6. Design and final actual cfm at each system terminal unit and fan coil unit. Include terminal/size, inlet static pressure, temperature and velocities read to attain the design cfm.

7. Overload protection for all motors shall be recorded. Starter and brand model, enclosure type, installed overload devices, original ratings, and set points (and revised device ratings and set points when application) shall be recorded.

B. A complete reduced set of mechanical contract drawings (showing each system) shall be included in the report with all equipment, flow measuring devices, terminals (outlets, inlets, coils, fan coil units, schedules, etc.) clearly marked and all equipment designated. The test and balance contractor can obtain drawing files from the University Project Manager for development of these drawings.

C. Data shall be reported per Part 3 of this Section on standard NEBB forms. Generate custom forms that contain the information in this Section when a standard NEBB form does not exist for a piece of equipment. All NEBB forms shall be fully filled out for this report. When additional information is required by this Section, it shall be provided.

D. The report shall include a list of all equipment used in the testing and balancing work. This list shall closely resemble the list submitted with the Preliminary Systematic Procedures report with any discrepancies accounted for.

E. Report systems for excessive sound and vibration per the sound and vibration inspection and testing portions of this specification.

F. Substantial completion of this project will not take place until a satisfactory report is received. The Testing & Balancing Contractor shall respond and correct all deficiencies within 30 days of the preliminary report. Failure to comply will result in holding retainage of the final payment until all items have been corrected to the satisfaction of the University Project Manager/Engineer.

G. Provide four (4) copies of the final TAB report. The report shall be signed by the supervising registered professional engineer or supervisor and affixed with their registration stamp, signed and dated in accordance with state law.

3.10 GUARANTEE OF WORK:

A. The Testing & Balancing Contractor shall guarantee the accuracy of the tests and balance for a period of 90 days from date of final acceptance of the test and balance report. During this period, the Testing
& Balancing Contractor shall make personnel available at no cost to the Owner to correct deficiencies that may become apparent in the system balance.

3.11 COMMISSIONING (DEMONSTRATION):

A. Upon request of the university Facilities Operations Representative, through the University Project Manager, the balancing firm shall demonstrate measured quantities of randomly selected equipment. The number of readings verified will not exceed 10 percent of the total in the report.

END OF SECTION
SECTION 23 07 00 - INSULATION

PART 1 - GENERAL

1.1 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of mechanical insulation products and systems, of types and sizes required, whose products have been in satisfactory use in similar service for not less than 3 years.

B. Installer's Qualifications: Firm with at least 5 years successful installation experience on projects with mechanical insulations similar to that required for this project.

C. Flame/Smoke Ratings: Provide composite mechanical insulation (insulation, jackets, coverings, sealers, mastics and adhesives) with flame-spread index of 25 or less, and smoke-developed index of 50 or less, as tested by ASTM E 84 (NFPA 255) method. In addition, the products, when tested, shall not drip flame particles, and flame shall not be progressive. Provide Underwriters Laboratories Inc., label or listing, or satisfactory certified test report from an approved testing laboratory to prove that fire hazard ratings for materials proposed for use do not exceed those specified.

D. Codes and Standards:
 1. ASHRAE 90.1

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data and installation instructions for each type of mechanical insulation. Submit schedule showing manufacturer's product number, k-value, thickness, density, and furnished accessories for each mechanical system requiring insulation. Submit detail product information and installation information for all jacketing systems specified in this section.

B. Shop Drawings: For Fire Resistive Enclosure Systems, provide the following:
 1. Listing agency's detailed drawing showing opening, penetrating items, and firestopping materials, identified with listing agency's name and number or designation, fire rating achieved, and date of listing.
 2. Identify which rated assembly each system is to be used in.
 3. Any installation instructions that is not included on the detailed drawing.
 4. For proposed systems that do not conform strictly to the listing, submit listing agency's drawing marked to show modifications and stamped approved by firestop system manufacturer's fire protection engineer.

C. Submit listing agency's test report showing compliance with requirements, based on testing of current products.

1.3 DELIVERY, STORAGE, AND HANDLING:

A. Deliver insulation, coverings, cements, adhesives, and coatings to site in containers with manufacturer's stamp or label, affixed showing fire hazard indexes of products.
B. Protect insulation against dirt, water, and chemical and mechanical damage. Do not install damaged or wet insulation; remove from project site.

1.4 DEFINITIONS:

A. Concealed: As used in this section refers to insulation in ceiling plenums, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, unexcavated areas and crawl spaces.

B. Exposed: As used in the this section refers to insulation that is not concealed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide product by one of the following:

1. Insulation Identification and/or type of material from a manufacturer is as shown under each heading at 2.2 Materials, General:
 a. Manville Corp.
 b. Certain Teed
 c. Knauf Fiber Glass
 d. Pittsburgh Corning Corp.
 e. Rubatex Corp.

2. Adhesives, Coatings and Sealants:
 a. Childers Product Company
 b. Foster
 c. Hardeast

2.2 PIPING INSULATION MATERIALS:

A. Fiberglass Piping Insulation: ASTM C 547, Class 1 unless otherwise indicated. "K" factor shall be maximum 0.24 at 75 degrees F. mean temperature, jacket with tensile strength of 35 lbs/in, mullen burst 70 psi, beach puncture 50 oz. in/in, permeability .02 perm factory applied vapor barrier jacket and adhesive self-sealing lap joint.

B. Cellular Glass Piping Insulation: ASTM C 552, Type II, Class 2. "K" factor shall be maximum 0.35 at 75 degrees F mean temperature. Density of 8 pounds per cubic foot. Water vapor permeability of 0.005 perm inch.

C. Calcium Silicate Piping Insulation: ASTM C 533, Type I. "K" factor shall be maximum 0.40 at 300 degrees F. mean temperature, compression strength 160 psi for 5 percent compression, at 1-1/2" thickness transverse strength 200 psi for 5 percent compression, flexural strength 60 psi. 16 gauge stainless steel tie wires.

D. Elastomeric Foam/Flexible Closed Cell Piping Insulation: ASTM C 534, Type I. "K" factor shall be maximum 0.27 at 75 degrees F. mean temperature, with a water vapor permeability of 0.10 perm inches or less. Insulation shall be pre-installed on piping, or un-slit to be slipped over piping as a single piece.

E. Flexible Thermal Ceramic Insulation Fiber Retractory: limit. Provide presized glass cloth jacketing material, not less than 7.8 ounces per square yard, or metal jacket at Installer's option, unless otherwise indicated.
F. Jackets for Piping Insulation: ASTM C 921, Type I for piping with temperatures below ambient, Type II for piping with temperatures above ambient. Type I may be used for all piping at Installers option.

1. Fitting Covers: UV resistant PVC, pre-molded fitting covers, flame spread 25, smoke developed 50. PVC tape for cold systems, serrated tacks or PVC tape for hot systems.

2. Aluminum Jacketing: Manufactured from T3003 (or T/5005) H14 to H19 aluminum alloy with 3/16" corrugations and shall have a factory attached 1 mil thick polyethylene moisture barrier continuously laminated across the full width of the jacketing. Jacketing shall be .016" thick minimum. Provide matching factory fabricated covers for 90 degrees and 45 degrees elbows, tee fittings, flange fittings valve bodies, blind ends, reducers and other fittings necessary to make the covering system complete, waterproof and weatherproof.

3. Stainless Steel: 0.010 inch thick, type 304 stainless steel with smooth or corrugated finish.

4. Cloth Jacketing Material: Plain weave cotton treated fire retardant lagging adhesive. Not less than 8 oz. per square yard with adhesives, cement and sealer as recommended by insulation manufacturer for the intended application UL listed fabric. PVC pre-molded fitting covers shall not be provided.

G. Staples, Bands, Wires, and Cement: As recommended by insulation manufacturer for applications indicated.

H. Adhesives, Sealers, and Protective Finishes: As recommended by insulation manufacturer for applications indicated and additional finishes as specified.

2.3 DUCTWORK INSULATION MATERIALS:

A. Flexible Fiberglass Ductwork Insulation: ASTM C 553, Type I, Class B-3, 1.0 lbs per cu. ft. density. "K" value shall be maximum 0.25 at 75 degrees F. mean temperature, 250 degree F temperature limit, vapor transmission rating shall not exceed 0.02 perms, facing of .7 mil foil reinforced with glass mesh and laminated to 40 lb Kraft.

B. Jackets for Ductwork Insulation: ASTM C 921, Type I for ductwork with temperatures below ambient; Type II for ductwork with temperatures above ambient.

1. Aluminum Jacketing: The jacketing shall be manufactured from T3003 (or T/5005) H14 to H19 aluminum alloy with 3/16 inch corrugations and shall have a factory attached 1 mil thick polyethylene moisture barrier continuously laminated across the full width of the jacketing. Jacketing shall be .016 inches thick minimum with smooth or embossed finish, longitudinal slip joints with 2 inch laps. Where available, provide matching factory fabricated covers for 90 degrees and 45 degrees elbows, tee fittings, branch fittings, reducers and other fittings necessary to make the covering system complete, waterproof and weatherproof.

2. Non Water Vapor Retarder: Non-burning, weatherproof coating.

3. PVC Plastic: 30 mil thickness, UV resistance.

4. Canvas:
 a. Plain weave cotton treated with fire retardant lagging adhesive.
 b. Weight 6 ounces per square yard.
 c. UL listed fabric.
C. Ductwork Insulation Accessories: Provide staples, bands, wires, tape, anchors, corner angles and similar accessories as recommended by insulation manufacturer for applications indicated.

D. Ductwork Insulation Compounds: Provide cements, adhesives, coatings, sealers, protective finishes and similar compounds as recommended by insulation manufacturer for applications indicated.

2.4 TANK INSULATION:

A. Flexible Fiberglass Board: Thermal Conductivity (k value): 0.35 at 200 degrees F. Maximum Service Temperature: 650 degrees F. Density: 3 pounds per cubic foot. Vapor Retarder Jacket: Pressure sensitive, self-sealing tape lap system of white kraft paper reinforced with glass fiber yarn and bonded to aluminum foil. Manville Pipe and Tank Insulation.

2.5 FIRE-STOP INSULATION:

A. Flexible blanket, amorphous wool: Thermal Conductivity (k value): 0.85 at 1000 degrees F and 1.70 at 1800 degrees F. Continuous use-temperature rating: 1834 degrees F. Melting point: 2327 degrees F. Density: 6 pounds per cubic foot. Thermal Ceramics SF607.

2.6 FIXED AND REMOVABLE VALVE INSULATION COVERS:

A. Valves, strainers and other equipment on hot water lines shall be insulated.

B. Hot water valves, 3 inches and larger, shall be insulated with a removable insulation jacket. Valves 2-1/2 inches and smaller shall not be insulated unless removable type is shown to be cost effective or effect of heat loss is shown to be detrimental.

C. Removable insulation jackets shall be 1” thick fiberglass insulation of 9 toll lbs per cubic foot density and suitable for temperatures to 1000˚ F secured with stainless steel quilting pins. The inner and outer jacket shall be silicone-coated fiberglass, 34 oz. per sq. yard, chemical resistant, suitable for temperatures to 500˚ F. The seam closure shall be Teflon coated fiberglass threads suitable for temperatures to 600˚ F of type 20 lb. tensile strength. The fastening system shall be type 304 stainless steel double D-rings with silicone coated fiberglass belts with Velcro on ends. Belt shall be 1 inch wide and sewn to adjacent insulation, flanges, etc. Cords shall be stainless steel wire, minimum ¼” diameter and Teflon coated. An ID tag shall be furnished which is of type 304 stainless steel, or aluminum and riveted to jacket with item description, location and factory number.

D. Core unit shall be fabricated in one piece wherever possible and shall fit over adjacent insulation flanges, etc., a minimum of 2 inches.

E. All jackets shall be field measured by manufacture’s representative. Manufacturer shall guarantee jacket will fit snugly without force, folder, bending or stretching.

PART 3 - EXECUTION

3.1 INSPECTION:

A. Examine areas and conditions under which mechanical insulation is to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer and have been tested and approved by the Project Manager.

B. Workmanship shall be first class and of the highest quality, poor installation or bad appearance as determined by the engineer shall be due cause to reject the entire project in whole and retainage will be withheld until corrective action is completed to the engineer's satisfaction.
3.2 GENERAL INSTALLATION:

A. Continue insulation vapor barriers through penetrations except where prohibited by code.

B. Install pipe and duct insulation continuous through wall and floor openings except where the penetrated surfaces or assemblies are fire-resistance rated. Provide fire-stop insulation at penetrations of fire-rated surfaces and assemblies. Maintain fire-resistance ratings of penetrated surfaces and assemblies.

C. Install insulation on cold surfaces with a continuous, unbroken vapor seal. Insulate and vapor seal supports and anchors, which are directly secured to cold surfaces.

D. Seal all exposed raw edges of insulation with vapor retarder or finishing cement.

E. Do not use staples on vapor barrier jackets. Where staples must be used, thoroughly seal the vapor barrier penetrations with a white vapor-barrier finish. The Engineer prior to installation must approve use of staples.

F. Do not weld insulation support pins to pressure vessels.

G. Leave all insulation surfaces dry and clean, and ready for subsequent work

H. Install fire stop insulation per manufacturer's listing.

3.3 PLUMBING PIPING SYSTEM INSULATION:

A. Insulation Omitted: Omit insulation on chrome-plated exposed piping (except for handicapped fixtures), air chambers, unions, balance cocks, flow regulators, drain lines from water coolers, drainage piping located in crawl spaces or tunnels, fire protection piping, and pre-insulated equipment.

B. Cold Piping:

1. Application Requirements: Insulate the following cold plumbing piping systems:

 a. Potable and non-potable cold water piping.
 b. Cold piping for condensate control.

2. Insulate each piping system specified above with the following types and thicknesses of insulation:

 a. Above Ground Inside Building (except as noted below), Fiberglass:

 1) Insulation Conductivity Range: 0.21-0.27 Btu x in./(h x ft² x °F).
 2) Mean Rating Temperature: 75 °F.
 3) ½” thick insulation for pipe sizes 1-1/4” and smaller
 4) 1” thick insulation for pipe sizes 1-1/2” and larger.

C. Hot Piping:

1. Application Requirements: Insulate the following hot plumbing piping systems:

 a. Potable hot water and tempered piping.
 b. Potable hot water and tempered recirculating piping.
2. Insulate each piping system specified above with the following types and thicknesses of insulation:

 a. Above Ground Inside Building (except as noted below), Fiberglass:

 1) Insulation Conductivity Range: 0.21-0.27 Btu x in./(h x ft² x °F).
 2) Mean Rating Temperature: 100 °F.
 3) 1” thick insulation for pipe sizes 1-1/4” and smaller
 4) 1-1/2” thick insulation for pipe sizes 1-1/2” and larger.

3.4 HVAC PIPING SYSTEM INSULATION:

 A. Insulation Omitted: Omit insulation on on hot piping unions, flexible connections, and expansion joints. Insulation may be omitted inside of cabinet unit heaters and convectors for hot piping. Cold piping insulation inside fan coil unit cabinet may be omitted provided piping is located over drain pan. Omit insulation on strainers in heating water strainers operating below 200 degrees F.

 B. Cold Piping (40 degrees F (4.4 degrees C) to ambient):

 1. Application Requirements: Insulate the following cold HVAC piping systems:

 a. Chilled water supply and return piping.
 b. Cold condensate drain piping.

 2. Insulate each piping system specified above with the following types and thicknesses of insulation:

 a. Above Ground Inside Building (except as noted below), Fiberglass:

 1) Insulation Conductivity Range: 0.21-0.27 Btu x in./(h x ft² x °F).
 2) Mean Rating Temperature: 75 °F.
 3) ½” thick insulation for pipe sizes 1-1/4” and smaller.
 4) 1” thick insulation for pipe sizes 1-1/2” and larger.

 C. Heating System Piping (to 200 degrees F (90 degrees C)):

 1. Application Requirements: Insulate the following heating piping systems:

 a. Hot water supply and return piping.

 2. Insulate each piping system specified above with the following type and thicknesses of insulation:

 a. Above Ground Inside Building (except as noted below), Fiberglass:

 1) Insulation Conductivity Range: 0.21-0.28 Btu x in./(h x ft² x °F).
 2) Mean Rating Temperature: 100 °F.
 3) 1-1/2” thick insulation for pipe sizes 1-1/4” and smaller.
 4) 2” thick insulation for pipe sizes 1-1/2” and larger.

3.5 DUCTWORK SYSTEM INSULATION:

 A. Insulation Omitted: Do not insulate fibrous glass ductwork, or lined ductwork. Lined ductwork is not allowed in lab air supply.
B. Application Requirements: Insulate the following ductwork:

1. Mixed air ductwork and plenums between air entrance and fan inlet or HVAC unit inlet.
2. HVAC supply ductwork between fan discharge, or HVAC unit discharge, and room terminal outlet.
3. HVAC return ductwork in unconditioned spaces or exterior.
4. HVAC plenums and unit housings not pre-insulated at factory or lined.
5. Rigid oval or round supply air ductwork.

C. Insulate each ductwork system specified above with the following types and thicknesses of insulation:

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>FLEXIBLE FIBERGLASS</th>
<th>FLEXIBLE ELASTOMERIC**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior; concealed; cold, hot or dual temperature supply duct</td>
<td>1-1/2”</td>
<td>2”</td>
</tr>
<tr>
<td>Interior; exposed within conditioned finished spaces; cold, hot, or dual temperature supply duct</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Interior; exposed within mechanical, electrical, storage, or other service areas; cold, hot, or dual temperature duct</td>
<td>1-1/2” minimum up to 2” as required to cover joints and reinforcements</td>
<td>2” as required to cover joints and reinforcements with white finish. Provide white finish coat.</td>
</tr>
<tr>
<td>Exterior; hot or dual temperature duct, all return duct</td>
<td>Not Allowed</td>
<td>2” with metal jacket or 2” self-jacketed</td>
</tr>
</tbody>
</table>

3.6 INSTALLATION OF PIPING INSULATION:

A. General: Install insulation products in accordance with manufacturer's written instructions, and in accordance with recognized industry practices to ensure that insulation serves its intended purpose.

B. Install insulation on pipe systems subsequent to installation of heat tracing, testing, and acceptance of tests.

C. Install insulation materials with smooth and even surfaces. Insulate each continuous run of piping with full-length units of insulation, with single cut piece to complete run. Do not use cut pieces or scraps abutting each other.

D. Clean and dry pipe surfaces prior to insulating. Butt insulation joints firmly together to ensure complete and tight fit over surfaces to be covered.

E. Maintain integrity of vapor-barrier jackets on cold pipe insulation, and protect to prevent puncture or other damage.
1. Do not use staples or tacks on vapor barrier jackets.

2. Seal vapor barrier penetrations with vapor barrier finish recommended by the manufacturer.

3. Seal fitting covers with PVC tape.

4. Cover all unions, check valves, and other in-line devices. Mark outer covering with indelible marker to identify item covered.

F. Neatly bevel and seal insulation at all exposed edges.

G. Cover valves, fittings and similar items in each piping system with equivalent thickness and composition of insulation as applied to adjoining pipe run. Install factory molded, precut or job fabricated units (at Installer's option) except where specific form or type is indicated.

H. Extend piping insulation without interruption through walls, floors and similar piping penetrations, except where otherwise indicated.

I. See equipment insulation for removable insulation on accessible piping components.

J. See Section 23 20 00 for insulation inserts and shields. Butt pipe insulation against pipe hanger insulation inserts. For all piping apply wet coat of vapor barrier lap cement on butt joints and seal all joints and seams with 3 inch wide vapor barrier tape or band.

K. Flexible Elastomeric Piping Insulation:
 1. Install unslit, by slipping over piping prior to joining, or install pre-insulated soft copper tubing.
 2. Seal butt ends with adhesive.

3.7 INSTALLATION OF DUCTWORK INSULATION:
 A. General: Install insulation products in accordance with manufacturer's written instructions, and in accordance with recognized industry practices to ensure that insulation serves its intended purpose. For exterior ductwork, install insulation with weather protection jacket.
 B. Install insulation materials with smooth and even surfaces.
 C. Clean and dry ductwork prior to insulating. Butt insulation joints firmly together to ensure complete and tight fit over surfaces to be covered.
 D. Maintain integrity of vapor-barrier on ductwork insulation, and protect it to prevent puncture and other damage.
 1. Avoid the use of staples on vapor barrier jackets.
 2. Seal vapor barrier penetrations with vapor barrier tape recommended by the manufacturer.
 E. Extend ductwork insulation without interruption through walls, floors and similar ductwork penetrations, except where otherwise indicated. Ducts subject to physical abuse in mechanical equipment rooms shall be protected with a PVC or aluminum jacket.
 F. Lined Ductwork: Except as otherwise indicated, omit insulation on ductwork where sound absorbing linings have been installed. No lined ductwork of any kind is allowed in lab air supply.
G. Flexible Fiberglass Insulation: Cut back insulation to provide a 2 inch facing overlap at all seams. Seams shall be stapled approximately 6 inches on center with outward clinching staples, then sealed with pressure-sensitive tape matching the facing and designed for use with duct insulation. The underside of ductwork 30 inches or greater shall be secured with mechanical fasteners and speed clips spaced approximately 18 inches on center. The protruding ends of the fasteners should be cut off flush after the speed clips are installed, and then sealed with the same tape as specified above.

H. Corner Angles: Except for oven and hood exhaust duct insulation, install corner angles on all external corners of insulation on ductwork in exposed finished spaces before covering with jacketing.

I. Adhere flexible elastomeric sheets to clean oil-free metal surface by compression fit method and full coverage of adhesive. Seal butt joints with same adhesive. For exterior ductwork, notch insulation at reinforcements and joint flanges to provide a smooth surface, unless the reinforcements or joints would penetrate the insulation. Provide a minimum ½ inch cap over any penetrating item. Stagger all joints and seams on multi-layer insulation.

3.8 INSTALLATION OF INSULATION ON FITTINGS AND VALVES:

A. Factory premolded one piece PVC insulated fitting covers: Use factory precut insulation applied to the fitting using two layers for pipe temperatures above 250 degrees F or below 35 degrees F, single layer insulation is acceptable between 35 degrees F and 250 degrees F. Tuck the ends of the insulation snugly into the throat of the fitting and the edges adjacent to the pipe covering, tufted and tucked in, fully insulating the pipe fitting. Covers shall overlap the adjoining pipe insulation and jackets, and on cold pipes seal at all seam edges with vapor barrier adhesive. Seal circumferential edges of all covers with pressure sensitive vinyl tape. The tape shall overlap the jacket and the cover at least one inch.

B. Where PVC covers are prohibited: Use an alternate one of the following methods: aluminum covers, one coat insulation cement, premolded fiberglass fitting covers, or mitered segments of pipe insulation. Finish for non-PVC or aluminum shall be glass fabric embedded in fire retardant mastic lapped 2 inches over piping insulation. Finish with second coat of mastic. Mastic shall be Childers CP-11 for hot piping and shall be Childers CP-30 or Fosters 30-35 or equal for cold piping.

C. Valves may be insulated with sections of fiberglass pipe insulation complete with All Service Jacket. Raw ends shall be coated with vinyl acrylic mastic Childers CP-11 for hot piping or shall be coated with vapor barrier mastic Childers CP-30 or Fosters 30-35, or equal for cold piping.

D. Insulate balancing cocks, strainer drains, hose bibs, and equipment requiring periodic maintenance with segmental insulating with an integral vapor barrier. Insulation and vapor barrier shall be easy to remove and replace.

E. Installation of Hot Water Valves Insulation:

1. Provide custom fabricated insulated jackets for all valves and fittings.
2. Construct and install covers to shed water. Locate closing seams at the gravitational bottom. Closely contour removable covers, ensure neat appearance and thermal performance. Individual covers or cover sequents shall not weigh more than 60 pounds.

3.9 PROTECTION AND REPLACEMENT:

A. Replace damaged insulation which cannot be repaired satisfactorily, including units with vapor barrier damage and moisture saturated units.

B. Protection: Insulation Installer shall advise Contractor of required protection for insulation work during remainder of construction period, to avoid damage and deterioration.
END OF SECTION
SECTION 23 09 00 - INSTRUMENTATION AND CONTROL FOR HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. The Contractor shall become aware of the Method of Procedure requirements outlined in Division 1. Change orders will not be considered for time associated with Method of Procedure requirements.

B. The Control Contractor will be responsible for all installation, programming, commissioning, testing and performance verification.

C. The Controls Contractor will be responsible for providing all devices required for a complete operating control system.

D. It shall be a digital, distributed microprocessor-based system with a pneumatic and electronic interface, where required. The Control System for this project will be referred to as a Building Automation System (BAS).

E. Total quantity and type of control points shall consist of specifications, drawings and as required to complete the sequence of operation as specified. Additional points shall be provided as required to meet all sequence of operation functions, safeties and data base. The drawings and Specifications are not intended to show all details necessary to make the system complete and operable.

F. The Control Contractor shall be responsible for all phases of software design, all equipment, installation and warranty for the BAS. The Control Contractor shall be responsible for supplying and installing all necessary control devices for completing the BAS.

G. The system shall include all control device, valves, interlocks, field devices, hardware, software, automatic dampers, piping, fittings, wire, conduit, etc., as specified and required and connected so as to perform all functions and operate according to the specified sequences.

H. This installation shall not be used as a test site for any new products unless explicitly approved by the Owner or Architect/Engineer in writing. Unless approved otherwise, all products (including firmware revisions) used in this installation shall have been used in at least twelve (12) projects prior to this installation. The previous sites may be located anywhere in the U.S.A. This requirement is not intended to restrict the Contractor to the use of any outdated equipment. Therefore, all products used in this installation shall also be currently under manufacture and have available, for at least ten years after completion of the contract, a complete line of spare parts. If the above requirements are mutually exclusive, the Contractor shall include a specific statement to this effect in the Bid.

I. Refer to other Division 23 sections for installation of instrument wells, valve bodies and dampers in mechanical systems.

J. Provide electrical work as required, complying with requirements of Division 26 sections including, but not limited to raceways, wires, cables, electrical identification, supporting devices and electrical connections for equipment. Work includes, but is not limited to, the following:

1. Interlock and control wiring between field-installed controls, indicating devices and unit control panels.

2. The Contractor shall be responsible for all additional electrical and other costs involved to accommodate the temperature control system panel, motors and electrical devices requiring power which differs from the power requirements shown on the electrical drawings.
3. Refer to Division 26 for mechanical/electrical coordination.

K. The BAS shall interface with the lighting control system to schedule the HVAC system occupancies.

L. Control Contractor shall furnish & identify location requirements for all necessary control devices which may be installed by others including the following, but not limited to:

1. Automatic control valves.
2. Flow switches.
3. Outside, return and exhaust air dampers for the supply fan/return fan systems.
4. Modulating dampers.
5. Required wells for insertion thermostats and/or temperature sensing wells.
6. Pressure Sensors.

1.2 QUALITY ASSURANCE:

A. Contractors Qualifications: Firms regularly engaged in installation and commissioning and servicing of digital control equipment, of types and sizes required, whose firm has been in business in similar service for not less than 5 years.

B. All work of this Section shall be fully “Year 2000 Compliant”. (See Section 23 00 00). All date related data shall use four digit dates. “Windowing” of dates is specifically prohibited.

C. Only those manufacturers specified are allowed to bid temperature controls. All bidders shall make available, upon the Owner's request, open book unit pricing of all materials and labor.

D. The system shall be installed by competent mechanics, regularly employed by the Temperature Control Contractor.

E. All bidders must have installed and completed at least two (2) direct digital temperature control jobs of similar design, size and scope using the same equipment as specified.

F. All bidders must have a local office in the area of the project site.

G. All bidders must have capabilities of doing component level repairs on all systems, including electronic systems.

H. No Field Devices shall be multiplexed to a single I/O point unless specified. Each control or sensing point shall be terminated at a unique location on the BAS panel, Slave or Dedicated Controller and be associated with a unique software point on the BAS.

I. Codes and Standards:

1. All equipment and the installation shall comply with the requirements of all applicable local and national codes including but not limited to the currently enforced edition of the Uniform Building Code, Uniform Fire Code, Uniform Electrical Code, and all applicable codes of the National Fire Protection Association including the National Electrical Code.

2. Electrical Standards: Provide electrical products, which have been tested, listed and labeled by UL and comply with NEMA standards.

3. NEMA Compliance: Comply with NEMA standards pertaining to components and devices for electric control systems.
4. NFPA Compliance: Comply with NFPA 90A "Standard for the Installation of Air Conditioning and Ventilating Systems" where applicable to controls and control sequences.

J. All bidders must have a minimum of one person dedicated to software generation. This person shall be located in an office local to the project site.

K. The equipment and software proposed by the supplier shall be currently in manufacture. No custom products shall be allowed unless required by the Specification. All products shall be supported by the manufacturer for a minimum of 5 years including spare parts, board repairs and software revisions.

L. The Temperature Control Contractor shall cooperate with other contractors performing work on this project necessary to achieve a complete and neat installation. To that end, each contractor shall consult the drawings and specifications for all trades to determine the nature and extent of others work.

M. It will be the responsibility of the Contractor to work in cooperation with the Owner and with all other contractors and employees rendering such assistance and so arrange his work such that the entire project will be delivered complete in the best possible condition and in the shortest time.

1.3 PROPRIETARY INFORMATION:

A. Project Documentation: All custom software, programs, code, databases, graphic files and drawings (whether hard copy or CADD based files) prepared for this system shall be the exclusive property of the Owner and shall not be reproduced or distributed without prior written permission from the Owner.

B. The use or reference to Owner any of its subsidiaries or any of the facility automation projects shall not be used by the Manufacturer or Contractor in any promotional media, including advertisements, sale brochures, annual reports and client references or endorsements, without prior written permission from the Owner. The Owner reserves the right to restrict or refuse access to any or all of its facilities.

1.4 SUBMITTALS:

A. General:

1. All submittal items in this section are in addition to Division 1.

2. Submittals shall be complete, with detailed information on all items provided.

3. All submittal requirements specified shall be provide as a single bound package. Provide six (6) submittal copies or the amount specified in Division 1, whichever is greater.

B. In addition to the requirements set forth in paragraph A above, the following shall be included in the shop drawing submittals including, but not limited to:

1. Product Data: Submit manufacturer's technical product data sheets for each control device furnished, each data sheet shall be labeled indicating its control drawing descriptor and include the following:

 a. indicating dimensions;
 b. capacities;
 c. performance characteristics;
 d. electrical characteristics;
 e. finishes of materials;
 f. commissioning, installation instructions and start-up instructions.
2. Valve, damper and well and tap schedule showing size, configuration, capacity and location of all equipment.

3. Control system drawings containing pertinent data to provide a functional operating system and a sequence of operation.

4. Detailed wiring diagrams.

5. Schematic flow diagram of system showing fans, pumps, coils, dampers, valves, and all control devices. Identify all control points with labeling.

6. Label each control device with setpoint or adjustable range of control. Provide a bill of materials with manufacturer's part number.

7. Indicate all required point to point electrical wiring. Clearly differentiate between portions of wiring that are existing and portions to be field-installed.

8. Provide details of faces of control panels, including controls, instruments, and labeling.

9. Include verbal description of sequence of operation and reference each device described by schematic symbol used.

10. Provide a detailed listing of all software program code written for each system.

11. Provide a point list with database input information to include a point name, address, base and span, action and other required information.

12. Commissioning Reports for Point-to-Point provide by BAS, Commissioning agent to provide the Commissioning Reports. (CONFORMED SET)

C. Submit manufacturer's installation instructions.

D. Submit AutoCAD (or AutoCAD compatible through DXF conversion) generated schematic in hardcopy and electronic media for the entire control system, for review and approval before work shall begin. The hardcopy drawings shall be submitted on 8-1/2” x 11” or 11” x 17” sheet with drawings information sized such that all drawing information is legible. The submittal drawings shall include the following:

1. Communications:
 a. Provide a one-line diagram depicting the system architecture complete with a communication riser and peripheral devices.
 b. Provide a tabular listing of locations of controlled equipment, communications and network wiring layout, and panel locations with unit communication address identifiers.

2. Point-to-point wiring diagrams for each HVAC system accurately depicting:
 a. Complete termination and configuration of all wiring and pneumatics. (This includes termination points for wires that are terminated on equipment supplied by others.)
 b. all temperature controls located on a schematic diagram of the controlled HVAC system
 c. start-stop wiring for each piece of equipment
 d. equipment interlocks
 e. wiring terminal numbers
 f. any special connection information required for properly controlling the mechanical equipment.

3. Panel interior and panel face layouts.
E. A bill of material reference list with drawing tag identifiers, application description, manufacturer, complete model number, and quantity.

F. Identify all deviations from this standard and project documents.

G. Provide written sequences of operation which shall define all modes control strategies.

H. The submittals shall include manufacturers catalog data describing each item of control equipment or component provided and installed for the project.

I. Shop drawings shall include riser diagram depicting locations of all controllers and workstations, with associated network wiring. Also included shall be individual schematics of each mechanical system showing all connected points with reference to their associated controller. Typicals will be allowed where appropriate.

J. When the Architect/Engineer requires, the Contractor will resubmit with the corrected or additional submittal data. This procedure shall be repeated until all corrections are made to the satisfaction of the Engineer and the submittals are fully reviewed.

K. Contractor agrees that shop drawing submittals processed by the Architect/Engineer are not change orders, that the purpose of shop drawing submittals by the Contractor is to demonstrate to the Architect/Engineer that the Contractor understands the design concept, that he demonstrates his understanding by indicating which equipment and material he intends to furnish and install, and by detailing the fabrication and installation methods he intends to use. The Contractor shall be responsible for space requirements, configuration, performance, changes in bases, supports, structural members and openings in structure, and other apparatus that may be affected by their use.

L. Contractor further agrees that if deviations, discrepancies, or conflicts between shop drawing submittals and the contract documents in the form of design drawings and specifications are discovered either prior to or after shop drawing submittals are processed by the Architect/Engineer, the design drawings and specifications shall control and shall be followed. If alternates do not meet these requirements, it shall be this Contractor's responsibility to remove them and install material originally specified, at no cost to the Owner.

1.5 DELIVERY, STORAGE AND HANDLING:

A. Provide factory shipping cartons for each piece of equipment, and control device. Maintain cartons through shipping, storage and handling as required to prevent any equipment damage, and to eliminate all dirt and moisture from equipment. Store all equipment and materials inside and protected from weather.

1.6 QUALITY ASSURANCE:

A. Installation:

1. The control system shall be furnished, engineered, and installed by the BAS manufacturer’s local office.

2. Certain wiring and pneumatic installation may be performed by the BAS installer/manufacturer’s approved subcontractor under the direct supervision of the BAS installer/manufacturer’s field management.

B. Control system components shall be new and in conformance with the following applicable standards for products specified.

1. American Society for testing and materials, ASTM
1.7 SYSTEM DESIGN REQUIREMENTS:

A. Campus Building Automation System Design Intent.

1. Provide a single vendor, stand-alone Building Automation System (BAS) within each new or retrofitted building. Integrate the stand alone systems via the campus BAS data network.
2. Systems shall be designed to be BACnet compatible.
3. System shall be designed as an effective easy to use tool to operate, control, monitor and alarm mechanical equipment.
4. The system shall include all DDC controllers, sensors, valves, actuators, dampers, transmission equipment, software, local workstations, local panels, installation, setup, engineering, supervision, acceptance testing, training, and warranty necessary for a complete operable system.
5. The BAS shall be a full control system designed to control terminal equipment as well as main systems.
6. Each building and or renovation project shall provide adequate devices for monitoring and operating the BAS.
7. Each building shall include one or more BAS workstations to, based on password, allow full access to system configuration and monitoring.

B. System Architecture:

1. The BAS control system architecture shall be comprised of four levels of DDC controls devices.
 a. Level 1: The first level is the system instrumentation component devices that includes but is not limited to sensors, valves, actuators, switches, relays, and transducers.
 b. Level 2: The second level includes the terminal equipment DDC controllers with specific applications for control of terminal units such as VAV boxes, fan coils and unit heaters.
 c. Level 3: The third level is comprised of general application DDC controllers for control of large primary mechanical systems such as air handling systems, heating hot water systems and chilled water systems. This level also performs system networking functions.
 d. Level 4: The fourth level consists of a file server, workstations and other devices that provide access, programming and setup tools, database management and other functions.
 e. Provisions for expansion of all levels of the DDC system shall be provided with each project such that a need for future “gateway” or “repeater” expansion hardware and software is not required.

2. Alternates:
 a. Variations from this general outline should meet the following functionality and be approved by the university.
 b. Non-intelligent slave panels may be utilized only to expand the controller point capacity for control of a single HVAC system, or specified monitoring not requiring control logic.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS AND CONTRACTORS:

A. Subject to compliance with requirements, install one of the following systems:
1. Siemens Building Technologies

2.2 GENERAL PRODUCTS DESCRIPTION:

A. The Building Automation System (BAS) shall be capable of integrating multiple building function including equipment supervision and control, alarm management, energy management, and historical data collection and archiving. All products and materials installed shall be suitable for the intended application requirements including but not limited to:

1. Accuracy
2. Rangeability
3. Temperature and pressure ranges
4. Shut-off pressures
5. Differential pressures
6. Repeatability
7. Materials of construction suitable with the environment and/or media in which they are in contact with
8. Code compliance
9. Velocities

B. The BAS shall consist of the following:

1. Standalone DDC panels
2. Standalone application specific controllers (ASCs)
3. Portable Operator's Terminals
4. Personal Computer Operator Workstations
5. High Speed Communication Network (LAN)

The system shall be modular in nature, and shall permit expansion of both capacity and functionality through the addition of sensors, actuators, standalone DDC panels, and operator devices.

C. System architectural design shall eliminate dependence upon any single device for alarm reporting and control execution. Each DDC panel shall operate independently by performing its own specified control, alarm management, operator I/O, and historical data collection. The failure of any single component or network connection shall not interrupt the execution of control strategies at other operational devices.

D. Standalone DDC panels shall be able to access any data from, or send control commands and alarm reports directly to, any other DDC panel or combination of panels on the network without dependence upon a central processing device. Standalone DDC panels shall also be able to send alarm reports to multiple operator workstations without dependence upon a central processing device.

E. Shared points will not be allowed.

F. BAS shall allow third party software to operate on personal computer workstation without any degradation to the controls operating normally.

2.3 SYSTEM AND CONTROLLERS

A. All systems shall be configured and designed to be stand-alone.

B. All outputs including all outputs attached to terminal equipment controllers and special applications shall be directly commandable by the system operator. Any application that has outputs that can not be commanded by the operator shall not be accepted.
2.4 TERMINAL EQUIPMENT CONTROLLERS

1. Terminal Equipment Controller Hardware
 a. General:
 1) Each terminal equipment controller shall be a stand-alone DDC controller designed specifically for terminal unit control such as VAV boxes, fan coil units, heat pump units or similar application.
 2) The controller shall execute local control sequences, independent of a network controller or workstation.
 3) All controllers shall preserve setup and programming from a loss of power for a minimum of 7 days.
 b. Programs:
 1) The control program shall reside in the terminal equipment controller.
 2) The default data base, i.e. setpoints and configuration information, shall be stored in EEPROM or other non-volatile memory.
 c. Stand-Alone:
 1) Controllers that share processing with a “master controller” shall not be acceptable.
 2) After a power failure the terminal equipment controller must run the control application without having to contact another controller.
 d. Communications:
 1) Communications to the general application controller shall maintain the specified network throughput speed specified in the network controller hardware section.
 e. Isolation:
 1) Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 watts at 3 feet.
 f. Connections:
 1) All electrical connections shall be made to a combination terminal strip and base assembly.
 2) To insure long term reliability, all electrical terminations shall be screw type.

2. Terminal Equipment Controller Software:
 a. Controllers shall be provided with the capabilities required by the application.
 b. Each input, output or calculation result shall accessible from the terminal equipment controller communication port, application controllers and workstations.
 c. Controllers that require an EPROM burn to make permanent changes to the software configuration shall not be acceptable.
 d. All outputs for all controlled devices shall be directly commandable from the general application or network controller and from any workstation.
 e. Global commanding of outputs and setpoints shall be available to command any number of similar terminal equipment controller outputs to the same position with a single command.
 f. Terminal device controllers that do not allow separate space heating and space cooling setpoints to be configured shall not be accepted. This includes setpoint dial applications.

2.5 GENERAL APPLICATION CONTROLLERS

1. Hardware
 a. General
 1) The controller shall support all of the standards for the front-end software such as trending, alarming, etc.
 2) The general application controllers shall be a local control loop microprocessor-based controllers installed at each mechanical system; (i.e., air handling units, heating plants, chiller plants, etc.).
 3) The controller provides uplink and downlink communications, polling and other
supervisory functions for terminal equipment controllers.

4) Mechanical systems in close proximity with a small number of physical inputs and outputs may be combined in controllers with modular input output layouts.

5) The controller shall be a true no-host system that does not require a PC or “Host” computer to perform any control functions or communication.

6) Each controller shall be addressable by a workstation or a portable service tool.

7) Non-intelligent slave panels may be utilize only to expand the controller point capacity for control of a single HVAC system, or monitoring without control logic.

8) Self Diagnostics: The controller shall contain in its program, a self-test procedure for checking communications and, verify the functionality of the CPU memory.

9) All equipment located on the roof shall be provided with an extra data drop for laptop connection. Locate roof mounted equipment in conditioned enclosures.

b. Each controller shall be provided with the memory capacity to store 1000 data samples for each physical analog point and 100 data samples for each physical digital point attached to it (including all expansion boards) and 400 data samples for each terminal equipment controller attached. This shall be in addition to the memory needed for all other functions of the panel.

c. Power Loss/Restart: The controller shall be tolerant of power failures. The memory shall be nonvolatile or unit shall hold memory for a minimum of four hours.

1) Automatically and without operator intervention, the controller shall execute these restart procedures:

2. Come on line
3. Update all monitored functions
4. Implement special building start-ups strategies as required
5. Resume operation based on current time and status

1) Controllers with batteries shall provide an alarmable point to the front end workstations when the batteries need to be replaced.

b. Network:

1) Each general application controller shall connect to the campus Ethernet system.
2) Multiple system workstation operators shall be able to access the controller simultaneously. Systems which do not provide multi-tasking, multi-user operating systems shall not be acceptable.
3) Communication speed of each network shall have a maximum 10 second end-to-end throughput from a Level 1 device input to a Level 1 device output, anywhere in the system. Provide a system configuration that will maintain this minimum throughput speed during trend collection, recovery from power outages, and monitoring of multiple mechanical systems. Strategies to limit traffic shall not interfere with control or system monitoring.
4) Uploading trends shall not interfere with control or monitoring operations

c. Isolation

1) Control, communication and power circuits for each controller shall be individually electrically isolated to protect against transients, spikes, and power surges.
2) The ports shall be optically and/or electrically isolated from each other, the controller circuit board and from power wiring.
3) The controller shall be able to operate at 90% to 110% of nominal voltage rating.
4) Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 watts at 3 feet.

d. Servicing:

1) For ease of servicing, each controller shall consist of a removable plug-in circuit board.
2) Products which require disconnection of wiring from the general application controller logic card before removal shall supply and install a quick disconnect type interconnection.
3) If an air handler is located on the roof, locate equipment in conditioned enclosure of air handler.

 e. Input/Output Modules:
 1) Analog inputs shall accept industry standard analog signals such as 4-20 mA, 0-5 VDC, and 0-10 VDC.
 2) Digital inputs shall accept binary contact closures.
 3) Digital outputs may be form C, latched or momentary contact type as required by the application.

6. Digital output pairs controlling a tri-state motor/transducer or pulse width modulation shall not be utilized by general application controllers.

7. Provide all digital outputs with hand/off/auto switches and LED status indication.
 1) Analog outputs shall have a 1% resolution over total output span of 0 to 100%.

8. Provide all analog outputs with manual override switches and pot adjustments.
 1) Provide each control panel with a minimum 10% spare of each input and output type.

2. General Application Controller Software:
 a. Provide complete controller software to execute all mechanical system local loop controls functions.
 b. Controllers that require an EPROM burn to make permanent changes to the software configuration shall not be acceptable.
 c. Each input, output, or calculation result shall be capable of being assigned to the network controller for system networking.
 d. Each controller shall be fully programmable both from a portable service tool at the controller and through the network communication system from the front-end workstation. Programs shall be able to be changed online without affecting other programs or point monitoring.

2.7 FRONT-END SOFTWARE

1. BAS Seat License
 a. Licenses shall be by concurrent user. Software shall be able to be installed on as many computers as necessary without additional licenses.
 b. Each building shall provide a minimum of one seat license.
 c. Additional licenses required are one seat license per 200,000 sq. ft. of lab or animal space and one seat license for every 400,000 sq. ft. of office and education space. No individual building shall be required to provide more than two seat licenses.

2. Software shall be a complete package including report management, alarm management, sequence programming language, live and historical data plotting capability, complete graphics with a library of HVAC symbols, program files for mechanical equipment and animation capabilities.

3. Software shall allow operator configurable reports that list in columns points chosen by the operator and attributes chosen by the operator.

4. Amount of trend data stored on the file server shall be limited only by the file server disk size and the discretion of the system administrator. Uploading data shall not affect the operation of the system.

5. Trend data shall be stored in an ASCI file for retrieval by standard “off-the-shelf” software programs.

2.8 APPLICATION OF SPECIFIC CONTROLLERS - HVAC APPLICATIONS:

 A. Each Standalone DDC Controller shall be able to extend its performance and capacity through the use of remote Application Specific Controllers (ASCs).

 B. Each ASC shall operate as a Standalone controller capable of performing its specified control responsibilities independently of other controllers in the network. Each ASC shall be a microprocessor-based, multi-tasking, real-time digital control processor. Points shall not be shared between controllers.
C. Each ASC shall have sufficient memory to support its own operating system and data base including:

1. Control Processes
2. Energy Management Applications
3. Operator I/O (Portable Service Terminal)

D. The operator interface to any ASC point data or programs shall be through any network-resident PC workstation, or any PC or portable operator's terminal connected to any DDC panel in the network.

E. Application Specific Controllers shall directly support the temporary use of a portable service terminal. The capabilities of the portable service terminal shall include, but not be limited to, the following:

1. Display temperatures
2. Display status
3. Display setpoints
4. Display control parameters
5. Override binary output control
6. Override analog setpoints
7. Modification of gain and offset constants

F. Powerfail Protection: All system setpoints, proportional bands, control algorithms, and any other programmable parameters shall be stored such that a power failure of any duration does not necessitate reprogramming the controller.

2.9 STANDALONE DDC PANEL LOCAL

A. Each DDC panel shall be capable of supporting an operator's terminal for local command entry, instantaneous and historical data display, and program additions and modifications.

1. There shall be a provision for both permanently mounting the standalone DDC panel Operator Terminal, or using it as a portable handheld unit.

2. The DDC panel Operator Terminal shall simultaneously display a minimum of 6 points with full English identification to allow an operator to view single c'screen dynamic displays depicting entire mechanical systems.

3. The operator functions provided by the DDC panel Operator Terminal shall include, but not be limited to, the following:

 a. Start and stop Points
 b. Modify Setpoints
 c. Modify PID Loop Setpoints
 d. Override PID Control
 e. Change Time/Date
 f. Add/Modify Start/Stop Weekly Scheduling
 g. Add/Modify Setpoint Weekly Scheduling
 h. Enter Temporary Override Schedules
 i. Define Holiday Schedules
 j. View Analog Limits
 k. Enter/Modify Analog Warning Limits
 l. Enter/Modify Analog Alarm Limits
 m. Enter/Modify Analog Differentials
 n. View Point History Files
4. The DDC panel Operator Terminal shall provide access to all real or calculated points in the controller to which it is connected, or any other controller in the network. This capability shall not be restricted to a subset of predefined "global points", but shall provide totally open exchange of data between the operator terminal and any DDC panel in the network.

5. Operator access at all DDC panel operator Terminals shall be identical to each other, as well as identical to the PC or Laptop Operator Workstations. Any password changes shall automatically be downloaded to all controllers on the network.

6. The DDC panel operator terminal shall provide English language prompting to eliminate the need for the user to remember command formats or point names. Prompting shall be provided consistent with a user's password clearance and the types of points being displayed, to eliminate the possibility of operator error.

7. A multi-function touchpad shall be provided for point and command selection, as well as parameter entry. To minimize the possibility of operator error, the DDC panel Operator Terminal shall change and limit touchpad functions based upon an operator's password clearance, the function being performed, and types of points being displayed. Screen displays shall clearly indicate only valid touchpad functions.

8. Context-Sensitive Help: On-line, interactive user's "Help" manuals and tutorials shall be provided. Based upon operator request, the "help" function shall provide general system operating instructions, and specific descriptions of commands available in the currently displayed menus.

9. Identification for all real or calculated points shall be consistent for all network devices. The same English language names used at PC workstations shall be used to access points at the DDC panel Operator's Terminal to eliminate cross-reference or look-up tables.

10. In addition to instantaneous summaries, the DDC panel Operator's Terminal shall allow a user to view a Point History file for system points. Point History files shall provide a record of value of analog points over the last 24 hours, at 30-minute intervals, or a record of the last ten status changes for binary type points.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. The contractor shall install all equipment, control air piping/tubing, conduit and wiring parallel to building lines.

B. All automatic control valves and control dampers furnished by the temperature control contractor shall be installed under his supervision by the mechanical contractor.

C. Provide a project manager who shall, as part of his duties, be responsible for the following

1. Coordination between the contractor and all other trades, the university, local authorities, and the design team.
2. Scheduling of manpower, material delivery, equipment installation and checkout.
3. Maintenance of construction records such as project scheduling and manpower planning and AUTOCAD for project co-ordination and project record drawings.

3.2 GENERAL INSTALLATION REQUIREMENTS:
A. Spare conductor capacity, equal to a minimum of (2) additional sensors shall be provided to each underfloor sensor and pendant type sensors.

B. Wiring located inside mechanical space shall be installed in conduit.

C. Horizontal runs of conduit, trays, tubing or wiring shall be hung from structural members using new supports, or where feasible, utilizing existing temperature control conduit and piping. The Contractor shall verify adequacy of existing systems and warrant these systems as if they were new. Single runs of conduit, tubing or wire shall be by clevis ring and all thread rod. Multiple runs shall be by "Trapeze" or "Unistrut" supports. "Plumber's Strap" shall not be allowed. Maximum distance between supports shall be per the NEC. Existing supports shall only be used upon written concurrence by the Architect, Engineer or Owner.

D. All vertical runs of conduit or tubing shall be through new core drills. Existing core drills may be used if approved by the Owner. The installation shall be supported above each floor penetration using clamps to "Unistrut".

E. All wire that enters or leaves a building structure shall be installed with lightning protection per NEC.

F. All wire terminations shall be with compression type round hole spade lugs under a pan head screw landing; Stay-Kon or equivalent. All wire splices shall be with compression type insulated splice connectors or properly sized "wire-nut" connectors. Hand twisted, soldered and/or taped terminations or splices are not acceptable.

G. Where tubing, wiring or conduit penetrates floors or walls, sleeves with bushings shall be provided for tubing and wires. The conduit or sleeve opening shall be sealed with fire proof packing so the smoke and fire rating of the wall or floor is maintained.

H. All the material installed under this contract must be mounted on, or supported from the building structure or supports furnished by this Contractor.

I. Air supplies shall be supplied from mains. Do not connect to branch lines.

J. Provide an isolation valve on air line connections to each air controlled device which will be added.

K. Install 0-20 psi pressure gauges at all air controlled devices which will be added.

3.3 INSTALLATION PRACTICES:

L. The Contractor shall install and calibrate all Field Devices, sensors and transducers necessary for the complete operation of the I/O points described herein.

M. Sensors shall be removable without shutting down the system in which they are installed.

N. All immersion sensors shall be installed in new, welded thermowells supplied by the Contractor. Existing thermowells may be reused with concurrence from the Owner. Coordinate any required shutdown with Owner.

O. Thermistor wire leads shall be permanently terminated at panels or controllers with wire clamps.

P. Where none exist, furnish and install pressure/temperature gauges adjacent to each immersion type sensor.

Q. Sensors shall be installed with the use of a wet or hot tap without draining the system if required.

3.4 SYSTEM SETUP
A. Nomenclature: All point names shall comply with the existing point naming conventions. See Section 23 05 53 and the standard points list.

B. Point Setup

1. See Section 23 09 32 for a list of required points.
2. All physical analog outputs shall be setup to be commandable from the graphics with units of percent open to the energy source. This means mixed air dampers will be in percent open to outside air. The value of the physical units of the output shall also be available as live data.
3. Points shall be setup so they read on reports and graphics with standard engineering units and without decimal places that exceed point updating or sensor accuracy.
4. A graphic link will be installed for all points that are alarmed to allow drag and drop of alarms from the alarm status application to the appropriate graphic panel.

C. Trends

1. All general application controller physical points, setpoints, and points on graphics shall be trended.
2. All trends shall be scheduled for data transfer from the field panels to the database without data loss and without interfering with system operation.
3. For archiving purposes, trends shall be setup to automatically transfer from the system database to files that can be easily used by standard spreadsheets.
4. Analog points should have an interval trend of 15 minutes, 200 samples at the panel, and 45 days in the database.
 a. A change of value style of trend will be setup to record significant changes between the fifteen minute intervals.
5. Digital points shall have change of value trends with a minimum of 50 changes from on to off or off to on stored in the panel, and 500 at the database or as needed for 45 days of data. Additionally, interval trend of 15 minutes, 200 samples at the panel, and 45 days at the database.

D. Graphics

1. The graphics should include all devices used by the control system and all controlled equipment.
2. The university must approve all graphic panels before they are copied.
3. All physical IO shall be on a graphic that enlightens the user to its function. All systems shall have graphics that convey accurate and complete schematic information about the equipment.
4. Graphics shall be clear and readable. Misleading details like construction room numbers and fonts that are too small to read shall not be used.
5. Use typical graphic developed by the university when available otherwise match existing style.
6. Each building will have a Building Chart that lists major AHU and building system parameters. It should be linked to each system graphic and the main graphic.
7. AHU graphics must contain utility and general information on the graphic. An air handler graphic shall have outside air and the properties of any chilled water, heating water, or steam supplied to the air handler.
8. The graphics shall either have links to all relevant graphics or be setup such that the operator will be able to navigate from the terminal box graphic to the relevant air handler graphic and back in less than three double clicks. The same shall be true between the terminal graphic and the related floor plan.
9. Each system graphic shall have a link to the sequence and a link to a maintenance log file.
10. Equipment references on the graphics will be compatible with the campus database naming conventions.
11. Controllers and miscellaneous alarm points will be located on the floor plan graphic.
12. Terminal equipment controller graphics shall be schematically correct, clear to read and have points arranged in a logical pattern to help viewer find information.
a. All terminal box controllers, fan coils, unit heaters, exhaust boxes, etc. shall be located on a floor plan with a link to the relevant graphic.

b. Terminal device graphics must contain utility and general information on the graphic. This would include supply air temperature, static pressure, heating water supply temperature or chilled water supply temperature as applicable.

c. Terminal device graphics shall distinguish graphically between the type of equipment controlled such as VAV boxes, fan coils, hoods, general exhaust boxes etc.

d. Points on the graphics that indicate position of terminal equipment controller outputs will read in percent open to energy source. All points necessary to command the outputs will be included on the graphics.

e. Graphics shall be application specific with information on the discharge air temperature and pressure information specific to the air handler serving the terminal equipment controller.

13. Room numbers shall be included on the floor plans and shall be the university room numbers not the construction room numbers.

14. The operator shall be able to print any graphic including the live data.

15. Locate BAS panels on floor graphics.

16. Provide a graphic that overlays the mechanical contract drawing over the floor level graphics. Coordinate with BAS through the University Project Manager.

17. Show the miscellaneous points on the floor overview graphic at the installed location.

18. All points shall drag and drop and open the graphic associated with the point.

19. The graphics file shall be named the same as the background Designer file.

E. Alarms

1. Point alarms should follow the Standard Points List.

2. All general application controller and network controller communication failures shall be annunciated at the applicable system workstations as an alarm.

3. Priority 3 alarms shall be setup for failed batteries at the field panels.

4. All specified I/O device alarms shall be annunciated at the system workstation with alarm messages that clearly identify the type of alarm, the point in alarm and the value of the point in alarm.

5. All alarms shall be assigned priority levels with different notification strategies attached to each level. These alarm levels shall conform to the standards points list (see Section 23 09 32). The system administrator shall have complete control over notification strategies and alarm levels.

6. Alarm priorities

 a. Priority 1: Life safety (oxygen alarms, fire alarm), alarm effects entire building operation or research, emergency showers, water detection, environmental chambers, and emergency chilled water system activation.

 b. Priority 2: Research area/building alarms

 c. Priority 3: Office and teaching/building area alarms

 d. Priority 4: General maintenance alarms, such filters that do not require an immediate response

 e. Priority 5: BAS alarms, error codes, field panel failure alarms, battery alarms, non building related alarms

 f. Priority 6: Customer equipment alarms

7. All alarms with high priority shall be annunciated on alphanumeric pagers.

 a. Pager messages shall be fully changeable by the system administrator. They shall clearly identify the type of alarm, the building, the point in alarm and the value of the point in alarm.

 b. Critical alarms shall be sent to the paging system within 10 seconds.

 c. All paging shall be enhanced to include a minimum time delay, unless it is a critical alarm.

8. The alarm logic shall include adjustable high and low alarm limits, mixed mode expressions, and equipment interlocks.

9. Unique high and low limits shall be supplied for each analog alarm point in the system.
10. The system shall be programmed to suppress alarm reporting on primary equipment that is in the inactive state.

11. All alarmed points where the location is not obvious must have the location of the point in the point informational text or graphics.

12. Nuisance alarm suppression
 a. Alarms shall have an adjustment delay for the alarm condition to clear before the alarm is sent to workstations or pagers. If the condition clears before the delay is over the alarm shall not be sent.
 b. When the alarm conditions clears there shall be an adjustable time delay before an alarm clear is sent. If the alarm condition clears before the delay is over then no alarm clear shall be sent and the point shall remain in alarm.
 c. Provide enhanced alarming for filters, temperatures, and pressures using enhanced alarming.

13. All alarmed points where the location is not obvious must have the location of the point in the point informational text or graphics.

14. Confirm paging of alarms with the university BAS staff.

F. Database:

1. After all punch list items have been completed export all of the following items and turnover to UCD:
 a. All points for every panel, including Virtual Points
 b. All terminal device points
 c. All programs
 d. All panel database files

G. Reporting:

1. Create the following reports:
 a. Trend Collection report
 b. Operator report
 c. Failed Point Report.

2. For archiving purposes, fifteen minute interval reports should be setup for each mechanical system. Once a month they should automatically export last month’s data to a csv file on the file server. File names will be organized logically and include the date and system.

H. Graphing

1. Create the following graphs:
 a. Historical graph for the last 45 days of performance for each major mechanical system.
 b. Dynamic graph of performance for each major mechanical system.

3.5 CLEANING AND FLUSHING:

I. All control air tubing shall be thoroughly cleaned before placing in operation to rid the system of dirt, piping compound, mill scale, oil, and any other material foreign to the air being circulated.

J. Clean exterior surfaces of installed piping systems of superfluous materials. Flush out piping systems with clean water before proceeding with required tests. Inspect each run of each system for completion of joints, supports and accessory items.

K. After installation of piping, but prior to installation of outlet valves, blow lines clear with Grade "D" oil-free dry air or nitrogen.

L. Control air piping which is required to be brazed shall be provided with a nitrogen purge during the
3.6 IDENTIFICATION:

A. All control air piping/tubing, J-boxes, conduit and wiring shall be labeled.

B. Electrical devices, wiring, conduit and J-boxes shall be labeled and identified as required by Division 26.

C. As a minimum regardless of Division 26 requirements, all temperature control J-box covers shall be painted blue in color on both sides of cover.

D. Main supply control air piping and tubing shall be labeled with Brady or equivalent markers or pre-printed identification sleeves at each end and junction point, and protected. Identification scheme shall be consistent with the drawings.

E. Identification shall be provided for all enclosures, panels, junction boxes, controllers or Field Devices. Laminated, bakelite nameplates shall be used. The nameplates shall be 1/16-inch thick and a minimum of 1 inch by 2 inches. The lettering shall be white on a blue background with minimum 1/4-inch high engraved letters. The nameplates shall be installed with pop rivets.

F. All new devices will be tagged. Color code to differentiate between new devices.

G. Thoroughly clean the surface to which the label shall be applied with a solvent before applying the identification. Use an epoxy to affix the identification in addition to any adhesive backing on the identification.

H. The plan code designation shown on all shop drawing identification shall be consistent with the contract documents.

I. All I/O Field Devices that are not mounted within Field Device Panel enclosures shall be identified with engraved plastic laminated nameplates installed so that they are visible from ground level.

J. The identification shall show the designation used on the record documents and identify the function such as "mixed air temperature sensor" and "fan status DP switch".

K. Calibration settings shall be marked with paint or indelible ink.

3.7 LOCATIONS:

A. All sensing devices and locations shall be located by the Contractor as shown on the submittal shop drawings with final review by the Engineer.

B. Wall mount space sensors shall be mounted five (5) feet above finished floor. Pendant mount space sensors shall be mounted eight (8) feet above finished floor.

C. Enclosures housing Field Devices shall be located immediately adjacent horizontally to the BAS panels or Slaves which are being interfaced to.

3.8 VALVES, WELLS, FLOW SWITCHES AND AUTOMATIC CONTROL DAMPERS:

A. The Controls Contractor shall have his control equipment on the project site when required and give the Owner 24 hour written notice when systems must be shut down for installation.

3.9 TEMPERATURE SENSORS:
A. Temperature controls trades shall verify all wall mounted temperature sensors locations with the Architect/Engineer/Owner in order to avoid interference with wall mounted and space furnishings.

B. Where interferences require moving the temperature sensor more than two feet, consult with the Architect/Engineer for relocation.

C. Temperature sensors shall be mounted on suitable insulated base and secured to the wall in such a way as to be easily removed from wall without damage to the sensor.

D. Check and verify location of thermostats and other exposed control sensors with plans and room details before installation. Locate thermostats 48" (1524 mm) above floor.

3.10 EQUIPMENT PROTECTION AND COORDINATION:

A. Where existing walls are penetrated with conduit or piping, provide a fire stop assembly which meets or exceeds the original rating of the assembly. Refer to Division 23.

B. Extreme care must be exercised while working in existing facilities and around operating equipment, particularly sensitive telephone switching and computer equipment. Close coordination with the Owner is required for the protection of this operating equipment from dust, dirt and construction material while maintaining the operational environment for the equipment. Under no circumstances shall the power or environmental requirements of the operating equipment be interrupted during the installation and check-out without submitting to the Architect, Owner and Engineer for approval.

C. A detailed Method of Procedure (MOP) stating the steps to be taken, time schedule and impacted systems for the service interruption shall be submitted to the Architect for approval prior to beginning work. Refer to Division 1 and Division 23 for requirements.

3.11 CLEANUP:

A. At the completion of the work, all equipment pertinent to this contract shall be checked and thoroughly cleaned and all other areas shall be cleaned around equipment provided under this contract. Clean the exposed surfaces of tubing, hangers, and other exposed metal of all grease, plaster, dust, or other foreign materials.

B. Upon final completion of work in an area, vacuum and/or damp wipe all finished room surfaces and furnishings. Use extreme care in cleaning around telephone switching and computer equipment and under no circumstances shall water or solvents be used around this equipment.

C. At the completion of the work and at the end of each work day, remove from the building, the premises, and surrounding streets, etc., all rubbish and debris resulting from the operations and leave all equipment spaces absolutely clean and ready for use.

3.12 SOFTWARE, DATABASE AND GRAPHICS:

A. Software Installation: The Contractor shall provide all labor necessary to install, initialize, start-up and debug all system software as described in this section. This includes any operating system software or other third party software necessary for successful operation of the system.

B. Database Configuration: The Contractor will provide all labor to configure those portions of the database that are required by the points list and sequence of operation.

C. Color Graphics: Unless otherwise directed by the Owner, the Contractor will provide color graphic displays for all systems which are specified with a sequence of operation, depicted in the mechanical drawings for each system and floor plan. For each system or floor plan, the display shall contain the associated points identified in the point list and allow for setpoint changes as required by the Owner.
3.13 TEMPERATURE CONTROL DRAWINGS:

A. Upon completion of project and after record drawings of the temperature controls have been prepared and reviewed, the Contractor shall provide one (1) complete set of temperature controls drawings at each temperature control panel. Each set of drawings shall be laminated in a plastic coating. The drawings shall consist of only those control functions associated with the specific control panel and any relevant or pertinent network interface information.

B. The laminated drawings shall have a grommet connection attached to a metal cable or chain which is mechanically fastened to the temperature control cabinet.

3.14 START UP AND TESTING:

A. Prior to Beneficial Use of the BAS, the Contractor shall supply to Architect/Engineer two (2) debugged printouts of all software entered into the BAS. Also supply all users programming and engineering manuals required to interpret the software. Included in the printouts, though not limited to, shall be the following:

B. Point data base.

C. All custom control programs written in the BAS control language.

D. All parameters required for proper operation of BAS control and utility firmware such as start-stop routines, etc.

E. The software printout shall be fully documented for ease of interpretation by the Architect/Engineer and Owner, without assistance from the Contractor. English language descriptions shall be either integrated with or attached to the BAS printout. Specifically, the following shall be documented:

F. All point (I/O and virtual) names.

G. All BAS Programming Language commands, functions, syntax, operators, and reserved variables.

H. Use of all BAS firmware.

I. The intended actions, decisions, and calculations of each line or logical group of lines in the custom control program(s). Sequences of operation are not acceptable for use in this documentation requirement.

J. Complete descriptions of and theories explaining all software and firmware algorithms. The algorithms to be described include, but are not limited to, PID, optimum start/stop, demand limiting, etc.

K. Documentation that was supplied as part of the submittals need not be submitted at this time.

L. Upon review of software, a point-to-point test of the BAS installation shall commence. The Contractor shall provide two men equipped with two-way communication and shall test actual field operation of each control and sensing point. This procedure shall occur during off hour periods. The purpose is to test the calibration, response, and action of every point. Any test equipment required to prove the proper operation of the BAS shall be provided by and operated by the Contractor. Owner will be present to oversee, observe, and review the test. Demonstrate compliance that system functions per the Sequence of Operation.

M. Upon review of the point-to-point demonstration, the Contractor shall start up the BAS by putting all controlled equipment in automatic and enabling software. Contractor shall commence final software and overall BAS hardware/software debugging.
N. Final acceptance of the BAS is contingent upon a hardware/software system test. All groups of points that yield a system of control shall be tested for compliance with the sequences of operation. Included in the test, but not limited to, shall be:

O. BAS loop response. The Contractor shall supply a trend data output in graphical form showing the step response of each BAS loop. The test shall show the loop's response to a change in set point which represents a change in the actuator position of at least 25% of its full range. The sampling rate of the trend shall be from one to three minutes depending on the speed of the loop. The trend data shall show for each sample the set point, actuator position, and controlled variable values. Any loop that does not yield temperature control of + 0.2deg F or humidity control of + 3% RH shall require further tuning by the Contractor.

P. Interlocks and other sequences.

Q. BAS control under HVAC equipment failure.

R. HVAC operation under BAS equipment failure.

S. Battery backup.

T. BAS control under power failure/restart.

U. Reset schedules.

V. BAS alarm reporting capability.

W. A detailed test report as defined under Submittals shall be provided indicating its completion and proper system operation.

X. The BAS will not be accepted as meeting the requirements of Beneficial Use until all tests described in this section have been performed to the satisfaction of both the Architect/Engineer and Owner. Any tests that cannot be performed due to circumstances beyond the control of the Contractor shall be exempt from the Beneficial Use requirements if requested in writing by the Contractor and concurred by the Owner and Architect/Engineer. Such tests shall be performed as part of the BAS warranty.

Y. A typed written document stating that the system has been fully checked out on a point by point basis shall be submitted to the Architect/Engineer. All documentation associated with the check out shall be included.

3.15 PROJECT RECORD DOCUMENTS:

A. The Contractor shall be responsible for updating all existing Project Record Documents associated with the Scope of Work outlined in the Drawings and Specifications.

B. At least 3 working days before final acceptance demonstration, the contractor shall submit project record drawings of the BAS for approval by the university. If more than three errors or omissions are found during the university review or during the acceptance procedure the acceptance procedure will be cancelled and rescheduled when accurate and complete drawings are received.

C. Project Record Documents shall include all the information in the submittal drawings plus:

 1. All communication wiring shall have the exact route shown on a floor plan.

 2. Include the working construction drawings set from the installation sub-contractor.
3. Exact locations of all devices including panels, communication devices, IO devices, etc. shall be shown. Construction room numbers if different from the university room numbers do not meet this requirement.

4. All changes made during installation shall be shown.

5. The electrical circuits used by the BAS should be clearly indicated as panel and circuit number.

6. Unit communication address identifiers shall be shown.

7. Conductor and pneumatic tubing identifier numbers.

D. After receiving final approval, supply six (or as specified on Division 1) complete project record drawing sets (maximum ANSI “D” size), together with an electronic copy to the university. The project is not considered complete until record documents have been received and certified complete and accurate by the university.

E. O&M manuals shall be provided that detail any maintenance required for any device in the system.

8. After all punch list, commissioning has been completed, and the before the university accepts the project.

9. Run reporting for any unresolved lines for all programming.

10. Run reporting to find any unused points and delete them from the database.

11. Run reporting to find any unused commissioning, trends, reports and unneeded graphics.

12. Run reporting for any database errors in database using the system activity log.

13. Run reporting a network performance diagnostic test and provide report to the university.

F. All of the above documentation shall record both the equipment installed under this contract and the exact termination to all other existing control or BAS equipment.

G. The record drawings shall document the complete existing control system. This includes all mechanical equipment in work area which has automatic control.

H. UCD Owner BAS checklist provided to be provided by BAS (CONFORMED SET)

1. Report Builder Requirements
2. Point Summary Report Requirements
3. Program Editor Requirements
4. Point Editor Requirements
5. Trend Editor Requirements
6. Dynamic Plotter Requirements
7. Graphics Requirements
8. Graphical Designer Requirements
9. Report Builder Requirements
10. Sequence Requirements
11. Remote Notification (RENO) Requirements
12. System Profile Requirements
13. MMI Requirements
14. Scheduler Requirements
15. System Activity Requirements
16. System Panel Requirements
17. Seasonal Tuning Requirements
18. Specification Turnover Requirements
19. Asbuilt and O&M Requirements
3.16 WARRANTY

M. The BAS shall be warranted to be free from defects in both material and workmanship for a period of one (1) year of normal use and service. This warranty shall become effective the date the university accepts the system. The warranty shall include 24 hour per day, 7 day per week emergency problem response and all standard service contract preventative maintenance items (i.e. sensor calibration, linkage adjustment, etc.). An emergency service number shall be provided to the university. Response shall be within four (4) hours to the phone call.

N. Provide factory trained technicians familiar with the installation for emergency warranty service.

O. Upgrades: Include all controller firmware and software updates for the installed system version at no additional cost to the system the university during the warranty period.

P. Tuning: Include seasonal fine-tuning of PID loop parameters and other control parameters to provide an optimized control system to the university.

3.4 TRAINING:

A. Contractor shall provide to the engineer and the university a training class outline prior to any schedule training.

B. The control contractor shall conduct on-site training courses for designated university personnel in the maintenance and operation of the control system.

1. A minimum of one class shall be given upon system acceptance. Classes shall be no longer than four hours in duration and budgeted at 1 hour of training time per 4000 sq. ft. of controlled area in labs and 1 hour per 7500 sq. ft. in office space. A minimum of one four hour class shall be provided.

2. Before training begins the O&Ms shall be complete the project BAS shall be communicating to the campus BAS.

3. Training sessions shall be provided for the university’s personnel by factory trained personnel knowledgeable about all aspects of the installation.

4. Training outline shall be coordinated with University Engineering and shall include as a minimum.

 a. Instruction on specific systems and instructions for operating the installed system
 b. A tour of the installation to show the location of all system components
 c. A review of the project documentation.
 d. A review of the sequences of operation.
 e. A review of graphical commanding and alarming.
 f. A review of the troubleshooting procedures
 g. A review of terminal controller operations.
 h. A review of emergency operation due to utility loss (power, chilled water, steam), panel failures, and major mechanical or electrical systems.
 i. A review of the O&Ms and the working construction drawing set from the installation subcontractor.

5. Provide 8 hours total of seasonal loop tuning.

C. The BAS contractor will provide, at no cost to the university, standard training for the operations staff. Such training shall be adequate to fully enable the student to perform any required operating procedures in the BAS.

D. Forty hours of factory training shall be provided for any Lab building over 80,000 sq. ft. Eighty hours of
factory training shall be provided for any lab building over 300,000 sq. ft.

END OF SECTION
SECTION 23 09 13 - INSTRUMENTATION AND CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. This section is an extension of 23 09 00. Reference this specification for control systems and procedures.

B. The devices listed in this section are control system field devices generally connected to the Building Automation System. These devices have been placed in a separate section for clarity. See Section 23 09 00 for system standard and for items not clarified in this section.

C. Include all required factory and field calibration of each instrumentation device to accurately measure and control the desired variable.

D. All wiring requirements in this section shall be considered in addition to the requirements in Division 26 not in place of Division 26.

PART 2 - PRODUCTS

2.1 GENERAL:

A. All input and output devices will be of the type which are universally accepted in the industry, can easily be second sourced and are fully compatible with the BAS.

B. Required components:

1. All components shall be included to meet the intent of sections 23 09 00 and 23 09 93.

2.2 MATERIALS AND EQUIPMENT:

A. General: The Contractor shall provide control products in the sizes and capacities indicated. Additional controllers, sensors, and devices which are required to make a complete control system shall be the responsibility of the controls contractor.

2.3 SYSTEM INPUTS OR MEASUREMENT DEVICES:

A. General

1. All sensor and signal conditioning equipment will be of the type which are universally accepted in the industry, can easily be second sourced and are compatible with all of the manufacturer’s equipment.

2. See section 23 09 93 for required points.

3. Provide components that are fully compatible with the Building Automation System (BAS). Include all required factory and field calibration of each instrumentation device to accurately measure the desired variable.

4. All sensors to be installed in conditioned areas to prevent damage to the device. All devices to be installed within the operating range of the device.

5. Temperature Transmitters:

a. General: Temperature sensor/transmitters shall have ranges appropriate for applications, input resolution of 0.2 Deg. F, accuracy of .4 degree F and stability of .3 degree F over the entire span. Pneumatic sensors are not allowed.

b. Space:
1) Space sensors (non-flush mounted) shall be provided with a portable service tool jack.

c. Duct Averaging:
1) Duct mounted averaging sensors shall utilize a sensing element incorporated in a copper capillary.
2) If the cross section of the duct where the sensor is located is larger that 24 inches long by 24 inches wide, averaging sensors of adequate length shall be specified to assure accurate temperature. Provide averaging sensors in all mixed air applications.

d. Outside Air: Sunshields shall be provided for outside air sensors.

e. Liquids
1) Temperature sensors for liquids and steam shall have wells of appropriate type for the application and separable from the sensing element. Strap on sensors will not be accepted.

6. Differential Pressure Transmitters – Air and Water:
a. General: The differential pressure transmitters shall be temperature compensated.
b. Performance:
1) Sensing range shall be suitable for the application with accuracy of +/- 1% including hysteresis and non-linearity of range and repeatability of +/- 0.2% of range.
2) The sensor element shall be capable of withstanding up to 500% of rated pressure without damage.
3) The sensor range shall be selected such that the anticipated set-point is approximately mid-range. Range may be larger if necessary to keep all anticipated measurements within the range.

c. Air Application:
1) The sensor element shall be capable of withstanding at least 5 psi differential pressure.
2) For applications referencing outdoor air, provide an outdoor static reference enclosure that eliminates wind effects.
3) Provide a metal pitot tube for all duct static measurements.
4) Provide a recessed housing with metal fittings designed for space static measurements.
5) Provide bi-directional sensors for all air filter monitoring.

d. Water Application:
1) For all water measurements, provide an isolation valve manifold and a permanently installed local visual gauge by mechanical contractor.
2) The sensor element shall be capable of withstanding a pressure of twice the full scale pressure.
3) Sensors shall have a minimum range of 0 - 50 PSI and a minimum of 100 PSI line pressure.

7. Humidity Transmitters:
a. General:
1) Humidity sensing elements shall be of the solid-state type.
b. Performance:
1) The sensing element shall have a minimum range of 10% -99%, with an accuracy of +/- 2% of range.

8. Air Velocity Sensors For VAV Box Control:
a. General:
1) The sensor shall sense a velocity range that is appropriate for each box.
2) Repeatability including transmitter shall be +/- 5% of the CFM reading across the range of flow required by the application.
3) The consultant shall determine if the airflow transmitter included in the controller will meet the above accuracy and specify an external transmitter where necessary.

Performance:
1) Thermal anemometer sensors shall use constant temperature differential technology and operate from 30F degree F to 120 F. degrees F
2) Differential pressure sensors shall provide periodic auto-calibrate to insure accurate velocity pressure measurement at low flows.

9. Flow Sensor – Air:
 a. General:
 1) The sensor shall utilize a multi-point airflow measuring array with a minimum of one sensing point for every two square feet of area (rounded down).
 b. The accuracy of the flow measurement shall be +/- 3% of full scale.
 c. Airflow measuring element accuracy shall be +/- 2% of the actual airflow span.
 d. Differential Pressure Sensor/Transducer Performance: Refer to Differential Pressure Transmitter specification above.
 e. Mount airflow probes on fan inlets with locknuts. When use of locknuts is not an option, the use of “lock-tight” is acceptable.
 f. BAS air flow sensors shall be scaled to report in KCFM.

10. Flow Sensor – Hot/Chilled Water Meter:
 a. Ultrasonic Type: Piping location for meter must meet the manufacturer’s recommendation for minimum specified length of straight pipe. The metering of the cooling energy (chilled water) is based on the total BTU (British Thermal Units) of energy delivered to the building converted to cooling Ton-hours. Determination of Ton-hours of energy requires a minimum of two temperature sensors (one on the supply line, one on the return line) and a flow meter, preferably on the supply line (building chilled water design conditions are CHWS=41 degree F and CHWR=56 degree F). Meter data communication must be coordinated with Building Automation System (BAS) interface requirements provided by Siemens.
 b. Meter must be in place and demonstrated to be operational to campus energy engineer prior to utility start-up.
 1) Channel transit time flow and energy meter.
 a) Channel 1 for primary hot/chilled water.
 2) High precision clamp-on flow transducers.
 3) NEMA 4X enclosure.
 4) Alphanumeric LCD display with user selectable display options.
 5) 4-20 mA output signal, corresponding to GPM flow, sent to the BAS panel for interpretation. Coordinate meter minimum and maximum flow output values with campus energy engineer.
 6) Display shall be installed at eye level while standing on floor.
 7) Mounting hardware.
 8) Flow transducer cables.
 9) Calibration certification.
 10) Acceptable Manufacturers: Siemens, Sono-Trak

11. Carbon Dioxide Sensor:
 a. General: The CO2 sensor shall utilize a single-beam, non-dispersive infrared detecting element.
 b. Performance:
 1) The sensor shall have a range of 0-2000 ppm
 2) Accuracy +/- 50 ppm
 3) Repeatability +/- 10 ppm.
 4) Drift less than 20 ppm/yr
 5) Sensors shall be field calibrated for altitude.

12. Level Transmitter: (CONFORMED SET)
 a. Capacitance measuring device
 b. 4-20mA output
c. Sensor made of 316L stainless steel
d. Measuring Range: 0-40 inches of water
e. Provide with suspension cable or rod and mounting bracket. Mount unit in a “stilling tube” made from PVC pipe.
f. Manufacturer and model: Vegawell 52

13. Electric Energy/Power Meter:

2.4 SYSTEM OUTPUTS OR CONTROL DEVICES

1. Electro-Pneumatic Transducers (I/P):
 a. General: Shall accept industry standard electronic signals and provide standardized pneumatic outputs.
 b. Performance:
 1) The accuracy of conversion shall be 4% of full scale, linearity +/- 1% of full range at ambient temperatures of 40 to 120F.

2. Control Relays:
 a. Shall be UL listed plug-in type with dust cover and LED “energized” indicator or RIB with indicator.
 b. Contact rating, configuration and coil voltage shall be suitable for the application.

3. Manual Control Switches:
 a. Shall be UL listed for use in NEMA 1 enclosures with contact arrangement and rating suitable for the application.
 b. Bat handle or knob actuator with nameplate clearly identifying function of each switch position.

4. Low Temperature Protection Thermostats:
 a. General:
 1) Shall be the manual reset type.
 2) The element shall be properly supported to cover the entire downstream side of the heating coil with a minimum of three loops.
 3) Separate thermostats shall be provided for each 25 square feet of coil face area or fraction thereof.
 4) Provide a single point for low temperature reset button when 8 or more low temperature detectors are installed.
 b. Performance:
 1) The set point shall be adjustable with a minimum range of 34 F to 50 F.
 2) The thermostat shall operate in response to the coldest one foot length of the 20 sensing element regardless of the temperature at other parts of the element.

5. Differential Pressure Switches:
 a. Pressure differential switches (air or water service) shall be UL listed. Snap-acting, pilot duty rated (125 VA minimum), NEMA enclosure appropriate for the application, with scale range such that an adjustable set point is approximately at the mid-point of the device span.
 b. Provide metal pitot tubes for airside differential pressure switches measuring duct static.

6. High/Low Static Pressure Limit Switches:
 a. Shall be UL listed line voltage snap-acting pilot duty rated (125 VA minimum), NEMA 1 enclosure.
 b. Provide manual reset unless otherwise required by the application
 c. Provide metal pitot tubes for airside differential pressure switches measuring duct static.

7. Current Sensing Switches:
 a. Shall be UL listed for line voltage with SPDT snap-acting, pilot duty rated (125 VA minimum) with range such that the set-point is at approximately the mid-point of span of the device.
 b. Provide a maximum switching differential of 0.5 amps.

8. Valve or Damper Limit (End) Switches:
a. Shall be UL listed line voltage SPDT snap-acting pilot duty rated (125 VA minimum) NEMA 1 enclosure, with roller type actuating arm suitable for damper position application.

b. Provide end open and closed status switches as a minimum on all motorized valves utilized for equipment isolation. Provide end switches on all isolation dampers.

9. Control Valves – Globe:
 a. General: All control valves, unless otherwise required by application, shall meet the following:
 1) All modulating valve/actuator combinations for water application shall have linear flow or equal percentage characteristics in relationship to valve actuator input.
 2) The minimum close-off rating of any-two valve/actuator combination shall be 110% of the total system (pump) head for water application or 50 psid, whichever is greater.
 3) Valves shall have valve position indication on the valve.
 4) Water valves utilized in modulating applications shall be sized for a 4 to 6 psi drop with a maximum of 7 psi and a minimum of 3 psi. Application with flows less than 2 gpm may utilize pressure drops less than 3 psi.
 5) The valves shall be rated to 240 deg. F and 125 psig, two-way or three-way as required.
 b. Valves ½” to 1”:
 1) The valve body shall be nickel plated brass or bronze and provided with sweat or screwed fittings as required.
 2) Provide a screwed type with NPT fittings. Provide valves with equal percentage or linear flow characteristics.
 c. Valves 1” to 6”:
 1) The valve body shall be cast iron with a chrome nickel steel or stainless steel seat and inner valve material.
 2) Valves 1” to 2” shall be screwed type with NPT fittings.
 3) Valves 2-1/2” and larger shall be flanged.
 4) Provide linear flow characteristics.
 d. Valves 6” and Greater: Provide one of the following types:
 1) Rotary globe valves equal to Masonelian Camflex II. Provide equal percentage or linear flow characteristics.
 2) Linear globe valves equal to Fisher. Provide equal percentage or linear flow characteristics.
 3) High performance butterfly valves/actuator combination that shall provide equal percentage flow characteristics at low flow. Provide Keystone K-Loc.

10. Control Valves – Butterfly:
 a. General:
 1) Butterfly valves shall not be utilized for any modulating applications with valve sizes of six inches and under.
 2) Butterfly valves utilized for two-position control shall be line-sized.
 3) The minimum close-off rating for any two-way valve/actuator combination shall be 110% of the total system (pump) head for water application or 50 psid, whichever is greater.
 4) All valves shall have valve position indication on the valve.
 b. Construction:
 1) Two-way and three-way butterfly valves shall have:
 a) a cast iron valve body
 b) aluminized bronze disc
 c) stainless steel stem
 d) disc seal suitable for bubble-tight shut off

11. Control Valves – Ball:
 a. General:
1) Ball valves shall not be utilized for modulating control unless approved by the
engineer prior to bid. Exception: Only characterized ball valves providing equal
percentage flow characteristics will be considered for modulating control
applications.

2) The minimum close-off rating for any two-way valves/actuator combination shall
be 110% of the total system (pump) head for water applications or 50 psid,
whichever is greater.

3) All valves shall have position indication on the valve.

4) The pressure drop calculations shall include the pressure drops of the fittings
required to install a valves several sizes smaller than the pipe it is being installed
in.

b. Ball Valves (2” or less):
1) Valves shall utilize brass bodies with female NPT threads. Valve bodies may also
be stainless steel, titanium or nickel with operating pressure up to 2000 psi.

2) Provide a blowout proof stem design, glass-reinforced Teflon thrust seal washer
and stuffing box ring with minimum 600 psi rating. Stem packing gland screw
shall be adjustable for wear.

3) Standard chromium plated bronze ball or where specified, stainless steel ball and
stem, shall be rated at a minimum of 600 psi water, cold, non-shock service, and
150 psi for saturated steam service. All valves shall be provided with reinforced
Teflon seats.

c. Ball Valves (2-1/2” to 6”):
1) Valves shall have flanged carbon steel or stainless steel bodies rated at 150 psi
working pressure.

2) Provide a blowout stem design and reinforced PTFE thrust seal washer.

3) Provide a stainless steel ball and stem and reinforced PTFE seats, packing and o-
rings.

12. Control Dampers:
 a. Motorized dampers, unless otherwise required by the application, shall meet the
 following:
 1) Damper frames shall use 12 or 13 gauge galvanized steel channel or 1/8” extruded
 aluminum with reinforced corner bracing.

 2) The damper blades shall not exceed eight (6) inches in width or 48” in length.

 3) Damper bearings shall be oil-impregnated sintered bronze or bearing grade nylon.
 Bushings that turn in the bearing are to be oil impregnated sintered metal.

 4) All blade edges and top and bottom of the frame shall be provided with
 replaceable, butyl rubber or neoprene seals. Side seals shall be spring-loaded
 stainless steel, synthetic elastomer, or combinations of both. The seals shall
 provide a maximum leakage rate of ½% of maximum flow or 10 CFM/SF leakage
 at 4” W.C. close-off pressure.

 5) The damper linkage shall be concealed and provide a linear flow or equal
 percentage characteristic as required.

 6) Airfoil type dampers shall be used for any modulating air volume applications,
 pressure control applications, or air velocities greater than 1500 FPM.

 7) Provide a minimum of one damper actuator per damper section.

b. Blade Arrangement:
 1) Unless parallel blade dampers are necessary for mixing outdoor/return air streams,
 dampers other than fire dampers shall be opposed blade type.

13. Electronic Actuators:
 a. Valve Actuators for Primary HVAC Equipment:
 1) Shall provide tight close-off at design system pressure and shall provide smooth
 modulation at design flow and pressure conditions.

 2) The valve actuators shall be electrically actuated with proportional modulation
 and spring return.
3) Provide a hand wheel at the valve or manual position dial mounted in the BAS panel to allow manual positioning of valve.

b. Valve Actuators for Butterfly Valves:
1) Shall provide tight close-off at design system pressure and shall provide smooth modulation over the full range of expected flow and pressure conditions.
2) Provide actuators with internal heaters if installed outdoors.
3) Provide 2 sets of end switches, one set for limiting of the stroke, the other set for open/closed position indication feedback.
4) Provide a hand wheel at the valve or manual position dial mounted in the BAS panel to allow manual positioning of valve.

c. Valve Actuators for VAV Terminal Units:
1) The valve actuator shall be electrically actuated with proportional or 3 point floating modulation.
2) Thermally actuated valve actuators are not acceptable.

d. Damper Actuators for Primary Equipment:
1) Shall be selected per manufacturer’s recommendations to provide sufficient close-off force to effectively seal damper and to provide smooth modulating control over the full range of expected flow and pressure conditions.
2) Shall be proportional modulating or 2-position as required by the application and have a position indicator for external indication of damper position.
3) Provide modulating actuators with manual override release to manually position the actuator without disconnecting damper linkage.
4) Provide adjustable stops for both open and closed positions.
5) Provide spring return to the closed position on all dampers that open to the outdoors.

e. Damper Actuators for VAV Box Terminal Unit Control:
1) Provide a rotary type capable of permanent stall operation without damage.
2) Provide adjustable stop pins on the actuator for stroke limit.
3) The actuator shall fit directly over the damper shaft.
4) VAV terminals 3,000 CFM or greater must be provided with high torque actuator.

2.5 AUXILIARY EQUIPMENT

1. Building Automation System (BAS) Controls Transformers:
a. Shall be UL listed Class 2 current limiting type, or shall be furnished with over-current protection in both primary and secondary circuits for Class 2 service.

2. Pneumatic Indicating Gauges and Test Ports:
a. Control signal indicating and test gauges shall be 1-1/2”, back-connected, 0 to 30 PSIG.
b. Test ports shall be quick-disconnect type using needle probe or threaded pin valve type.
c. Permanent indicating gauges shall be furnished for all pneumatic transducer and relay outputs used to position actuators or PE switches.
d. Gauges shall be in local control panels when applicable.
e. Test ports shall be provided for all EP, relay and signal conditioning inputs which do not directly signal actuators.
f. One main (supply) air pressure gage shall be installed in each local control panel.

3. Enclosures:
a. General:
1) Mounting: All Controllers, Relays, Transducers, transmitters, relays, etc. shall be housed in a NEMA enclosure rated for the installed conditions.
2) Panels shall be NEMA type suitable for applications as required with hinged door and key-lock latch.
b. Terminations and Connections:
1) Interconnections between internal and face-mounted devices pre-piped and wired with color-coded tubing/conductors shall be neatly installed in plastic tray and/or tie-wrapped.
2) All wiring within the panel shall be run in wiring tray in accordance with NEMA and UL standards, and shall meet all local codes.

3) Terminals for field connections shall be UL listed for 600V service, individually identified per control shop drawings, with adequate clearance for field wiring.

4) Control air terminations for field connection shall be individually identified as per control shop drawings.

c. General Application Controller Panel Enclosures

1) Provide a 120 VAC receptacle in each panel, and a fused on/off power switch for the panel power supply. Where ganged together panels within 8 feet of each other may be served by the same convenience 120 VAC receptacles.

2) Provide a main air gauge for control power sources to each local panel containing pneumatic controls. Provide air gages for each pneumatic output. Indicator lights on BAS outputs similar to Siemens module PTM6.1 do not meet this standard.

3) Provide a final as-built control drawing of panel, reduced, laminated, and mounted inside of the panel door.

4) Use of existing control panels to house new controllers is discouraged. Use of existing control panels for junction panels is acceptable under the following conditions.

 a) All excess devices, wiring and tubing shall be removed.

 b) All remaining devices, wiring and tubing shall be tagged and neatly revised.

4. Wiring and Conduit:

 a. All wire will be copper and meet the minimum wire size for the application.

 b. Input wiring shall not be in the same conduit as power wiring. Communication wiring shall not be in the same conduit as power or output wiring.

 c. Where different wiring classes terminate within the same enclosure, maintain clearances and install barriers per the National Electric Code.

 d. Where wiring is required to be installed in conduit, EMT shall be used. Conduit shall be minimum ½ inch galvanized EMT. Compression fittings shall be used for interior locations and watertight compression fittings for exterior locations. Provide conduit seal off fitting where exterior conduits enter the building or between areas of high temperature/moisture differential.

 e. Flexible metallic conduit (max. 3 feet) shall be used for connections to motors, actuator controllers, and sensors mounted on vibration producing equipment. Liquid-tight flexible conduit shall be use in exterior locations and interior locations subject to moisture.

 f. Junction boxes shall be provided at all cable splices, equipment terminations, and transitions from EMT to flexible conduit. Interior dry location J-boxes shall be galvanized pressed steel, nominal four-inch square with cover. Exterior and damp location J-boxes shall be cast alloy FS boxes with threaded hubs and gasket sealed covers.

 g. Wire inside walls should be in conduit, low voltage wire in ceilings should be ran in the information system cable tray and should enter room along with other low voltage wiring through a 2” conduit from the cable tray to a point of penetration in the adjacent room and run on J Hooks or bridle rings in the ceiling space of a room.

 h. Low Voltage/Wire and Cable: All LV/W&C shall be run in conduit in floors and walls spaces. In hallways LV/W&C shall be run in the common telecom and other low voltage system cable tray. LV/W&C must be run in a conduit sleeve, minimum 2” dia. with plastic bushings, from the point it leaves the cable tray to the interior side of a room. Once the LV/W&C enters the room it can be supported from bridle rings or j-hooks. Wiring shall comply with Section 28 31 00 and approved NEC.

 i. Low Voltage/Wire and Cable and Hallway Devices: LV/W&C running from the cable tray to devices in the hallway shall be protected by plenum rated flexible sleeving or flexible metal conduit. LV/W&C in sleeving or flexible metal conduit shall be supported per NEC and installed with UL approved connectors and plastic bushings on both ends.
j. Low Voltage/Wire and Cable Insulation Sleeve Color: BAS conductor insulation colors allowed are:
 1) Points Blue Jacket
 2) BLN Orange Jacket
 3) FLN Orange with blue stripe jacket
 4) Power Dark blue or black jacket

k. Where the space above a suspended ceiling is a supply or return air plenum, any wiring not run in conduit shall be plenum rated. EXCEPTION: Any wire run in suspended ceiling that is used to control outside air dampers, provide smoke control functions or to connect the system to the fire management system shall be in conduit.

2.6 CONTROL VALVE FAILURE POSITIONS:

1. Select valves to fail in normally open or closed position as follows:
 a. Terminal Heating Devices:

 FAIL IN PLACE

 b. Chilled Water Service:

 FAIL IN PLACE

 c. Or as dictated by life safety, freeze protection, humidity, fire or temperature protection.

B. Wire all safeties to operate both in hand and auto positions as well as drive and by-pass sections.

C. Provide communication cabling and interface necessary to forward VFD computer communication information to and from the BAS/VFD. See Section 23 05 07.

D. See Division 26 for conduit installation requirements. Where wiring is exposed in plenum locations (i.e. open cable tray), wiring shall be plenum rated.

E. Conduit and Conductors: Types as indicated in Division 26 sized per Division 26 except for low-voltage twisted pair or single jacketed cable (1/2" minimum). All low voltage conductors shall be stranded 22 gauge copper minimum; twisted pair.

F. Fittings per Division 26: Bushings or nylon insulated throats are not required for jacketed cables.

G. All J-boxes shall be identified and labeled per Division 26.

H. All conductors and cables shall be labeled per Division 26.

I. Conduit and box supports shall be per Division 26.

J. Junction boxes shall be of types and sizes as indicated in Division 26.

K. Conduits shall not exceed 40% maximum fill for single conductor and jacketed cables.

2.7 FAN INLET AIR MEASURING STATIONS:

A. Air measuring station shall be by Ebtron Airflow Monitoring Equipment.

B. See 23 09 00 transmitter.
PART 3 - EXECUTION

3.1 INSTALLATION:

A. The Contractor shall install all equipment, control air piping/tubing, conduit and wiring parallel to building lines.

B. All automatic control valves and control dampers furnished by the Temperature Control Contractor shall be installed under his supervision by the Mechanical Contractor.

C. General Installation Requirements:

1. Remote control devices not in local panels shall be accessible for adjustment and service-below 7' above finished floor whenever possible.

2. All transducers, transmitters, relays, etc., shall be mounted in a panel with hinged doors in an orderly manner and shall be properly labeled with permanent labels to identify the parts of the system being served. All thermostats shall be labeled with device number and point address.

3. Component panels shall be mounted at eye level for accessibility and service, and located within 50 feet of the system served, unless otherwise shown on the plans.

4. Horizontal runs of conduit, trays, tubing or wiring shall be hung from structural members using new supports, or where feasible, utilizing existing temperature control conduit and piping. The Contractor shall verify adequacy of existing systems and warrant these systems as if they were new. Single runs of conduit, tubing or wire shall be by clevis ring and all thread rod. Multiple runs shall be by "Trapeze" or "Unistrut" supports. "Plumber's Strap" shall not be allowed. Maximum distance between supports shall be per the NEC. Existing supports shall only be used upon written concurrence by the Architect, Engineer or Owner.

5. All vertical runs of conduit or tubing shall be through new core drills. Existing core drills may be used if approved by the Owner. The installation shall be supported above each floor penetration using clamps to "Unistrut".

6. All wire that enters or leaves a building structure shall be installed with lightning protection per NEC.

7. All wire terminations shall be with compression type round hole spade lugs under a pan head screw landing; Stay-Kon or equivalent. All wire splices shall be with compression type insulated splice connectors or properly sized "wire-nut" connectors. Hand twisted, soldered and/or taped terminations or splices are not acceptable.

8. Where tubing, wiring or conduit penetrates floors or walls, sleeves with bushings shall be provided for tubing and wires. The conduit or sleeve opening shall be sealed with fire proof packing so the smoke and fire rating of the wall or floor is maintained.

9. Under no circumstances shall wire, tubing, tray, J-boxes or any BAS equipment be run in, mounted on, or suspended from any of the telephone system’s equipment, cable trays or support structure (Grey Iron).

10. All the material installed under this contract must be mounted on, or supported from the building structure or supports furnished by this Contractor.

3.2 SYSTEM INPUTS OR MEASUREMENT DEVICES:
1. Temperature Sensors:
 a. Space: Mount room temperature sensors 60 inches above finished floor.
 b. Duct Averaging
 1) The sensor shall be installed according to manufacturer’s recommendation and looped and fastened at a minimum of every 36 inches. Firmly supported ½” EMT is acceptable.
 2) The sensor shall be thermally isolated from the unit.
 c. Water:
 1) Temperature sensors for liquids and steam shall be installed in wells of appropriate type for the application. Strap on sensors will not be accepted.
 2) Coordinate the locations of all thermo wells to provide for accurate and reliable temperature readings.
 3) Provide heat conductive compound between the well and sensor element.

2. Low Temperature Protection Thermostats:
 1) All low limit thermostats shall be firmly supported in the ductwork or air handling unit using ½” EMT or other auxiliary support.

3. Humidity Transmitters: Duct mounted sensors shall be mounted a minimum of 20 duct diameters downstream of any type of humidifiers or evaporative cooling equipment.

4. Differential Pressure Transmitters:
 a. Coordinate the locations of all water pressure differential transmitters such that the transmitter is located in the hydronically furthest lines. Confirm that there are no automatic modulating or two position valves between the transmitter taps and the pump.
 b. Locate the air pressure differential transmitter for VAV fan control approximately 2/3rd of the distance down the furthest duct. A location at or near the air handling system supply fan discharge is unacceptable.

5. Flow Meters
 a. All weld-o-lets for flow meters must be installed in a manner that no lip is in the pipe.

6. Airflow Stations
 a. The installation shall be a minimum of 10 duct diameters below and 5 duct diameters above any tees or elbows in the ductwork or in the inlet cone for each supply and return fan. If the fans are double wheel double inlet (DWDI) fans, provide a flow sensor at each fan inlet.

7. Air Velocity Sensors for Terminal Box Control
 a. The terminal box air flow measurement needs to be installed with the minimum duct diameters to assure accurate measurement of minimum ventilation air flow.

8. Differential pressure Switches
 a. All differential pressure switches shall be calibrated to specifications provided by the mechanical engineer.

3.3 AUXILIARY EQUIPMENT:

1. Wiring Installation Methods:
 a. General:
 1) At a minimum, install systems and materials in accordance with manufacturer’s instructions, rough in drawings and equipment details.
 2) Install electrical components in compliance with requirements of applicable Sections of Division 26.
 3) Install all control wiring 50 volts and above in conduit.
 b. Installation:
 1) All control wiring shall be installed in a neat and workmanlike manner parallel to building lines, with adequate support and shall be supported from or anchored to structural members.
 2) Conduit supported from or anchored to piping, duct supports, the ceiling suspension system, or other electrical conduits are not acceptable.
3) Wiring buried in slab on grade concrete or explosion proof areas shall be in rigid metal conduit.
4) Provide adequate strain relief for all field terminations.
5) Varistors shall be installed on the control side of all output relays and on both sides of the transformers.
6) All terminations shall be neat with no stray strands.

2. An additional number of spare wires shall be included in each run as determined by the university for future use.

3.4 ENCLOSURES:

A. The tubing and wiring within all enclosures shall be run in plastic trays. Tubing and wiring within BAS panels may be run using adhesive-backed tie wraps.

B. All plastic tubing shall be connected to enclosures through conduit. All copper tubing shall be connected to enclosures through bulkhead fittings.

C. Mount all enclosures, including those which house BAS Panels, Slaves and Field Device Panels, so that the top of the enclosure does not exceed six feet, six inches (6'-6") and the center of any keypad/LCD combination does not exceed five foot, six inches (5'-6") from the floor or is less than four feet zero inches (4'-0") from the floor.

D. Field Device Panels contain related Field Devices such as relays, control power (24V) transformers, output transducers, etc., that are outboard of the BAS Panels or Dedicated Controllers. Each Field Device Panel shall be mounted within an enclosure. The enclosures shall be provided with lockable latches that will accept a single key common to all Field Device Panels, BAS Panels and Slaves.

3.5 IDENTIFICATION:

E. Identification:

1. General
 a. Verify label nomenclature with the university before engraving or printing.
 b. All control equipment shall be individually and clearly identified by control shop drawing designation.
 c. Paper labels are not acceptable.

2. Control Panels
 a. Provide engraved Bakelite or lithographed metal nameplates with panel number and system served.
 b. Utilize white ½ inch high letters on a black background.
 c. Embossed labels are not acceptable.

3. Component sub-panels – metal tags or laser printed, adhesive backed, metallized polyester film labels.

4. Control valves and damper actuators – brass tags or engraved Bakelite tags.

5. Other remote control devices – metal tags or laser printed, adhesive backed, metallized polyester film labels.

7. Label room temperature sensors with point name and address of the terminal controller served by the sensor.

8. For all control devices located above the ceiling attach an additional label to the ceiling “T” frame with pop rivets. Use engraved nameplates, 3”x1”, black lettering on white background.

9. Number-code conductors and pneumatic tubing appropriately for future identification and servicing of control system. Reflect this tagging or color coding system on the Project Record Documents.
SECTION 23 09 93 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. The Engineer shall submit to the university for review and comment a complete sequence of operations two weeks before final documents are sent out to bid.

1.2 SYSTEM DESIGN REQUIREMENTS

A. All sequences shall be written to maximize energy conservation

B. All units that can be placed on a schedule shall have complete schedule control including optimum start and an optimized unoccupied turn on for unoccupied space heating and cooling.

C. Complete schedule control shall be included for terminal devices such as VAV boxes regardless of whether they are served by a dedicated air handler.

D. Separate room heating and room cooling setpoints shall be included for space comfort except where prohibited by space design parameters.

E. Normal (Power Fail) positions for dampers and valves are as follows:
 1. Terminal Unit Reheat Valves: Fail to Last Position (FLP)

1.3 STANDARD POINTS LIST

A. General
 1. Simulated analog outputs such as tri-state digital output pairs or pulse width modulation shall not be allowed except in dedicated controllers.
 2. Alarm priorities are a starting point and can be adjusted by the university after project commissioning.
 3. Priorities 1 or 2 shall be set up to call the alphanumeric pagers.

B. See drawings for specific point list.

1.4 SEQUENCE OF OPERATIONS

A. Lab Area Sequence of Operation
 1. General
 a. All supply and exhaust VAV boxes that serve one lab area shall be programmed to be able to track the total cfm in a lab area.
 b. The supply VAV boxes shall communicate with the exhaust VAV boxes to maintain a volumetric offset in order to keep the laboratory space negative relative to the adjacent space(s).
 c. Occupied lab areas shall have an ACH rate from a minimum of 6 ACH to a maximum of (design) ACH.
 d. Unoccupied areas shall have constant ACH of 4 and can revert back to occupied rates if the unoccupied setpoints cannot be maintained.
 e. A flush mode of 10 ACH shall occur if the lab area has been at unoccupied ACH for more than 1 hour.
 f. The priorities for controlling equipments are as follows:
1) Pressurization
2) Ventilation
3) Temperature control
g. The ACH rate for a lab area is based upon the total area enclosed by walls and doors.
h. VAV Size | Minimum velocity in FPM | Minimum CFM
6” | 260 | 50
8” | 260 | 90
10” | 275 | 150
12” | 320 | 250
14” | 320 | 340
16” | 320 | 445

2. Occupied mode:
a. Occupied hours: As determined by occupancy input from lighting system
b. Each lab area shall maintain a static adjustable positive or negative pressure differential at each door, as indicated on the drawings. If a lab area is calculated by the DDC computer to have less than 75% (adj.) of the required pressure differential at each door, an alarm shall be generated at the computer. Pressure differential adjustment shall be accomplished via cfm offset.
c. The Exhaust Air VAV Boxes shall be controlled per the schedules for Unoccupied and Occupied modes. The room Supply Air VAV Boxes shall be controlled based on the offset shown in the schedules.
d. As thermostats call for additional cooling in each room, the corresponding Supply Air VAV Box(es) and Exhaust Air VAV Box(es) shall open concurrently (up to maximum flow) to satisfy occupied cooling setpoints in that particular room and maintain volumetric offset.
e. As thermostats call for additional heating in each room the corresponding Supply Air VAV Box(es) and Exhaust Air VAV Box(es) shall modulate concurrently down to minimum CFM flow, while maintaining pressurization and ventilation, and modulate reheat valve to satisfy occupied heating setpoints in that particular room and maintain volumetric offset.
f. All Supply Air VAV Boxes and Exhaust Air VAV Boxes that fully close the dampers in occupied or unoccupied mode shall have a leakage amount measured at full closure. The leakage amounts shall be included in the Lab area volumetric offset calculation. Coordinate leakage test with Test & Balance Contractor.

3. Unoccupied mode:
a. Unoccupied hours: As determined by occupancy input from lighting system
b. Exhaust Air VAV Boxes – Balance per drawings
c. Supply Air VAV Boxes – Balance per drawings (exhaust cfm plus or minus offset).
d. Approximate total Lab area air change rate ~ 4.0 air changes per hour The intent is that the lab is operating in a constant volume mode without adding additional cooling and minimal heating.
e. If the temperature drifts outside of the unoccupied setpoints by 2 degrees the Lab area shall go into occupied mode until unoccupied temperature setpoints are achieved and after 15 minutes in occupied mode reset back to unoccupied mode.

4. Temperature Control
a. Occupied setpoints = 70F (adj.) heating / 74F (adj.) cooling
b. Unoccupied setpoints = 65F (adj.) heating / 80F (adj.) cooling

5. Flush out mode:
a. If the Lab area has been unoccupied for more than 1 hour, and the occupancy sensor establishes occupancy the lab shall enter the flush out mode before the occupancy mode.
b. Flush out mode shall be at 10 ACH.
c. The temperature setpoints for the Flush out mode shall be the same as the Occupied Mode

6. Graphics Overview - Show the following on the Lab area Overview
a. Show the values from the each controller from the lab, alcove, and fume hood.
b. Controller, supply CFM setpoint, supply CFM, exhaust CFM setpoint, exhaust CFM, differential CFM setpoint, differential CFM
c. Show the temperature setpoints for the entire suite
d. Suite occupied cooling setpoint, occupied heating setpoint, unoccupied cooling setpoint, and occupied heating setpoint.
e. Show the occupancy inputs for the entire suite
f. Suite occupancy input (from lighting system), suite override input, suite mode, and suite flush mode
g. Show the values for the entire suite operation
h. ACH , total supply, total exhaust, scheduled differential CFM setpoint, differential CFM

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 SEQUENCE PROGRAMMING

A. Sequence logic shall be installed in a professional manner that demonstrates a full understanding of the sequence and maximizes energy conservation and smooth operation in strategies and techniques not covered by the sequence.

B. All setpoints and control parameters shall be adjustable

C. All control loops shall utilize PID control algorithms unless application dictates otherwise.
 1. The proportional and integral values which make up the PID output value shall be readable and modifiable to facilitate tuning of control loops.
 2. All PID loops serving critical equipment shall provide for operator control of loop starting point without program editing when control is returned to program control after being in operator control.
 3. All loops shall have a virtual output in the loop statement to allow knowledge of loop performance before changing output from manual to program control.

D. The outside air temperature sensor and other inputs that are used in multiple programs shall be attached to a single virtual point, which is used in the programs.

E. Mode changes shall be stable. Abrupt changes that cause unnecessary opening of valves should not be used. Example: Do not abruptly change the supply air temperature setpoint when going from warmup mode to occupied mode.

F. All logic statements or blocks shall be input with consistent naming conventions.

G. The logic for separate DDC controllers serving AHUs with identical sequences of operation, shall also be identical.

3.2 INSTALLATION GENERAL

A. All HVAC safeties shall be hardwired such that the shutdown will occur in Automatic and Hand and bypass modes at the BAS system and the starter.

B. Software safeties are not acceptable (exception: smoke control may be done through software if the control system is UL listed for smoke control).

END OF SECTION
SECTION 23 11 23 - FACILITY NATURAL GAS PIPING

PART 1 GENERAL

1.1 DEFINITIONS:

A. Pipe sizes used in this Specification are Nominal Pipe Size (NPS).

B. Gas Distribution Piping: A pipe within the building which conveys gas from the point of delivery to the points of usage.

C. Gas Service Piping: The pipe from the gas main or other source of supply including the meter, regulating valve, or service valve to the gas distribution system of the building served.

1.2 SUBMITTALS:

A. Product data for each gas piping specialty and special duty valve. Include rated capacities of selected models, furnished specialties and accessories, and installation instructions.

B. Shop drawings detailing dimensions, required clearances, for connection to gas meter.

C. Record Drawings: At project closeout, submit record drawings of installed systems products; in accordance with requirements of Division 23.

D. Maintenance data for gas specialties and special duty valves, for inclusion in operating and maintenance manual specified in Division 23.

E. Welders' qualification certificates, certifying that welders comply with the quality requirements specified under "Quality Assurance" below.

F. Test reports specified in Part 3 below.

1.3 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of natural gas systems products, of types, materials, sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer Qualifications: Installation and replacement of gas piping, gas utilization equipment or accessories, and repair and servicing of equipment shall be performed only by a qualified installer. The term qualified is defined as experienced in such work (experienced shall mean having a minimum of 5 previous projects similar in size and scope to this project), familiar with precautions required, and has complied with the requirements of the authority having jurisdiction. Upon request, submit evidence of such qualifications to the Architect.

C. Qualifications for Welding Processes and Operators: Comply with the requirements of ASME Boiler and Pressure Vessel Code, "Welding and Brazing Qualification."

D. Regulatory Requirements: Comply with the requirements of the following codes:

1. NFPA 54 - National Fuel Gas Code, for gas piping materials and components, gas piping installations, and inspection, testing, and purging of gas piping systems.

2. Local Building Code.
3. Utility Compliance: Fabricate and install natural gas systems in accordance with local gas utility company.

1.4 DELIVERY, STORAGE, AND HANDLING:
A. Handling Flammable Liquids: Remove and legally dispose of liquid from a drip in existing gas piping and handle cautiously to avoid spillage or ignition. Notify the gas supplier. Handle flammable liquids used by the installer with proper precautions, and do not leave on the premises from the end of one working day to the beginning of the next.

1.5 SEQUENCING AND SCHEDULING:
A. Notification of Interruption of Service: Except in the case of an emergency, notify all affected users when the gas supply is to be turned off.
B. Work Interruptions: When interruptions in work occur while repairs or alterations are being made to an existing piping system, leave the system in safe condition.
C. Coordinate the installation of pipe sleeves for foundation wall penetrations.

1.6 EXTRA MATERIALS:
A. Valve Wrenches: Furnish to Owner, with receipt, 2 valve wrenches for each type of gas valve installed, requiring same.

PART 2 PRODUCTS

2.1 MANUFACTURERS:
A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:
1. Gas Cocks:
 a. Jenkins Bros.
 b. Lunkenheimer Co.
 c. Nibco, Inc.
 d. Powell Co.
 e. Stockham.

2.2 PIPE, TUBING AND JOINTING MATERIALS:
A. Provide pipes and pipe fitting complying with Division 23, Section 23 20 00.

2.3 NATURAL GAS PIPING SPECIALTIES:
A. Protective Coating: Provide factory applied polyethylene tape, having the following properties:
 1. Overall thickness; 20 mils.
 2. Synthetic adhesive.
 3. Water vapor transmission rate.
 4. Gallons per 100 square inch: 0.10 or less.
 5. Water absorption, percent: 0.02 or less.
 6. Prime pipe and fittings with a compatible primer prior to application of tape.
 7. Pipe wrapping shall conform to the following schedule:
Pipe Size Table

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Tape Width</th>
<th>Scotchwrap No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 - 3/4 inch</td>
<td>1 inch</td>
<td>50, 40</td>
</tr>
<tr>
<td>1 - 1-1/2 inch</td>
<td>2 or 4 inch</td>
<td>50, 40</td>
</tr>
<tr>
<td>2 inch and larger</td>
<td>4 inch</td>
<td>50, 40</td>
</tr>
<tr>
<td>Color backing</td>
<td></td>
<td>Black, Green</td>
</tr>
</tbody>
</table>

8. During application of wrap, if the ambient temperature is 40 degrees F or less, use only Scotchwrap No. 40 tape. If ambient temperature is 40 degrees F or more, use only Scotchwrap No. 50.

B. Flexible Connectors: Corrugated type 304 stainless steel flexible pipe with stainless steel braid and heavy flexible armor shield.

C. Quick Couplers: One way quick coupler with gas rating in cubic feet per hour equal to equivalent gas appliance rating.

2.4 VALVES:

A. Special duty valves are specified in this section by their generic name. Refer to Part 3, "VALVE APPLICATION," for specific uses and applications for valve specified.

B. Gas Cocks 2 Inch and Smaller: 150 psi WOG, bronze body, straightaway pattern, square head, threaded ends.

C. Gas Cocks 2-1/2 Inch and Larger: MSS SP-78; 175 psi, lubricated plug type, semi-steel body, single gland, wrench operated, flanged ends.

D. Solenoid Valves: Aluminum body, 120 volts AC, 60 Hz, Class B continuous duty molded coil; NEMA 4 coil enclosure; electrically opened/electrically closed; dual coils; normally closed; UL and FM approved and labeled.

E. Gas Line Pressure Regulators: Single stage, steel jacketed, corrosion-resistant gas pressure regulators; with atmospheric vent, elevation compensator; with threaded ends for 2 inch and smaller, flanged ends for 2-1/2 inch and larger; for inlet and outlet gas pressures, specific gravity, and volume flow indicated.
PART 3 EXECUTION

3.1 INSPECTION:

A. General: Examine areas and conditions under which natural gas systems materials and products are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in a manner acceptable to the Installer.

3.2 PREPARATION:

A. Precautions: Before turning off the gas to the premises, or section of piping, turn off all equipment valves. Perform a leakage test as specified in "FIELD QUALITY CONTROL" below, to determine that all equipment is turned off in the piping section to be affected.

B. Conform to the requirements in NFPA 54, for the prevention of accidental ignition.

3.3 INSTALLATION OF PIPE:

A. Install natural gas piping in accordance with Division 23, Section 23 20 00.

B. Conform to the requirements of NFPA 54 - National Fuel Gas Code.

C. Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of piping systems. Design locations and arrangements of piping take into consideration pipe sizing, flow direction, slope of pipe, expansion, and other design considerations. So far as practical, install piping as indicated.

D. Concealed Locations: Except as specified below, install concealed gas piping in an air-tight conduit constructed of Schedule 40, black steel with welded joints. Vent conduit to the outside and terminate with a screened vent cap.

1. Above-Ceiling Locations: Gas piping may be installed in accessible above-ceiling spaces (subject to the approval of the authority having jurisdiction), whether or not such spaces are used as a plenum. Valves shall not be located in such spaces.

2. In Floors: Piping installed in floors shall have protective wrapping specified in PART 2 above. Piping cast in concrete slabs shall be surrounded with a minimum of 1-1/2 inches of concrete and shall not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Piping shall not be embedded in concrete slabs containing quick-set additives or cinder aggregate.

3. Piping in Partitions: Concealed piping shall not be located in solid partitions. Tubing shall not be run inside hollow walls or partitions unless protected against physical damage. This does not apply to tubing passing through walls or partitions.

4. Prohibited Locations: Do not install gas piping in or through a circulating air duct, clothes chute, chimney or gas vent, ventilating duct, dumb waiter or elevator shaft. This does not apply to accessible above-ceiling space specified above.

E. Install pipe sleeve and seals at foundation and basement wall penetrations, as specified in Division 23 Section 23 20 00 "Piping."

F. Seal pipe penetrations of fire barriers using fire barrier penetration sealers specified in Division 23.
G. Drips and Sediment Traps: Install a drip leg at points where condensate may collect, at the outlet of the gas meter, and in a location readily accessible to permit cleaning and emptying. Do not install drips where condensate is likely to freeze.

1. Construct drips and sediment traps using a tee fitting with the bottom outlet plugged or capped. Use a minimum of 3 pipe diameters in length for the drip leg. Use same size pipe for drip leg as the connected pipe.

H. Use fittings for all changes in direction and all branch connections.

I. Install gas piping at a uniform grade upward to risers, and from the risers to the meter, or service regulator when meter is not provided, or the equipment.

J. Connect branch outlet pipes from the top of horizontal lines, not from the bottom or sides.

3.4 NATURAL GAS PIPING SPECIALTIES:

A. Protective Coating:

1. Provide protective coating on piping and fittings that will be in contact with material or atmosphere exerting a corrosive action, or piping buried in floors. Protective coating shall be applied at the factory.

B. Flexible Connectors:

1. Provide flexible connectors with full size quick coupler for all kitchen and heavy moveable gas appliance equipment.

2. Connectors shall be of lengths required to displace equipment for complete cleaning under and around gas appliance.

C. Quick Couplers:

1. Provide quick coupler at service end of flexible connectors.

3.5 VALVE APPLICATIONS:

A. General: The Drawings indicate valve types, locations, and arrangements.

B. Shut-off duty: Use gas cocks. Provide on all branch lines and at lab fixtures, and make cocks easily accessible for service and operation. Provide drip legs at all equipment connections. Use pipe dope on threaded pipe fittings, Teflon tape is prohibited.

3.6 VALVE INSTALLATIONS:

A. Install valves in accessible locations, protected from physical damage. Tag valves with a metal tag attached with a metal chain indicating the piping systems supplied.

B. Install a gas cock upstream of each gas pressure regulator. Where two gas pressure regulators are installed in series in a single gas line, a manual valve is not required at the second regulator.

C. Install pressure relief or pressure limiting devices so they can be readily operated to determine if the valve is free; so they can be tested to determine the pressure at which they will operate; and examined for leakage when in the closed position. Pipe atmospheric vent to outdoors.
D. Solenoid valves shall be mounted with the solenoid in the vertical upright position only.
 1. Electrical wiring for solenoid valves is specified in Division 26. Coordinate electrical
 requirements and connections.

E. Valves shall be installed with unions or other means to facilitate removal or repair without disassembly
 of connecting piping.

3.7 TERMINAL EQUIPMENT CONNECTIONS:

A. Install gas cock upstream and within 6 feet of gas appliance. Install a union or flanged connection
 downstream from the gas cock to permit removal of controls.

B. Sediment Traps: Install a tee fitting with the bottom outlet plugged or capped as close to the inlet of the
 gas appliance as practical. Drip leg shall be a minimum of 3 pipe diameters in length.

C. Flexible Hose Gas Connectors: For use connecting to vibrating equipment; corrugated Type 304
 stainless steel flexible pipe with stainless steel braid.

3.8 ELECTRICAL BONDING AND GROUNDING:

A. Install above ground portions of gas piping systems, upstream from equipment shutoff valves
 electrically continuous and bonded to a grounding electrode in accordance with NFPA 70 - "National
 Electrical Code."

B. Do not use gas piping as a grounding electrode.

C. Conform to NFPA 70 - "National Electrical Code," for electrical connections between wiring and
 electrically operated control devices.

3.9 FIELD QUALITY CONTROL:

A. Piping Tests: Inspect, test, and purge natural gas systems in accordance with NFPA 54, and local utility
 requirements.

B. Test system before covering underground lines.

C. Submit written results of tests to Architect/Engineer.

3.10 SPARE PARTS:

A. Valve Wrenches: Furnish to Owner, with receipt, 2 valve wrenches for each type of gas valve installed,
 requiring same.

END OF SECTION
SECTION 23 20 00 - PIPING

PART 1 - GENERAL

1.1 SUBMITTALS:

A. Refer to Division 1 and 23 00 00 Plumbing, Heating, Ventilating and Air Conditioning (HVAC) for administrative and procedural requirements for submittals.

B. Product Data:

1. Submit industry standards and manufacturer's technical product data, installation instructions, and dimensioned drawings for each type of pipe and pipe fitting. Submit piping schedule showing pipe or tube weight, fitting type, and joint type for each piping system.

2. Submit manufacturer's technical product data, including installation instructions for each type of support and anchor. Submit pipe hanger and support schedule showing Manufacturer's figure number, size, location, and features for each required pipe hanger and support.

C. Welding Certifications: Submit reports as required for piping work.

D. Brazing Certifications: Submit reports as required for piping work.

E. Shop Drawings: Submit manufacturer's assembly-type shop drawings for each type of support and anchor, indicating dimensions, weights, required clearances, and methods of assembly of components.

F. Product certificates signed by the manufacturer of hangers and supports certifying that their products meet the specified requirements.

G. Maintenance Data: Submit maintenance data and parts list for each type of support and anchor. Include this data, product data, and shop drawings in maintenance manual; in accordance with requirements of Division 23.

1.2 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacturer of pipes and pipe fittings; expansion compensation products; and supports and anchors of types and sizes required whose products have been in satisfactory use in similar service for not less than 5 years.

B. Welder's Qualifications: All welders shall be qualified in accordance with ASME Boiler and Pressure Vessel Code, Section IX, Welding and Brazing Qualifications.

C. Welding procedures and testing shall comply with the latest revisions of the applicable sections for B31, of the ANSI/ASME standard codes for pressure piping, noted as follows: B31.1 - Pressure Piping Code / B31.5 - Refrigeration Piping / B31.9 - Building Service Piping Code.

D. Before any welding is performed, the contractor shall submit to the Project Manager, or his authorized, a copy of the Manufacturer's Record of Welder or Welding Operator Qualification Tests and his Welding Procedure Specification together with the Procedure Qualification Record as required by ASME Boiler and Pressure Vessel Code.
E. Each manufacturer or contractor shall be responsible for the quality of welding done by his organization and shall repair or replace any work not in accordance with these specifications.

F. Soldering and Brazing procedures shall conform to ANSI B9.1 Standard Safety Code for Mechanical Refrigeration.

G. Performance requirements: Provide Hydronic system that is manufactured, fabricated and installed to comply with regulatory agencies and authorities with jurisdiction, and maintain performance criteria stated by the tubing manufacturer without defects, damage, or failure.

H. Codes and Standards:
 1. Regulatory Requirements: Comply with applicable plumbing codes pertaining to product materials and installation of supports and anchors.
 2. NFPA Compliance: Hangers and supports shall comply with NFPA standard No. 13 when used as a component of a fire protection system and NFPA Standard No. 14 when used as a component of a standpipe system.
 3. UL and FM Compliance: Hangers, supports, and components shall be listed and labeled by UL and FM where used for fire protection piping systems.
 4. Duct Hangers: SMACNA Duct Manuals
 5. MSS Standard Compliance:
 a. Provide pipe hangers and supports of which materials, design, and manufacture comply with MSS SP-69.

PART 2 PRODUCTS

2.1 MANUFACTURERS:

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Manufacturer’s Qualifications: Firms regularly engaged in manufacture of pipes and pipe fittings of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.
 2. Piping Connectors
 a. Fernco, Inc.
 3. Pipe Thread Sealant
 a. The Rectorseal Corp.
 4. Drainage Piping Specialties, including backwater valves, drains, cleanouts, flashing flange and vent flashing sleeve.
 a. JR Smith
 b. Zurn Industries
 c. Wade
5. Gas Cocks
 a. Crane
 b. Hammond
 c. Peter Healy

6. Pipe Hangers and Supports:
 a. B-Line Systems Inc.
 b. ANVIL International
 c. PHD Manufacturing, Inc.
 d. Unistrut Metal Framing Systems
 e. Hubbard Enterprises (Supports for domestic water piping)
 f. Specialty Products Co. (Supports for domestic water piping.
 g. Erico
 h. Grinnell

7. Saddles, Shield and Thermal Shield Inserts:
 a. ANVIL International
 b. Pipe Shields, Inc.
 c. B-Line
 d. Snapp Itz
 e. Erico
 f. Value Engineered Products, Inc.
 g. Grinnell

8. Concrete Inserts and Anchors:
 a. Unistrut Metal Framing Systems
 b. Power-Strut
 c. ITW Ramset/Red Head
 d. Hilti
 e. B-Line
 f. Erico
 g. Grinnell

2.2 MATERIALS GENERAL:

A. Piping Materials: Provide pipe and tube of type, pressure and temperature ratings, capacities, joint type, grade, size and weight (wall thickness or Class) indicated for each service. Where type, grade or class is not indicated, provide proper selection as determined by Installer for installation requirements, and comply with governing regulations and industry standards.

B. Pipe/Tube Fittings: Provide factory-fabricated fittings of type, materials, grade, class and pressure rating indicated for each service and pipe size. Provide sizes and types matching pipe, tube, valve or equipment connection in each case. Where not otherwise indicated, comply with governing regulations and industry standards for selections, and with pipe manufacturer’s recommendations where applicable.

2.3 STEEL PIPES AND PIPE FITTINGS:

A. Black Steel Pipe: ASTM A 53, Grade B, type E, electric resistance welded.
B. Cast-Iron Flanged Fittings: ANSI/ASME B16.1, including bolting (Class 125 and 250).
D. Malleable-Iron Threaded Fittings: ANSI/ASME B16.3; plain or galvanized as indicated (Class 125 and 300).
E. Malleable-Iron Threaded Unions: ANSI B16.39, Class 150, 250 or 300; selected by Installer for proper piping fabrication and service requirements, including style, end connections, and metal-to-metal seats (iron, bronze or brass); plain or galvanized as indicated (Class 150, 250 and 300).
G. Steel Flanges/Fittings: ANSI/ASME B16.5, ASTM A234 (Fire Protection) including bolting and gasketing of the following material group, end connection and facing, except as otherwise indicated.
H. Corrosion-Resistant Cast Flanges/Fittings: MSS SP-51, including bolting and gasketing (threaded where pressure is not critical).
I. Forged-Steel Socket-Welding and Threaded Fittings: ANSI B16.11, except MSS SP-79 for threaded reducer inserts; rated to match schedule of connected pipe (up to 4 inch pipe size).
J. Wrought-Steel Buttwelding Fittings: ANSI B16.9, except ANSI B16.28 for short-radius elbows and returns; rated to match connected pipe.
K. Forged Branch-Connection Fittings: Except as otherwise indicated, provide type as determined by Installer to comply with installation requirements.
L. Pipe Nipples: Fabricated from same pipe as used for connected pipe; except do not use less than Schedule 80 pipe where length remaining unthreaded is less than 1-1/2 inches, and where pipe size is less than 1-1/2 inches, and do not thread nipples full length (no close-nipples).

2.4 COPPER TUBE AND FITTINGS:
A. Copper Tube: ASTM B 88; Type K or L as indicated for each service; hard-drawn temper, except as otherwise indicated.
B. Cast-Copper Solder-Joint Fittings: ANSI B16.18.
C. Wrought-Copper Solder-Joint Fittings: ANSI B16.22.
D. Cast-Copper Solder-Joint Drainage Fittings: ANSI B16.23 (drainage and vent with DWV or tube).
E. Wrought-Copper Solder-Joint Drainage Fittings: ANSI B16.29.
G. Copper-Tube Unions: Provide standard products recommended by manufacturer for use in service indicated.

2.5 CAST-IRON SOIL PIPES AND PIPE FITTINGS:
A. Hubless Cast-Iron Soil Pipe: FS WW-P-401 and CISPI Standards 301 and 310. Pipe and fittings shall be marked with the collective trademark of the cast iron soil pipe institute or receive prior approval of the engineer.

B. Cast-Iron Hub-and-Spigot Soil Pipe: ASTM A74. Pipe and fittings shall be marked with the collective trademark of the cast iron soil pipe institute or receive prior approval of the engineer.

D. Heavy Duty Hubless Cast Iron Soil Pipe Couplings: Neoprene gasket coupling with ASTM C564. 304 stainless steel shield, minimum 0.15 inches thick, minimum 3 inches wide with 4 sealing bands up to 4 inch pipe, minimum 9 inches wide with 6 sealing bands up to 10 inch pipe.

1. Basis of Design: Husky SD 4000.

F. Neoprene Compression Gaskets: ASTM C 564.

2.6 MISCELLANEOUS PIPING MATERIALS/PRODUCTS:

A. Welding Materials: Except as otherwise indicated, provide welding materials as determined by Installer to comply with installation requirements.

B. Soldering Materials: All soldering materials shall be lead free.

1. 95-5 Tin-Antimony: ASTM B 32, Grade 95TA. Melting Range 450-470 degrees F.

3. Flux: All flux shall be lead free, water soluble, and compatible with the solder and the materials being joined. ASTM B813-93.

C. Gaskets for Flanged Joints: ANSI B16.21; full-faced for cast-iron flanges; raised-face for steel flanges, unless otherwise indicated.

D. Piping Connectors for Dissimilar Non-Pressure Pipe: Elastomeric annular ring insert, or elastomeric flexible coupling secured at each end with stainless steel clamps, sized for exact fit to pipe ends and subject to approval by plumbing code.

1. Manufacturer: Subject to compliance with requirements, provide piping connectors of the following:

 a. Husky Technologies (Husky SD 4000):

E. Pipe Thread Sealant Material: Except as otherwise indicated, provide all pipe threads with the sealant material as recommended by the manufacturer for the service.

2.7 PIPE HANGERS & SUPPORTS:
A. Hangers and support components shall be factory fabricated of materials, design, and manufacturer complying with MSS SP-69.
 1. Components shall have galvanized coatings where installed for piping and equipment that will not have field-applied finish.
 2. Pipe attachments shall have nonmetallic coating for electrolytic protection where attachments are in direct contact with copper tubing.

B. Adjustable Clevis Hanger: MSS Type.
 1. Steel Pipe, size 3/8" thru 30", Type 1.
 2. Non-insulated Copper Pipe, size 1/2" thru 4", Type 1. (PVC Coated)

C. Adjustable Swivel Ring for Non-insulated Pipe: MSS Type.
 1. Steel Pipe, size 1/2" thru 8", Type 7.
 2. Copper Pipe, size 1/2" thru 4", Type 7 (PVC Coated)

D. Pipe Clamps: MSS Type.
 2. Copper Pipe, size 1/2" thru 4", Type 8 (PVC Coated).

E. U Bolts: MSS Type.
 1. Steel Pipe, size 1/2" thru 30" Type 24
 2. Copper Pipe, size 1/2" thru 8", Type 24 (PVC Coated).

F. Straps: MSS Type 26.

G. Pipe Stanchion Saddle: MSS Type 37.

H. Yoke & Roller Hanger: MSS Type 43

I. Hanger Rods: Continuous threaded steel, sizes as specified.

J. Hangers:
 1. Hot Pipes:
 a. 1/2" through 1-1/2": Adjustable wrought steel ring.
 b. 2" through 5": Adjustable wrought steel clevis.
 c. 6" and Over: Adjustable steel yoke and cast iron roll.
 2. Cold Pipes:
 a. 1/2" through 1-1/2": Adjustable wrought steel ring.
 b. 2" and Over: Adjustable wrought steel clevis.
 3. Multiple or Trapeze: Structural steel channel (with web vertical and engineered for the specific applications), with welded spacers and hanger rods. Provide cast iron roll and base plate for hot pipe sizes six inches and over. Provide hanger rods one size larger than for largest pipe in
trapeze. If the deflection at center of trapeze exceeds 1/360 of the distance between the end hangers, install an additional hanger at mid-span or use a larger channel.

K. Wall Supports for Horizontal Steel Pipe:
 1. ½ inch through 4 inches: Offset or straight j-hook.
 2. 4 inches and over: Welded steel bracket Type 31, 32 or 33 and wrought steel clamp. Provide adjustable steel yoke and cast iron roll Type 44 for hot pipe 200°F and over and for sizes six inches and over.

L. Supports for Vertical Pipe: Steel riser clamp. Type 8.

M. Upper Attachments:
 1. For attaching hanger rods to structural steel I-beams:
 a. Provide adjustable beam clamp, MSS-Type 21. Attach to bottom flange of beam.
 2. For attaching hanger rods to bar joists:
 a. When bottom chord is constructed of structural steel angles, provide square washer. Place hanger rod between backs of the two angles and support with the washer and dual locking nuts on top of the angles. Spot weld washer to angles.
 b. When bottom chord is constructed of round bars, provide Elcen No. 137 bar joint washer or equal.

2.8 CONCRETE INSERTS AND ANCHORS:

A. Inserts: Case shall be of galvanized carbon steel with square threaded concrete insert nut for hanger rod connection; top lugs for reinforcing rods, nail holes for attaching to forms. This type of upper attachment is to be used for all areas having poured in place concrete construction.
 1. Size inserts to suit threaded hanger rods.

B. Provide fasteners attached to concrete ceilings that are vibration and shock resistant. Provide hangers for piping attached to concrete construction with one of the following types.
 1. Concrete insert per MSS SP 69, Type 18.
 2. Powder driven fasteners subject to approval of Architect and Structural Engineer. Each fastener shall be capable of holding a test load of 1000 pounds whereas the actual load shall not exceed 50 pounds.
 3. Self-drilling expansion shields. The load applied shall not exceed one-fourth the proof test load required.
 4. Machine bolt expansion anchor. The load applied shall not exceed one-fourth the proof test load required.

C. Anchors: Carbon steel, zinc plated and coated with a clear chromate finish. Installation shall be in holes drilled with carbide-tipped drill bits or by use of self-drilling anchors.
1. Provide anchors suitable for the location of installation and designed to withstand all forces and movements acting in the anchor. Manufacture pipe anchors in accordance with MSS SP 69. Provide a safety factor of four for the anchor installation.

2.9 SADDLES AND THERMAL SHIELD INSERTS:

A. Protection Saddles: MSS Type 39; fill interior voids with segments of insulation matching adjoining insulation.

B. Protection Shields: MSS Type 40; 180 degrees arc, galvanized steel, minimum 12 inches long, to prevent crushing of insulation.

C. Thermal Shield Inserts: Provide 100-psi minimum compressive strength, waterproof, asbestos free calcium silicate, encased with a sheet metal enclosure. Insert and shield shall cover the entire circumference or the bottom half circumference of the pipe as required by Part 3 of this Specification, and shall be of length recommended by the manufacturer for pipe size and thickness of insulation. For cold piping, calcium silicate shall extend beyond the sheet metal shield to allow overlap of the vapor barrier. Where piping 4 inches and larger is supported on trapeze or pipe rollers, provide double thickness shields. For piping 12 inches and over, provide 600 psi calcium silicate structural insert.

2.10 MISCELLANEOUS MATERIALS:

A. Steel Plates, Shapes, and Bars: ASTM A 36.

B. Cement Grout: Portland cement (ASTM C 150, Type I or Type III) and clean uniformly graded, natural sand (ASTM C 404, Size No. 2). Mix ratio shall be 1.0 part cement to 3.0 parts sand, by volume, with minimum amount of water required for placement and hydration.

C. Heavy-Duty Steel Trapezes: Fabricate from steel shapes selected for loads required; weld steel in accordance with AWS standards.

PART 3 EXECUTION

3.1 EXAMINATION:

A. Verify all dimensions by field measurements. Verify that all water distribution piping may be installed in accordance with pertinent codes and regulations, and original design, and the referenced standards.

B. Examine rough-in requirements for plumbing fixtures and other equipment having water connections to verify actual locations of piping connections prior to installation.

C. Do not proceed until unsatisfactory conditions have been corrected.

D. Examine areas and conditions under which supports and anchors are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 PIPING INSTALLATION:

A. General: Install pipes and pipe fittings in accordance with recognized industry practices which will achieve permanently-leakproof piping systems, capable of performing each indicated service without piping failure. Install each run with minimum joints and couplings, but with adequate and accessible unions for disassembly and maintenance/replacement of valves and equipment. Reduce sizes (where indicated) by use of reducing fittings. Align piping accurately at connections, within 1/16 inch misalignment tolerance.
1. Comply with ANSI B31 Code for Pressure Piping.

2. Electrical Equipment Spaces: Do not run piping through transformer vaults and other electrical or electronic equipment spaces and enclosures. Only piping serving this type of equipment space shall be allowed.

3. Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of piping systems. Locations and arrangements of piping take into consideration pipe sizing and friction loss, expansion, pump sizing, and other design considerations. So far as practical, install piping as indicated.

4. Use fittings for all changes in direction and all branch connections.

5. Install piping at right angles or parallel to building walls. Diagonal runs are not permitted, unless expressly indicated.

6. Conceal all pipe installations in walls, pipe chases, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.

7. Install piping tight to slabs, beams, joists, columns, walls, and other permanent elements of the building. Provide space to permit insulation applications, with 1 inch clearance outside the insulation. Allow sufficient space above removable ceiling panels to allow for panel removal.

8. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

9. Install drains in pressure pipe systems at all low points in mains, risers, and branch lines consisting of a tee fitting, ¾ inch ball valve, and short ¾ inch threaded end nipple and cap with chain.

10. Install piping free of sags or bends and with ample space between piping to permit proper insulation applications.

11. Fire and Smoke Wall Penetrations: Where pipes pass through fire and smoke rated walls, partitions, ceilings, and floors, maintain the fire and smoke rated integrity. Refer to Division 23, Sections 23 05 09 for materials.

12. Anchor piping to ensure proper direction of expansion and contraction.

13. Coordinate foundation and all other structural penetrations with structural engineer.

14. Install drainage piping with a minimum 1/8" per foot downward slope in the direction of the drain and maximum slope of ¼" per foot.

15. Install pipe connections with adequate allowance for movement and vibration. Support connections so the equipment does not carry weight.

B. Hydronic Piping:

1. Make reductions in hydronic pipe sizes using eccentric reducer fitting installed with the level side up.

2. Install hydronic piping branch connections to mains using Tee fittings in main with take-off out the bottom of the main, except for up-feed risers which shall have take-off out the top of the
main line. Install all hydronic piping level with manual air vent at all high points in direction of flow.

3. Install hydronic piping level except for gravity flow systems such as condensate drain piping.

C. Sanitary Waste and Vent:

1. Install plumbing drainage piping with ¼ inch per foot (2 percent) downward slope in direction of drain for piping 3 inches and smaller, and 1/8 inch per foot (1 percent) for piping 4 inch and larger. Install cast iron pipe in accordance with the Cast Iron Soil Pipe Institute Handbook.

2. Install 1 inch thick extruded polystyrene over underground drainage piping that is above frost line and not under building. Provide width to extend minimum of 12 inches beyond each side of pipe. Install directly over pipe, centered on pipe center line.

3. Make changes in direction for drainage and vent piping using appropriate 45 degree wyes, half-wyes, or long sweep quarter, sixth, eighth, or sixteenth bends. SANITARY CROSSES OR SHORT QUARTER BENDS SHALL NOT BE USED IN DRAIN PIPING.

4. Provide thrust restraints (bracing to structure or rodded joints) at branches and changes in direction for cast iron pipe 5 inches and larger suspended within the building.

5. Where cast iron piping is suspended in excess of 18 inches on single rod hangers, sway bracing shall be provided to prevent shear at the joints.

6. Lay piping beginning at low point of system, true to grades and alignment indicated, with unbroken continuity of invert.

7. Place bell ends or groove ends of piping facing upstream.

8. Install gaskets in accordance with manufacturer's recommendations for use of lubricants, cements, and other special installation requirements.

D. Condensate Drain Piping:

1. Condensate drain piping from air conditioning unit coil condensate drain pan shall be of the sizes shown on the drawings.

3.3 PIPING SYSTEM JOINTS:

A. General: Provide joints of type indicated in each piping system.

B. Thread pipe in accordance with ANSI B2.1; cut threads full and clean using sharp dies. Ream threaded ends to remove burrs and restore full inside diameter. Apply pipe joint compound, or pipe joint tape (Teflon) where recommended by pipe/fitting manufacturer, on male threads at each joint and tighten joint to leave not more than 3 threads exposed.

C. Solder copper tube-and-fitting joints with silver solder or 95-5 tin-antimony. Cut tube ends squarely, ream to full inside diameter, and clean outside of tube ends and inside of fittings. Apply solder flux to joint areas of both tubes and fittings. Insert tube full depth into fitting, and solder in manner which will draw solder full depth and circumference of joint. Wipe excess solder from joint before it hardens.

D. Weld pipe joints in accordance with ASME Code for Pressure Piping, B31. Provide weld-o-let fittings for two pipe sizes less than main pipe size.
E. Weld pipe joints in accordance with recognized industry practice and as follows:

1. Weld pipe joints only when ambient temperature is above 0 degrees F (-18 degrees C) where possible.

2. Bevel pipe ends at a 37.5 degrees angle where possible, smooth rough cuts, and clean to remove slag, metal particles and dirt.

3. Use pipe clamps or tack-weld joints with 1 inch long welds; 4 welds for pipe sizes to 10 inches, 8 welds for pipe sizes 12 inch to 20 inch.

4. Build up welds with stringer-bead pass, followed by hot pass, followed by cover or filler pass. Eliminate valleys at center and edges of each weld. Weld by procedures which will ensure elimination of unsound or unfused metal, cracks, oxidation, blow-holes and non-metallic inclusions.

5. Do not weld-out piping system imperfections by tack-welding procedures; refabricate to comply with requirements.

F. Weld pipe joints of steel water pipe in accordance with AWWA C206.

G. Flanged Joints: Match flanges within piping system, and at connections with valves and equipment. Clean flange faces and install gaskets. Tighten bolts to provide uniform compression of gaskets.

H. Hubless Cast-Iron Joints: Comply with coupling manufacturer's installation instructions. Use pre-set torque wrench set to 80 in-lbs on heavy duty couplings.

3.4 PIPE JOINT CONSTRUCTION:

A. Soldered Joints: Comply with the procedures contained in the AWS “Soldering Manual”.

B. Brazed Joints: Comply with the procedures contained in the AWS “Brazing Manual”.

C. Heat joints using oxy-acetylene torch. Heat to proper and uniform temperature.

D. For all copper piping, ream and remove all burrs prior to making joints.

E. Threaded Joints: Conform to ANSI B1.20.1.

F. Damaged Threads: Do not use pipe with threads that are corroded or damaged. If a weld opens during cutting or threading operations, that portion of pipe shall not be used.

G. Welded Joints: Comply with the requirement in ASME Code B31.9 “Building Services piping”.

H. Flanged Joints: Align flanges surfaces parallel. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly using torque wrench.

I. Fill all medical gas pipe and fittings during brazing with an inert gas, i.e. nitrogen or carbon dioxide, to prevent formation of scale.

3.5 PIPE FITTINGS:
A. Place unions at all equipment, regulators, controls, etc., that require removal or replacement. Do not block removal with adjacent equipment or piping. Where necessary for removal of equipment, install unions on both sides of equipment. Unions are not required on flanged devices.

B. Use dielectric waterway fittings where dissimilar metals are connected. Isolate building distribution gas piping with dielectric unions from gas main for cathodic protection.

C. All unions shall be ground joints.

D. Make reductions in size with reducing fittings.

E. All screwed nipples from copper fittings shall be red brass.

3.6 PIPING APPLICATION:

A. Domestic Hot and Cold Water - Inside Building:

1. Above Grade Inside Building:

 a. 6 inches and Smaller: Type L, hard drawn copper tube with wrought copper or bronze fittings lead free soldered joints, or schedule 40 galvanized steel pipe A53 grade B, ERW, with galvanized grooved end fittings.

B. Sanitary Drainage and Vents - Inside Building:

1. Above Grade: Service weight cast iron, no-hub type with neoprene gaskets; service weight cast iron, hub and spigot type with neoprene gaskets; or DWV copper with wrought copper of cast brass fittings.

 a. Provide heavy duty no hub couplings 4” wide 304 stainless steel shield on pipe, with six (6) stainless steel clamps mounted in series on the following:

 1) Sanitary vent piping 4” and larger
 2) Sanitary piping 3” and larger
 3) All storm piping

2. Cleanout Openings: Two-way type, 1-1/4 inch nominal size minimum and located such that long lines can be entered from both ends. Lubricate plugs at installation.

C. Cleanout Openings: Two-way type, 1-1/4 inch nominal size minimum and located such that long lines can be entered from both ends. Lubricate plugs at installation.

D. Natural Gas Piping:

1. Above Grade:

 1) 2 Inches and Smaller: Schedule 40, black steel pipe, beveled ends, with 150 lb. malleable iron fittings and threaded joints. All lines shall be accessible.

 2) Over 2 Inches: Schedule 40 black steel with butt weld fittings and welded joints.

E. Heating Water, Chilled Water Piping:

1. 2 Inches and Smaller:
a. Schedule 40, black steel with 125 lb. cast iron or 150 lb. malleable iron threaded fittings.

OR

Type L copper, hard drawn copper wrought copper or bronze fittings, silver - tin alloy solder joints.

2. 2-1/2 Inches and Larger:

a. Schedule 40, seamless or ERW (std. weight 12 inches and over) black steel with flanged or welded joints.

c. Flanges: 150 lb. 300 lb. forged steel slip-on or welding neck type.

d. Bolting: Regular square head machine bolts with heavy hexagonal nuts.

e. Gaskets: Thickness, material and type suitable for fluid to be handled, and design temperature and pressures.

F. Equipment Drains and Overflows:

1. Type "M" or "DWV" copper.

3.7 EXPOSED PIPING IN FINISHED AREAS:

A. Plumbing piping and fittings which are exposed (and uninsulated) in finished areas generally occupied by people shall be installed with a smooth, high polish, durable chrome plated finish.

3.8 PIPING TESTS:

A. General: Provide temporary equipment for testing, including pump and gauges. Test piping system before insulation is installed wherever feasible, and remove control devices before testing. Test each section of each piping system independently but do not use piping system valves to isolate sections where test pressure exceeds valve pressure rating. Fill each section with water and pressurize for indicated pressure and time.

B. Test all piping systems as specified. Correct leaks by remaking joints. Remove equipment not able to withstand test procedure during test.

C. Work to be installed shall remain uncovered until the required tests have been completed.

D. Piping which is to be concealed shall be tested before being permanently enclosed.

E. As soon as work has been completed, conduct preliminary tests to ascertain compliance with specified requirements. Make repairs or replacements as required.

F. Give a minimum of twenty-four hours notice to Engineer of dates when acceptance test will be conducted. Conduct tests as specified for each system in presence of University Project Manager or agency having jurisdiction or his representative. Submit three (3) copies of successful tests to the Engineer for his review. Report shall state system tested and date of successful test.
G. Contractor shall obtain certificates of approval, acceptance and compliance with regulations of agencies having jurisdiction. Work shall not be considered complete until such certificates have been delivered by the Engineer to the Owner.

H. All costs involved in these tests shall be borne by Contractor.

I. System Tests

1. Hydrostatic Test: The test shall be accomplished by hand pumping the system to the specified water pressure, and maintaining that pressure until the entire system has been inspected for leaks, but in no case for a time period of less than four hours.

 a. Domestic water systems: 100 psig or 150 percent of system pressure, whichever is greater.
 b. Heating water: 100 psig or 150 percent of operating pressure, whichever is greater.
 c. Chilled water: 100 psig or 150 percent of system pressure, whichever is greater.

2. Compressed Air or Nitrogen Test: Compressed air tests may be substituted for hydrostatic tests only when ambient conditions or existing building conditions prohibit safe use of hydrostatic testing and must be reviewed by the Engineer prior to any testing. For tests of this type, the piping system shall be subjected to the gas pressure indicated for that specific system. The piping capped or plugged and water-pumped with oil free air, or a nitrogen bottle shall be introduced into the entire system to the pressure specified. The system shall maintain that pressure for the duration of a soapy water test of each joint.

3. Waste, Drain and Vent Piping: All waste and vent piping, including building drain, roof drain and building sewer, shall be subjected to a water test. All openings in the piping system shall be tightly closed, except the highest opening, and the system filled with water to the point of overflow. The water shall be kept in the system, or in the portion under test, for at least 15 minutes before inspection starts; the system shall then be tight to all points. No section shall be tested with less than a ten foot head of water.

4. Repair piping systems sections which fail required piping test, by disassembly and re-installation, using new materials to extent required to overcome leakage. Do not use chemicals, stop-leak compounds, mastics, or other temporary repair methods.

5. Drain test water from piping systems after testing and repair work has been completed.

6. Gas Pipe Testing: Test with air, nitrogen or carbon dioxide with a pressure 1-1/2 times the proposed maximum working pressure, but not less than 3 psig. Test systems having a volume of 10 cubic feet or less for a period of not less than 10 minutes and larger systems for a period of not less than ½ hour for each 500 cubic foot of pipe volume or fraction thereof without showing any drop in pressure. Fully purge gas piping after piping has been checked.

3.9 PREPARATION:

A. Proceed with installation of hangers, supports and anchors only after required building structural work has been completed in areas where the work is to be installed. Correct inadequacies including (but not limited to) proper placement of inserts, anchors and other building structural attachments. Review Structural Drawings to obtain structural support limitations.

B. Prior to installation of hangers, supports, anchors and associated work, Installer shall meet at project site with Contractor, installer of each component of associated work, inspection and testing agency representatives (if any), installers of other work requiring coordination with work of this section and
Architect/Engineer for purpose of reviewing material selections and procedures to be followed in performing the work in compliance with requirements specified. Provide Shop Drawing showing method and support locations from structure.

3.10 INSTALLATION OF BUILDING ATTACHMENTS:

A. Install building attachments within concrete or on structural steel. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten insert to forms. Where concrete with compressive strength less than 2500 psi is indicated, install reinforcing bars through openings at top of inserts.

B. New Construction:

1. Use inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams wherever practicable.

2. Set inserts in position in advance of concrete work. Provide reinforcement rod in concrete for inserts carrying pipe over 4 inches or ducts over 60 inches wide.

3. Where concrete slabs form finished ceiling, finish inserts flush with slab surface.

4. Where inserts are omitted drill through concrete slab from below and provide rod with recessed square steel plate and nut above slab if construction above permits.

3.11 INSTALLATION OF HANGERS AND SUPPORTS:

A. Install hangers, supports, clamps and attachments to support piping properly from building structure; comply with MSS SP-69. Arrange for grouping of parallel runs of horizontal piping to be supported together on field fabricated, heavy-duty trapeze hangers where possible. Install supports with maximum spacings complying with MSS SP-69. Where piping of various sizes is supported together by trapeze hangers, space hangers for smallest pipe size or install intermediate supports for smaller diameter pipe. Do not use wire or perforated metal to support piping, and do not support piping from other piping.

B. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers and other accessories.

C. Support fire-water piping independently from other piping systems.

D. Prevent electrolysis and abrasion in support of copper tubing by use of hangers and supports which are plastic coated, or with EPDM isolation strips. Duct tape or copper coated hangers are not acceptable.

E. Install hangers and supports to allow controlled movement of piping systems, to permit freedom of movement between pipe anchors and within 1'-0" of each horizontal elbow.

F. Load Distribution: Install hangers and supports so that piping live and dead loading and stresses from movement will not be transmitted to connected equipment.

G. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes, and so that maximum pipe deflections allowed by ANSI B31.9 Building Services Piping Code is not exceeded.

H. Insulated Piping: Comply with the following installation requirements.
1. **Clamps:** Attach clamps, including spacers (if any), to piping with clamps projecting through insulation; do not exceed pipe stresses allowed by ANSI B31.

2. **Saddles:** Install Protection saddles where supported by pipe rollers. Fill interior voids with segments of insulation that match adjoining pipe insulation.

3. **Shields:** Install galvanized steel protection shields, on all insulated piping 2 inches and less, except where required to be clamped. Where necessary to prevent dislocation, strap shield to pipe with wire ties or "Zip Strips".

4. **Thermal Inserts:** Provide thermal shield inserts at all supports for all insulated piping over 2 inches and for all piping required to be clamped. Provide 180 percent inserts at clevis and roller hangers. Provide 360 percent inserts for all trapeze and clamped supports.

I. **Install horizontal hydronic piping with the following minimum rod sizes and maximum spacing:**

<table>
<thead>
<tr>
<th>SIZE (NPS)</th>
<th>MAX. SPAN IN FEET</th>
<th>MIN. ROD SIZE - INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steel</td>
<td>Copper</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1-1/2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

J. **Install steel natural gas piping with the following minimum rod size and maximum spacing:**

<table>
<thead>
<tr>
<th>SIZE (NPS)</th>
<th>MAX. SPAN IN FEET</th>
<th>MIN. ROD SIZE - INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>6</td>
<td>3/8</td>
</tr>
<tr>
<td>3/4 TO 1</td>
<td>8</td>
<td>3/8</td>
</tr>
<tr>
<td>1-1/4</td>
<td>10</td>
<td>3/8</td>
</tr>
<tr>
<td>1-1/2</td>
<td>10</td>
<td>3/8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>3/8</td>
</tr>
</tbody>
</table>

K. **Support horizontal cast iron pipe as follows:**

1. **Hub & Spigot:** All sizes.

 a. 10 ft. max spacing: min of one (1) hanger per pipe section close to joint on the barrel. Also at change of direction and branch connections.

 b. Support vertical cast iron pipe at each story height and at its base. Secure vertical hub and spigot pipe immediately below the hub.

 c. Use hanger rods same size as for steel pipe.

2. **No-Hub:** All sizes
a. With Clamp-All and Anaheim Series 4000 stainless steel couplings and MG cast iron couplings: one hanger to each joint.

b. With all other stainless steel band type couplings: one hanger to each side of joint.

c. Support all horizontal cast iron pipe within 18 inches of each joint and with 5 feet maximum spacing between hangers, except that pipe exceeding 5 feet in length shall be supported at intervals no greater than 10 feet.

d. Use hanger rods same size as for steel pipe.

e. Support vertical cast iron pipe at each story height and at its base. Support vertical no-hub pipe so that the weight is carried from the pipe to the support and not from the joint to the support.

L. Place a hanger within one foot of each horizontal elbow.

M. Use hangers which are vertically adjustable 1-1/2 inch minimum after piping is erected.

N. Support vertical steel and copper piping at every story height but at not more than 15 foot intervals for steel and 10 feet for copper.

O. Where several pipes can be installed in parallel and at same elevation, provide trapeze hangers.

P. Where practical, support riser piping independently of connected horizontal piping.

Q. Each pipe drop to equipment shall be adequately supported. All supporting lugs or guides shall be securely anchored to the building structure.

R. Securely anchor and support plumbing domestic water piping in chases or walls. Use factory manufactured clamps and brackets connected to fixture, waste/vent piping or brackets connected to studs. Wires or straps will not be permitted.

1. When copper supplies are connected to flush valves, support the tubing by the studs or by a fixture, not by clamping to waste/vent piping.

2. Prevent copper tubes from making contact with steel brackets using fire retardant polyethylene inserts or other dielectric insulating material. Duct tape shall not be used.

S. Install anchors and fasteners in accordance with manufacturer's recommendations and the following:

1. In the event a self-drilling expansion shield or machine bolt expansion shield is considered to have been installed improperly, the Contractor shall make an acceptable replacement or demonstrate the stability of the anchor by performing an on-site test under which the anchor will be subjected to a load equal to twice the actual load.

2. Powder-driven fasteners may be used only where they will be concealed after the construction is complete. Where an occasional fastener appears to be improperly installed, additional fastener(s) shall be driven nearby (not closer than 6 inches) in undisturbed concrete. Where it is considered that many fasteners are improperly installed, the Contractor shall test load any 50 successively driven fasteners. If 10 percent or more of these fasteners fail, the Contractor shall utilize other fastening means as approved and at no additional cost to the Owner.
3. Hangers for piping and ducts shall be attached to cellular steel floor decks with steel plates and bolted rod conforming to the steel deck manufacturer’s requirements. Where the individual hanger load exceeds the capacity of a single floor deck attachment, steel angles, beams or channels shall be provided to span the number of floor deck attachments required.

4. Welding may be used for securing hangers to steel structural members. Welded attachments shall be designed so that the fiber stress at any point of the weld or attachment will not exceed the fiber stress in the hanger rod.

3.12 INSTALLATION OF ANCHORS:

A. Install anchors at proper locations to prevent stresses from exceeding those permitted by ANSI B31.9, and to prevent transfer of loading and stresses to connected equipment.

B. Fabricate and install anchor by welding steel shapes, plates and bars to piping and to structure. Comply with ANSI B31.9 and with AWS Standards D1.1.

C. Anchor Spacings: Where not otherwise indicated, install anchors at ends of principal pipe-runs, at intermediate points in pipe-runs between bends. Make provisions for preset of anchors as required to accommodate both expansion and contraction of piping. Provide shop drawing for review by Engineer.

3.13 SHEET METAL DUCT HANGERS AND SUPPORTS:

A. Provide in accordance with SMACNA HVAC duct construction standards.

B. Additional Hanger Requirements:

1. 2" to 24" from flexible connections of fans.
2. 2" to 24" from the outlets or flexible connections of VAV control units or mixing boxes.
3. 12" to 36" from the main duct to the first hanger of long branch ducts.
4. 2" to 12" from the ends of all branch ducts and linear diffuser plenums.
5. 2" to 24" from fire damper break-away joints.
6. Hangers at throat and heal of round or square elbows 48" or greater in width.

3.14 EQUIPMENT SUPPORTS:

A. Fabricate structural steel stands to suspend equipment from structure above or support equipment above floor.

B. Grouting: Place grout under supports for piping and equipment.

C. Construct equipment supports above floor of structural steel members or steel pipe and fittings. Brace and fasten with flanges bolted to structure.

D. Provide rigid anchors for ducts and pipes immediately after vibration connections to equipment

3.15 METAL FABRICATION:

A. Cut, drill, and fit miscellaneous metal fabrications for pipe anchors and equipment supports. Install and align fabricated anchors in indicated locations.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1 for procedures of manual shielded metal-arc welding, appearance and quality of welds made, methods used in correcting welding work, and the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and contours at welded surfaces match adjacent contours.

3.16 ADJUSTING AND CLEANING:

A. General: Clean exterior surfaces of installed piping systems of superfluous materials, and prepare for application of specified coatings (if any). Flush out piping systems with clean water before proceeding with required tests. Inspect each run of each system for completion of joints, supports and accessory items.

1. Inspect pressure piping in accordance with procedures of ASME B31.

B. Disinfect all potable water mains and water service piping in accordance with local and health department requirements. Submit test results report.

C. Clean and flush hydronic piping systems. Remove, clean, and replace strainer screens. After cleaning and flushing hydronic piping system, but before balancing, remove disposable fine mesh strainers in pump suction diffusers. Flush each new system with the University Representative present. Fill each new system with the proper chemicals and with the University Representative present.

D. Hanger Adjustment: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe. Cut off the bottom of threaded rods so they are no more than one rod diameter below the bottom nut.

E. Touch-Up Painting: Immediately after erection of anchors and supports, clean field welds and abraded areas of shop paint and paint exposed areas with same material as used for shop painting to comply with SSPC-PA-1 requirements for touch-up of field-painted surfaces.

1. Apply by brush or spray to provide a minimum dry film thickness of 2.0 mils.

F. For galvanized surfaces clean welds bolted connections and abraded areas and apply galvanizing repair paint to comply with ASTM A 780.

3.17 COMMISSIONING:

A. Check expansion tanks to determine that they are not air bound and that the system is completely full of water.

B. Before operating the system perform these steps:

1. Open valves to full open position. Close coil bypass valves.
2. Remove and clean strainers.
3. Check pump for proper rotation and proper wiring.
4. Set automatic fill valves for required system pressure.
5. Check air vents at high points of systems and determine if all are installed and operating freely (automatic type) or to bleed air completely (manual type).
6. Set temperature controls so all coils are calling for full flow.
7. Check operation of automatic bypass valve.
8. Check and set operating temperature of boilers, chillers, and cooling towers to design requirements.
9. Lubricate motors and bearings.

END OF SECTION
SECTION 23 21 16 - PIPING SPECIALTIES

PART 1 GENERAL

1.1 DESCRIPTION OF WORK:

A. Extent of piping specialties work required by this section is indicated on drawings and schedules and by requirements of this section.

B. Piping specialties furnished as part of factory-fabricated equipment, are specified as part of equipment assembly in other Division-23 sections.

1.2 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of piping specialties of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. FCI Compliance: Test and rate "Y" type strainers in accordance with FCI 73-1 "Pressure Rating Standard for "Y" Type Strainers". Test and rate other type strainers in accordance with FCI 78-1 "Pressure Rating Standard for Pipeline Strainers Other than "Y" Type".

2. ASME B 31.9 "Building Services Piping" for materials, products, and installation.

3. Safety valves and pressure vessels shall bear the appropriate ASME label.

4. Fabricate and stamp air separators and compression tanks to comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

5. ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualification" for qualifications for welding processes and operators.

1.3 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data, including installation instructions, and dimensioned drawings for each type of manufactured piping specialty. Include pressure drop curve or chart for each type and size of pipeline strainer. Submit schedule showing manufacturer's figure number, size, location, and features for each required piping specialty.

B. Shop Drawings: Submit for fabricated specialties, indicating details of fabrication, materials, and method of support.

C. Maintenance Data: Submit maintenance data and spare parts lists for each type of manufactured piping specialty. Include this data, product data, and shop drawings in maintenance manual; in accordance with requirements of Division 23.
PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

1. Combination Pressure and Temperature Relief Valves:
 a. Amtrol, Inc.
 b. Bell & Gossett ITT; Fluid Handling Div.
 c. Spirax Sarco.
 d. Watts Regulator Co.

2. Pressure Reducing Valves (Water):
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Keckley

3. Air Vents:
 b. Bell & Gossett ITT; Fluid Handling Div.
 c. Hoffman Specialty ITT; Fluid Handling Div.
 d. Spirax Sarco.

4. Low Pressure Strainers:
 a. Hoffman Specialty ITT; Fluid Handling Div.
 b. Metraflex Co.
 c. Spirax Sarco.
 d. Watts Regulator Co.

5. Dielectric Waterways
 a. America
 b. Epco Sales, Inc.

6. Fire and Smoke Barrier Penetration Seal:
 a. Dow Corning
 b. Electrical Products Div./3M
 c. Flame Stop, Inc.

7. Diverting Fittings:
 a. Armstrong
 b. Bell & Gossett ITT
 c. Victaulic Company of America

8. Vacuum Breakers:
2.2 HYDRONIC PIPING SPECIALTIES:

A. General: Provide factory-fabricated piping specialties recommended by manufacturer for use in service indicated. Provide piping specialties of types and pressure ratings indicated for each service, or if not indicated, provide proper selection as determined by Installer to comply with installation requirements. Provide sizes as indicated, and connections, which properly mate with pipe, tube, and equipment connections. Where more than one type is indicated, selection is Installer's option.

B. Hydronic System Safety Relief Valves: Diaphragm operated, cast-iron or brass body valve, with low inlet pressure check valve, inlet strainer removable without system shut-down, and Teflon seat, stainless steel stem and springs. Select valve size, capacity, and operating pressure to suit system. Valve shall be factory-set at operating pressure to suit system and have the capability for field adjustment. Safety relief valve shall be designed, manufactured, tested and labeled in accordance with the requirements of Section IV of the ASME Boiler and Pressure Vessel Code. Valve body shall be cast-iron, with all wetted internal working parts made of brass and rubber; 125 psig working pressure and 250 degrees F maximum operating temperature. Select valve to suit actual system pressure and BTU capacity. Set valve to relieve at 10 psi above operating pressure.

C. Pressure Reducing Valves: Diaphragm operated, bronze or brass body valve, with low inlet pressure check valve, stainless steel inlet strainer removable without system shut-down, and non-corrosive valve seat and stem. Select valve size, capacity, and operating pressure to suit system. Valve shall be factory-set at operating pressure and have the capability for field adjustment.

D. Manual Air Vent: Bronze body and nonferrous internal parts; 150 psig working pressure, 212 degrees F operating temperature; manually screwdriver or coin operated and having discharge outlet connection and 1/8 inch NPT male connection. Provide ball valves as specified in Part 3.
 1. Float Type: Brass or semi-steel body, copper float, stainless steel valve and valve seat; suitable for system operation temperature and pressure. With isolating valve.
 2. Washer Type: Brass with hydroscopic fiber discs, vent ports, adjustable cap for manual shut-off, and integral spring loaded ball check valve.
 3. Provide valve or gauge cock for isolation and repair.
 4. Pipe high point manual air vents to drain. Notify Project Manager in areas where the manual vents cannot be piped to drain.

E. Automatic Air Vent: 150 psi working pressure, 240 degrees working temperature, stamped brass body and non-metallic float, with threaded outlet connector for "safe waste" discharge pipe of ¼" discharge connection and ½" inlet connection.
 1. B & G Model #87 or approved equivalent.

F. High Capacity Automatic Air Vent: 150 psig working pressure, 250 degrees working temperature, cast iron body, bronze pilot mechanism. Snap acting operation, preventing opening under negative pressure conditions. Capable of 18 scfm elimination at 30 psig.
 1. Amtrol 720 or approved equivalent.
2.3 PIPE ESCUTCHEONS:

A. General: Provide pipe escutcheons as specified herein with inside diameter closely fitting pipe outside diameter, or outside of pipe insulation where pipe is insulated. Select outside diameter of escutcheon to completely cover pipe penetration hole in floors, walls, or ceilings; and pipe sleeve extension, if any. Furnish pipe escutcheons with nickel or chrome finish for occupied areas, prime paint finish for unoccupied areas.

B. Pipe Escutcheons for Moist Areas: For waterproof floors, and areas where water and condensation can be expected to accumulate, provide cast brass or sheet brass escutcheons, solid or split hinged.

C. Pipe Escutcheons for Oversized Holes: Provide sheet steel escutcheons, solid or split hinged.

2.4 LOW PRESSURE PIPELINE STRainers:

A. General: Provide strainers full line size of connecting piping, with ends matching piping system materials. Select strainers for 125 psi working pressure, with Type 304 stainless steel screen. Two inches and smaller steam and liquid strainers shall have 20 mesh screens. Provide 3/64 inch perforations for 2-1/2 inch and 3 inch steam and liquid strainers. Provide 1/8 inch mesh perforations for 4 inches and larger liquid strainers. Provide 1/16 inch mesh perforations for 4 inches and larger steam strainers.

B. Threaded Ends, 2 inch and Smaller: Cast-iron body, screwed screen retainer with centered blowdown fitted with pipe plug.

C. Threaded or Flanged Ends, 2-1/2 inches and Larger: Cast-iron body, bolted screen retainer with off-center blowdown fitted with pipe plug.

D. Butt Welded Ends, 2-1/2 inches and Larger: Schedule 40 cast carbon steel body, bolted screen retainer with off-center blowdown fitted with pipe plug.

2.5 DIELECTRIC WATERWAY:

A. General: Zinc electroplated nipple with non metallic lining for use in service indicated, which effectively isolate ferrous from non-ferrous piping (electrical conductance), prevent galvanic action, and stop corrosion. Union style not acceptable. Threaded end connections installed to isolate dissimilar metals, prevent galvanic action, and prevent corrosion.

2.6 FABRICATED PIPING SPECIALTIES:

A. Drip Pans: Provide drip pans fabricated from corrosion-resistant sheet metal with watertight joints, and with edges turned up 2-1/2 inches. Reinforce top, either by structural angles or by rolling top over 1/4 inch steel rod. Provide hole, gasket, and flange at low point for watertight joint and 1 inch drain line connection.

B. Pipe Sleeves: Provide pipe sleeves of one of the following:

1. Sheet-Metal: Fabricate from galvanized sheet metal; round tube closed with snaplock joint, welded spiral seams, or welded longitudinal joint. Fabricate from the following gauges: 2-1/2 inches and smaller, 24 gauge; 3 inches to 6 inches 22 gauge; over 6 inch, 20 gauge.
2. Steel-Pipe: Fabricate from Schedule 40 galvanized steel pipe; remove burrs. Provide fully welded waterstop/anchor ring fabricated from minimum 1/8 plate, extending minimum 1 inch from O.D. of sleeve, where noted in Part 3.

3. Iron-Pipe: Fabricate from cast-iron or ductile-iron pipe; remove burrs.

4. Sleeves for use with firestopping shall be fabricated in accordance with the installation instructions of the firestopping system.

5. Insulated Pipe: Sleeves of sufficient internal diameter to install pipe and insulation and allow for free movement of pipe.

6. In finished areas where pipes are exposed, terminate sleeves flush with wall, partitions, and ceiling and extend 1 inches above finished floors.

7. Fire Protection Lines: Extend sleeves a minimum of 3 inches above finished floor.

PART 3 - EXECUTION

3.1 INSTALLATION OF PIPING SPECIALTIES:

A. Pipe Escutcheons: Install pipe escutcheons on each pipe penetration thru floors, walls, partitions, and ceilings where penetration is exposed to view; and on exterior of building. Secure escutcheon to pipe or insulation so escutcheon covers penetration hole, and is flush with adjoining surface.

B. Strainers: Install strainers full size of pipeline, in accordance with manufacturer's installation instructions. Install pipe nipple and shutoff full port ball valve with ¾ inch hose end and cap in strainer blow down connection. Where indicated, provide drain line from shutoff valve to plumbing drain, full size of blow down connection.

1. Provide strainers in supply line ahead of the following equipment, and elsewhere as indicated.
 a. Pumps
 b. Pressure reducing valves
 c. Temperature or pressure regulating valves
 d. Control valves

C. Dielectric Waterway: Install at each piping joint between ferrous and non-ferrous piping. Comply with manufacturer's installation instructions.

3.2 HYDRONIC SPECIALTIES INSTALLATION:

A. Manual Air Vent: Provide manual air vents at all high points and drops in the direction of flow, of all mains and risers of the hydronic systems, at heat transfer coils, radiation and elsewhere shown and as required for system air venting.

1. Provide enlarged air collection standpipe where large air quantities can accumulate.

2. Use a 1/2 inch ball valve with a soft copper tubing discharge pipe directed to a convenient collection point except as noted below.

3. Use a coin operated air vent inside terminal unit and baseboard radiation enclosures.
B. Provide automatic air vents where shown on drawings. Provide high capacity automatic air vents at all air separators, provide an isolation valve to allow removal of all automatic air vents, provide minimum 1/4 inch soft copper tubing to a convenient drain location, and to avoid water damage.

3.3 INSTALLATION OF FABRICATED PIPING SPECIALTIES:

A. Drip Pans: Locate drip pans under piping as indicated. Hang from structure with rods and building attachments, weld rods to sides of drip pan. Brace to prevent sagging or swaying. Connect 1" drain line to drain connection, and run to nearest plumbing drain or elsewhere as indicated.

B. Pipe Sleeves: In fire resistive construction, coordinate the use of sleeves with the firestopping system requirements. See Section 23 05 09. Do not install sleeves through structural members of work, except as detailed on drawings, or as reviewed by Architect/Engineer. Install sleeves accurately centered on pipe runs. Size sleeves so that piping and insulation will have free movement in sleeve, including allowance for thermal expansion; but not less than 2 pipe sizes larger than piping run. Install length of sleeve equal to thickness of construction penetrated, and finish flush to surface; except floor sleeves where noted below. Provide temporary support of sleeves during placement of concrete and other work around sleeves, and provide temporary closure to prevent concrete and other materials from entering sleeves.

1. Interior gypsum board, plaster, and masonry partitions: Install sheet metal sleeves.

2. Interior cast in place concrete walls: Install steel pipe sleeves.

3. Interior cast in place floors: Install steel pipe sleeves with water stop/anchor ring.
 a. Extend floor sleeves in all rooms other than mechanical rooms 1 inch above floor finish and 2 inches above finished floor in all mechanical equipment rooms and pipe chases.

4. Below ground and exterior cast-in-place concrete or masonry: Install steel pipe sleeves with waterstop/anchor ring.

5. For core drilled solid concrete or precast concrete with blockouts, no sleeve is required, except provide sheet metal "collar" fastened and caulked to floors required to have extended sleeves.

END OF SECTION
SECTION 23 30 00 - HVAC AIR DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. Extent of metal ductwork is indicated on drawings and in schedules, and by requirements of this section.

<table>
<thead>
<tr>
<th>DUCT SERVICE</th>
<th>TYPE/CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply air between fan and terminal boxes (medium and high).</td>
<td>Galvanized steel, spiral, round or oval /rectangular.</td>
</tr>
<tr>
<td>Rectangular supply air from discharge of terminal box/fan to air devices (low pressure).</td>
<td>Galvanized sheet metal /spiral round and oval or rectangular</td>
</tr>
<tr>
<td>Return air ductwork.</td>
<td>Galvanized steel; factory or shop fabricated.</td>
</tr>
<tr>
<td>General building exhaust.</td>
<td>Galvanized sheet metal; factory or shop fabricated.</td>
</tr>
</tbody>
</table>

B. Exterior insulation of metal ductwork is specified in other Division-23 sections, and is included as work of this section.

C. Refer to other Division-23 sections for fans and air handling units.

D. Refer to other Division-23 sections for testing, adjusting, and balancing of metal ductwork systems.

1.2 DEFINITIONS:

A. Low Pressure Duct: Duct required by the drawings, specifications, or referenced standards to be constructed to 2" or less, positive or negative pressure class.

B. Medium or High Pressure Duct: Duct required by the drawings, specifications, or referenced standards to be constructed to greater than 2" positive or negative pressure class.

1.3 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of metal ductwork products of types, materials, and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firm with at least 3 years of successful installation experience on projects with metal ductwork systems similar to that required for project.
C. References to SMACNA, ASHRAE and NFPA are minimum requirements, the Contractor shall fabricate, construct, install, seal and leak test all ductwork as described in this specification and as shown on the drawings, in addition to these minimum standard references.

D. Codes and Standards:

1. SMACNA Standards: Comply with the current SMACNA "HVAC Duct Construction Standards, Metal and Flexible" for fabrication and installation of metal ductwork. Comply with SMACNA "HVAC Air Duct Leakage Test Manual" for testing of duct systems.

4. ASTM Compliances: Comply with applicable requirements of ASTM E90 and E477.

5. AMCA 1011 CRP Compliance

E. SMACNA Industrial Construction Standards.

1.4 SUBMITTALS:

A. Product Data:

1. Submit manufacturer's technical product data and installation instructions for ductwork materials and products. Provide product data for manufactured joining systems. Include sound attenuation by octave band for sound rated flexible duct.

2. Submit manufacturer's technical product data, including performance data for each size and type of air terminal, sound attenuator, louver and air device furnished; schedule showing drawing designation, room location, number furnished, model number, size, and accessories furnished; and installation and start-up instructions.

3. Shop Drawings: Submit manufacturer's assembly-type shop drawings indicating dimensions, weight loadings, required clearances, and methods of assembly of components.

4. Wiring Diagrams: Submit ladder-type wiring diagrams for electric power and control components, clearly indicating required field electrical connections.

B. Shop Drawings: Submit ¼” scaled fabrication and layout drawings of metal ductwork and fittings including, but not limited to, duct sizes, locations, elevations, and slopes of horizontal runs, wall and floor penetrations, and connections. Show interface and spatial relationship between ductwork and proximate equipment. Show modifications of indicated requirements, made to conform to local shop practice, and how those modifications ensure that free area, materials, and rigidity are not reduced.

C. Record Drawings: At project closeout, submit record drawings of installed systems, in accordance with requirements of Divisions 1 and 23.
D. Maintenance Data: Submit maintenance data and parts lists for metal ductwork materials, products, sound attenuators, each type of air terminal, maintenance data with cleaning instructions for finishes and spare parts lists for all air devices. Include this data, product data, shop drawings, and record drawings in maintenance manual; in accordance with requirements of Divisions 1 and 23.

1.5 DELIVERY, STORAGE, AND HANDLING:

A. Protection: Protect ductwork, accessories and purchased products from damage during shipping, storage and handling. Prevent end damage and prevent dirt and moisture from entering ducts, fittings and products.

B. Storage: Store ductwork, fittings and products inside elevated from floor on pallets and protected from weather, dirt, dust and debris.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flexible Ducts:
 a. Flexmaster
 b. Thermaflex
 c. Hercules

2. Duct Take Off Fittings
 a. Hercules Industries
 b. Flexmaster
 c. Thermaflex

3. Air Terminals:
 a. Siemens

4. Grilles, Registers and Diffusers:
 a. Metalaire
 b. Titus
 c. Price
 d. Nailor

5. Dampers:
 a. Greenheck
 b. Ruskin
 c. Potteroff

6. Turning Vanes:
 a. Aero Dyne Co.
 b. Airsan Corp.
 c. Barb-Aire
 d. Duro Dyne Corp.
 e. Environmental Elements Corp.; Subs. Koppers Co., Inc.
7. Duct Hardware:
 a. Ventfabs, Inc.
 b. Young Regulator Co.
 c. Duro-Dyne Corp.

8. Duct Access Doors:
 a. Kess
 b. Greenheck
 c. Flexmaster
 d. Cesco-Advanced Air
 e. Duro Dyne Corp.
 f. Ventfabs, Inc.

9. Flexible Connections:
 a. Duro Dyne Corp.
 b. Ventfabs, Inc.
 c. General Rubber Corp. (Process & Exhaust Only)

2.2 DUCTWORK MATERIALS:

 A. Exposed Ductwork Materials: Where ductwork is exposed to view in occupied spaces, provide materials which are free from visual imperfections including pitting, seam marks, roller marks, stains, dents, discolorations, and other imperfections, including those which would impair painting.

 B. Sheet Metal: Except as otherwise indicated, fabricate ductwork from galvanized sheet steel complying with ASTM A 527, lockforming quality; with G 90 zinc coating in accordance with ASTM A 525; and mill phosphatized for exposed locations. Provide flat seam construction where standing seams are a hazard to the Owner's operation personnel.

 C. Stainless Steel Sheet: Where indicated, provide stainless steel complying with ASTM A 480; Type 316; with No. 4 finish where exposed to view in occupied spaces, Type 304 No. 1 finish elsewhere. Protect finished surfaces with mill-applied adhesive protective paper, maintained through fabrication and installation.

 D. Aluminum Sheet: Where indicated, provide aluminum sheet complying with ASTM B 209, Alloy 3003, Temper H14. Connectors and bar stock shall be Alloy 6061-T6 or equivalent strength.

 E. Uncoated carbon steel shall comply with ASTM A569, hot rolled steel sheet.

2.3 MISCELLANEOUS DUCTWORK MATERIALS:

 A. General: Provide miscellaneous materials and products of types and sizes indicated and, where not otherwise indicated, provide type and size required to comply with ductwork system requirements including proper connection of ductwork and equipment.

 B. Fittings: Provide radius type fittings fabricated of multiple sections with maximum 15 deg. change of direction per section. Unless specifically detailed otherwise, use 45 deg. laterals and 45 deg. elbows for branch takeoff connections. Where 90 deg. branches are indicated, provide conical type tees.
C. Duct Sealant: UL listed, Class I flame spread 0, fuel contributed 0, smoke developed 0, water based non-hardening, non-migrating mastic or liquid elastic sealant, type applicable for fabrication/installation detail, as compounded and recommended by manufacturer specifically for sealing joints and seams in ductwork.

D. Ductwork Support Materials: Except as otherwise indicated, provide hot-dipped galvanized steel fasteners, anchors, rods, straps, trim and angles for support of ductwork.
 1. For exposed stainless steel ductwork, provide matching stainless steel support materials.
 2. For aluminum ductwork, provide aluminum support materials except where materials are electrolytically separated from ductwork.

E. Flexible Ducts: Flexible air ducts shall be listed under UL-181 standards as Class I Air Duct Material and shall comply with NFPA Standards 90A and 90B. Minimum operating pressure rating shall be 10" W.C. positive, 1" negative for sizes up to 12" through a temperature range of -20° to 150°F; minimum working velocity rating shall be 4000 f.p.m. Contractor shall assume responsibility for supplying material approved by the authority having jurisdiction.
 1. All flexible duct shall be rated for sound attenuation. Inner core shall be black CPE supported by a galvanized steel helix, with minimum R-5 insulation and metalized reinforced outer jacket. Sound attenuation shall be as scheduled below:

<table>
<thead>
<tr>
<th>Octave Band</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL (dB) 8" dia.</td>
<td>11</td>
<td>26</td>
<td>32</td>
<td>32</td>
<td>34</td>
<td>20</td>
</tr>
</tbody>
</table>

 a. Flexmaster Type 8M
 2. Non-insulated flexible ducts shall be the same as insulated less the insulation and other jacket.

F. Duct Take Off Fittings to Individual Air Inlets & Outlets: Provide conical spin-in fittings at flexible or round sheet metal duct takeoffs. Where specifically shown on drawings, where the duct dimension does not allow for a conical spin-in, or at Contractor's option, provide 45° inlet rectangular to round duct takeoff fittings, with factory applied gasket. Fittings shall include butterfly type manual volume damper with regulator, and dual locking device. Dual locking device shall consist of two shaft mounted wing nuts, one on each side of the damper. Wing nuts shall tighten on shafts to lock butterfly in place. Shafts shall be solid metal, rolled metal shafts are not acceptable.

G. Duct take off fittings to air terminals: same as for individual air inlets and outlets, less the damper.

H. All fasteners and hardware for stainless steel ductwork shall be made of stainless steel.

2.4 MANUAL VOLUME DAMPERS:

A. Low Pressure Rectangular Dampers (less than 2000 FPM and under 2" W.C. S.P. Differential):
 1. For 12" in height or larger, use multiple opposed blade type and close fitted to ducts. The frame and blades shall be constructed of 16 ga. galvanized steel with plated steel shaft mounted with synthetic bearings. Linkage shall be in-jamb fixed type located outside the airstream made of plated steel tie bar and crank plates, with stainless steel pivots. Damper panels shall not exceed
48" wide. Provide jack shafting when duct size required is greater than 48" wide. Provide notched shaft end indicating damper position, locking quadrant to fix damper position and handle. Provide stand off bracket for insulated ducts. For flat oval and round ductwork, provide type C housing.

2. For ducts less than 12" in height, frame shall be 18 ga. blade galvanized steel, steel axle with synthetic bearings locking quadrant handle and notched shaft end indicating damper position. Provide stand off bracket for insulated ducts.

B. Low Pressure Round Dampers (less than 1800 FPM and under 1" W.C. S.P. differential):

1. For low pressure spin-in fitting dampers serving individual returns/diffusers, see 15891.

2. Dampers 4" diameter through 18" diameter shall be 20 ga. galvanized steel frame and blade, utilize multi-blade square dampers with transitions for ducts over 18" diameter.

Axle shaft shall be plated steel with retainers mounted on synthetic bearings with notched end shaft indicating damper position, locking quadrant and handle. Provide stand off brackets for insulated ducts.

a. Greenheck M8DR-50 or approved equivalent.

C. Medium/High Pressure Rectangular Dampers (less than 4000 FPM and under 6" W.C. (48" wide or less) S.P. or 8" W.C. S.P. (36" wide or less)):

1. Dampers shall be opposed blade for volume control and parallel blade for isolation/shut-off service.

2. Frame shall be 16 ga. galvanized steel with welded corners or 1/8" thick 6063-T5 alloy aluminum frame. Blades shall be double skin galvanized steel with single-lock seam, or .081" thick 6060-T5 extruded aluminum, airfoil shape. Blade edge seals shall be vinyl, silicone, or other approved synthetic and metallic compression seals at the jambs. Axles shall be hexagonal or square plated steel mounted on bronze oilite or synthetic (ACETAL) bearings. Linkage shall be in-jamb type located outside the airstream. Maximum damper size shall be 48" wide and 60" high. For isolation or shut-off duty, damper leakage shall not exceed 9.5 CFM/Ft² at 4" W.C. S.P. differential. Provide extended shaft with notched end indicating damper position, locking quadrant and handle. Provide standoff brackets for insulated ducts.

D. Dampers in stainless steel duct shall be of equivalent construction to the above dampers, with all components made of stainless steel. Type 304 or 316 as specified for the ductwork.

E. Dampers in aluminum duct shall be of equivalent construction to the above dampers, with all components made of either aluminum or stainless steel.

2.5 TURNING VANES:

A. Fabricated Turning Vanes: Provide fabricated 22 gauge, single blade or 24 gauge double bladed 4-1/2" radius, 3-1/4" spacing turning vanes and type 2, 4-1/2" wide runners, constructed in accordance with SMACNA "HVAC Duct Construction Standards" Fig 2.3.

B. Do not use trailing edge turning vanes.

2.6 DUCT HARDWARE:

A. General: Provide duct hardware, manufactured by one manufacturer for all items on project, for the following:
B. Test Holes: Provide in ductwork at fan inlet and outlet, and elsewhere as indicated, duct test holes, consisting of slot and cover, for instrument tests.

C. Quadrant Locks: Provide for each manual volume damper, quadrant lock device on one end of shaft; and end bearing plate on other end for damper lengths over 12”. Provide extended quadrant locks and end extended bearing plates for externally insulated ductwork.

2.7 DUCT ACCESS DOORS:

A. Access Doors for Low Pressure Rectangular Duct: Construct of same or greater gauge as ductwork served, provide double wall insulated doors for insulated ductwork. Exposed insulation adhered to door is not acceptable. Provide flush frames for uninsulated ductwork, extended frames for externally insulated duct. All access doors shall have gasket and will be air tight. Provide one side hinged, other side with one handle-type latch for doors 12” high and smaller, 2 handle-type latches for larger doors. Where a hinged door can not be fully opened a removable door may be used.

B. Access Doors for Medium and High Pressure Rectangular Duct: Insulated double wall round door and frame arranged for "Spin-In" installation, with continuous gasket in frame for door. Leakage of less than .5 cfm at 6” W.G.

Flexmaster "Inspector Series Spin Door" or equivalent.

C. Access Doors for Round Duct 20" and Less: Sandwich type door, constructed of an insulated double wall outer door connected to gasketed inner plate carriage bolts with hand knobs, and formed to fit the radius of the duct.

Ductmate "Sandwich" or equivalent.

D. Access Door for Round Duct Greater Than 20": 18" round insulated double wall access door in gasketed frame, attached to duct section similar to tee fitting.

E. Access Doors for Flat Oval Duct: Use door specified for medium and high pressure rectangular duct in flat portion, use door specified for round duct in curved portion.

2.8 FLEXIBLE CONNECTIONS:

A. General: Provide flexible duct connections wherever ductwork connects to vibration isolated equipment. Construct flexible connections of neoprene-coated flameproof fabric crimped into duct flanges for attachment to duct and equipment. Make airtight joint. Provide adequate joint flexibility to allow for thermal, axial, transverse, and torsional movement, and also capable of absorbing vibrations of connected equipment. Shelf life shall be verified to not exceed six (6) months. Any sign of cracking on interior or exterior shall be cause for replacement immediately.

B. Use the following product types for each application accordingly:

1. Indoor Equipment Non-Corrosive Air Systems: Heavy glass fabric, double-coated with DuPont's NEOPRENE, non-combustible fabric, fire retardant coating with good resistance to abrasion and flexing. Fabric shall be 30 oz per square yard, capable of operating at -10°F to 200°F, waterproof, air tight, 6 inches wide, complies with NFPA 90 and UL Standard #214. "Ventglas" Model as manufactured by VentFabric, Inc.

2.9 AIR TERMINALS:

A. General: Provide factory-fabricated and tested air terminals as indicated, selected with performance characteristics which match or exceed those indicated on schedule.
B. Air terminal units shall be low pressure drop, single duct throttling type pressure independent and suitable for use in medium pressure variable volume and constant volume air distribution systems.

C. Casing shall be minimum 22 gauge galvanized steel construction (except for exhaust air terminals, which shall be 316L stainless steel) with internal acoustical coated 3/4" thick, fiber-free foam insulation (to meet requirements of NFPA 90A and UL181), and inlet and outlet duct connections. Provide gasketed and insulated access doors for air terminals with internally mounted serviceable components, including actuators and fan motors.

D. Internal damper blade shall be extruded aluminum or 18 gauge steel (except for exhaust air terminals, which shall be 316L stainless steel) with keyed fit shaft and nylon bushing. Damper shall seal against gasketed stops maximum 2% leakage at 3.0” S.P. All mechanical parts shall be galvanized or non-ferrous. Alternate damper design as produced by the Trane Company as acceptable.

E. Hot water heating coils shall be designed for 200 psig maximum working pressure and 200°F maximum operating temperature. Coil shall be serpentine-type, constructed of 1/2” O.D. copper tubes mechanically bonded to aluminum fins; galvanized steel casing.

F. Provide between terminal casing and reheat coil, factory-installed framed duct access door complete with quarter-turn quick release fasteners.

G. Provide label on each air terminal unit, indicating plan designation, unit size, cfm range and settings and calibration curve.

H. Provide a pressure independent pneumatic cross or ring-shaped flow sensor with velocity pressure pickup points for measuring inlet airflow (except for exhaust units, which shall have orifice sensors). The sensor shall maintain control accuracy with the same size inlet duct in any configuration. Single point hot wire anemometer or straight line pneumatic sensors are not acceptable. Provide gauge ports in flow sensor tubing.

I. Terminal units scheduled for full close-off at minimum position shall have blade seals.

2.10 CONTROLS:

A. Air terminal unit manufacturer shall mount DDC controller and electric actuator provided by temperature control manufacturer. See Section 23 09 23/23 09 43.

2.11 CEILING AIR DIFFUSERS:

A. General: Except as otherwise indicated, provide manufacturer's standard ceiling air diffusers where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation.

B. Performance: Provide ceiling air diffusers that have, as minimum, temperature and velocity traverses, throw and drop, and noise criteria ratings for each size device as listed in manufacturer's current data.

C. Ceiling Compatibility: Provide diffusers with border styles that are compatible with adjacent ceiling systems, and that are specifically manufactured to fit into ceiling module with accurate fit and adequate support. Refer to general construction drawings and specifications for types of ceiling systems, which will contain each type of ceiling air diffuser.

D. Types: Provide ceiling diffusers of type, capacity, and with accessories and finishes as listed on air device schedule.

2.12 REGISTERS AND GRILLES:
A. General: Except as otherwise indicated, provide manufacturer's standard registers and grilles where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation.

B. Performance: Provide registers and grilles that have, as minimum, temperature and velocity traverses, throw and drop, and noise criteria ratings for each size device as listed in manufacturer's current data.

C. Wall Compatibility: Provide registers and grilles with border styles that are compatible with adjacent wall systems, and that are specifically manufactured to fit into wall construction with accurate fit and adequate support. Refer to general construction drawings and specifications for types of wall construction, which will contain each type of wall register and grille.

D. Types: Provide registers and grilles of type, capacity, and with accessories and finishes as listed on air device schedule.

2.13 FABRICATION:

A. Fabricate ductwork in 4, 8, 10 or 12-ft lengths, unless otherwise indicated or required to complete runs. Preassemble work in shop to greatest extent possible, so as to minimize field assembly of systems. Disassemble systems only to extent necessary for shipping and handling. Match (-) mark sections for reassembly and coordinated installation.

B. Fabricate ductwork of gauges and reinforcement complying with the latest SMACNA "HVAC Duct Construction Standards". Minimum 26 GA where ducts are within corridors.

C. Where the standard allows the choice of external reinforcing or internal tie rods, only the external reinforcing options shall be used.

D. If manufacturer flange joining systems are used as part of the reinforcing, the EI rating and rigidity class shall be equivalent to the reinforcing requirements of the standard. Submit manufacturer's product data.

E. Aluminum duct shall be fabricated using the aluminum thickness equivalence table in the standard. Simply increasing the thickness by two gauges is not acceptable.

F. Fabricate duct fittings to match adjoining ducts, and to comply with duct requirements as applicable to fittings. Except as otherwise indicated, fabricate elbows and offsets with center-line radius equal to 1.5 times the associated duct width; and fabricate to include turning vanes in elbows where shorter radius is necessary. 90° mitered elbows with turning vanes may be used where specifically shown on drawings. Mitered elbows or offsets of other than 90° shall not be used. Two 90° mitered elbows shall be separated by a minimum of 2 equivalent duct diameters. Use radiused “Ogee” for offsets less than 90°. Limit angular tapers to 30 deg. for contracting tapers and 20 deg. for expanding tapers. Divided flow fittings shall be 45° inlet branches, stationary splitters and elbows, or as shown on drawings.

G. Fabricate ductwork with accessories installed during fabrication to the greatest extent possible. Refer to Division-23 section "Ductwork Accessories" for accessory requirements.

2.14 ROUND AND FLAT OVAL DUCTWORK:

A. Material: Galvanized sheet steel complying with ASTM A 527, lockforming quality, with ASTM A 525, G90 zinc coating, mill phosphatized. Spiral lockseam construction. Individual runouts to air devices may be longitudinal seam.

B. Gauge: In accordance with the SMACNA “HVAC Duct Construction Standards”, minimum 26 gauge.
C. Elbows: One piece construction for 90 deg. and 45 deg. elbows 14" and smaller. Provide multiple gore construction for larger diameters with standing seam circumferential joint. Radius to centerline shall be 1.5 times duct diameter. Spot welded and bonded construction. Elbows on runouts to individual air devices may be pleated or adjustable.

D. Divided Flow Fittings: 90 deg. tees, constructed with branch spot welded and bonded to duct fitting body, or saddle tap fitting, with minimum 2" flange shaped to fit main duct.

PART 3 - EXECUTION

3.1 INSPECTION:

A. General: Examine areas and conditions under which metal ductwork is to be installed. Do not proceed with work until unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF METAL DUCTWORK:

A. Duct Sealing:

1. Seal all low pressure ducts to SMACNA Seal Class "B".

2. Seal all medium and high pressure ducts to SMACNA Seal Class "A".

B. General: Assemble and install ductwork in accordance with recognized industry practices which will achieve air-tight and noiseless (no objectionable noise) systems, capable of performing each indicated service. Install each run with minimum number of joints. Align ductwork accurately at connections, within 1/8" misalignment tolerance and with internal surfaces smooth. Support ducts rigidly with suitable ties, braces, hangers and anchors of type which will hold ducts true-to-shape and to prevent buckling, popping or compressing. Support vertical ducts at every floor.

C. Construct ductwork to schedule of operating pressures as shown on drawings.

D. Inserts: Install concrete inserts for support of ductwork in coordination with formwork, as required to avoid delays in work.

E. Field Fabrication: Complete fabrication of work at project as necessary to match shop-fabricated work and accommodate installation requirements.

F. Routing: Locate ductwork runs, except as otherwise indicated, vertically and horizontally and avoid diagonal runs wherever possible. Locate runs as indicated by diagrams, details and notations or, if not otherwise indicated, run ductwork in shortest route which does not obstruct useable space or block access for servicing building and its equipment. Hold ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building. Limit clearance to 1/2" where furring is shown for enclosure or concealment of ducts, but allow for insulation thickness, if any. Where possible, locate insulated ductwork for 1" clearance outside of insulation. Wherever possible in finished and occupied spaces, conceal ductwork from view, by locating in mechanical shafts, hollow wall construction or above suspended ceilings. Do not encase horizontal runs in solid partitions, except as specifically shown. Coordinate layout with suspended ceiling and lighting layouts and similar finished work.

G. Electrical Equipment Spaces: Do not route ductwork through transformer vaults and their electrical equipment spaces and enclosures.

H. Penetrations: Where ducts pass through fire rated walls and do not contain fire or smoke dampers, protect with fire stop material installed in accordance with its listing. Where ducts pass through interior
partitions or exterior walls, and are exposed to view, conceal space between construction opening and duct or duct insulation with sheet metal flanges of same gauge as duct. Overlap opening on all four sides by at least 1-1/2". Fasten to duct only. Where ducts penetrate non-fire rated, mechanical, electrical or acoustically sensitive walls, provide ½” to ¾” annular space between duct and wall, pack annular space with mineral wood insulation, and caulk both sides with non-hardening acoustical sealant.

I. Coordination: Coordinate duct installations with installation of accessories, dampers, coil frames, equipment, controls and other associated work of ductwork system.

J. Installation: Install metal ductwork in accordance with SMACNA HVAC Duct Construction Standards.

K. Temporary Closure: At ends of ducts which are not connected to equipment or air distribution devices at time of ductwork installation, provide temporary closure of polyethylene film or other covering which will prevent entrance of dust and debris until time connections are to be completed.

3.3 INSTALLATION OF DUCT TAKE-OFF FITTINGS:

A. Fully seal all joints.

B. Sheet metal screw regulator arm to duct after balance is complete. Mark and date position of regulator arm.

C. Insulation over regulator arm is not required.

3.4 INSTALLATION OF FLEXIBLE DUCTS:

A. Maximum Length: For any duct run using flexible ductwork, do not exceed 6’ - 0”.

B. Installation: Install in accordance with SMACNA’s, "HVAC Duct Construction Standards, Metal and Flexible".

C. Full inside diameter of flexible duct shall be maintained. Support to prevent kinking.

D. Flexible duct shall not be installed above an inaccessible ceiling unless the air device is set in a frame allowing access to both ends of the flexible duct.

3.5 INSTALLATION OF DUCTWORK ACCESSORIES:

A. Install ductwork accessories in accordance with manufacturer's installation instructions, with applicable portions of details of construction as shown in SMACNA standards, and in accordance with recognized industry practices to ensure that products serve intended function.

B. Install turning vanes in square or rectangular 90 deg. elbows in supply, return and exhaust air systems, and elsewhere as indicated.

C. Install access doors to open against system air pressure, with latches operable from either side, except outside only where duct is too small for person to enter.

D. Coordinate with other work, including ductwork, as necessary to interface installation of ductwork accessories properly with other work.

E. Provide duct access doors whether shown or not for inspection and cleaning upstream of all coils, fans, automatic dampers, fire dampers (minimum 16” x 24” in ducts larger than 18”), fire/smoke dampers, duct smoke detectors and elsewhere as indicated. Review locations prior to fabrication. Provide multiple access doors for large ductwork to provide adequate reach to equipment.
F. Provide fire dampers and smoke dampers at locations shown, where ducts and outlets pass through fire rated components, and where required by authorities having jurisdiction.

G. Provide balancing dampers at points on low pressure supply, return, and exhaust systems where branches are taken from larger ducts and as required for air balancing.

H. Provide balancing dampers on high pressure systems where indicated. Use splitter dampers only where indicated on Drawings.

I. Provide flexible connections immediately adjacent to equipment in ducts associated with fans and equipment subject to forced vibration. Provide matching flanged backing frame with flexible connector where flanged fan connections are provided.

3.6 INSTALLATION OF AIR TERMINALS:

A. General: Install air terminals as indicated, and in accordance with manufacturer's installation instructions.

B. Location: Install each unit level and accurately in position indicated in relation to other work; and maintain sufficient clearance for normal service and maintenance, but in no case less than that recommended by manufacturer.

C. Duct Connections: Connect ductwork to air terminals in accordance with Division-23 ductwork sections.

3.7 INSTALLATION OF AIR DEVICES:

A. General: Install air outlets and inlets in accordance with manufacturer's written instructions and in accordance with recognized industry practices to insure that products serve intended functions.

B. Coordinate with other work, including ductwork and duct accessories, as necessary to interface installation of air outlets and inlets with other work.

C. Locate ceiling air diffusers, registers, and grilles, as indicated on general construction "Reflected Ceiling Plans". Unless otherwise indicated, locate units in center of acoustical ceiling modules.

3.8 FIELD QUALITY CONTROL:

A. Leakage Tests:

1. Conduct duct leakage test in accordance with SMACNA HVAC Air Duct Leakage Test Manual. Repair leaks and repeat tests until total leakage is less than the maximum permissible leakage as specified below.

2. Operate installed ductwork accessories after installation to demonstrate compliance with requirements. Test for air leakage while system is operating. Repair or replace faulty accessories, as required to obtain proper operation and leakproof performance.

B. General:

1. Ductwork pressure tests shall be observed by Architect/Engineer prior to installation of insulation.

2. Ductwork systems in ±3" W.G. pressure class and higher shall be tested in their entirety for leaks. Arbitrary sections of ductwork in ±2" W.G. and lower pressure class shall be tested as required by Architect/Engineer.
3. Test Failures: Duct systems shall be repaired if test pressure and leakage requirements are not met or if air noise condition is encountered. Repairs and sealing shall be done with sheet metal, tape, sealant or a combination thereof.

C. Test Equipment:
 1. Portable rotary type blower or tank type vacuum cleaner with control damper. Equipment shall have sufficient capacity to properly test reasonably large duct system section. Equipment shall have been calibrated within 2 years of the testing.
 2. Orifice assembly consisting of straightening vanes and calibrated orifice plate mounted in a straight tube with properly located pressure taps.
 3. Two (2) U-tube manometers, one to measure drop across calibrated orifice and one to measure S.P. in duct being tested. Provide low differential pressure Dwyer magnehelic gauges for low leak testing in lieu of U-tube manometers.
 4. Provide Dwyer magnehelic gauge with 0-.25" W.C. range for testing 0% leakage ductwork.

D. Testing Pressures and Permissible Leakage:
 1. Test pressure shall be equal to the construction class. Negative pressure duct shall be tested at the equivalent positive pressure.
 2. Allowable leakage shall be determined from the following equation (or figure 4-1 in the above referenced Standard):

\[F = C_L \cdot (P)^{0.65} \]

Where:
- \(F \) = Allowable leakage factor CFM/100 Sq. Ft.
- \(C_L \) = Leakage Class
- \(P \) = Test pressure inches W.C.

3. Leakage class shall be as follows:
 a. Seal class A, Round or oval duct, \(C_L = 3 \).
 b. Seal class A, Rectangular duct, \(C_L = 6 \).
 c. Seal class B, Round or oval duct, \(C_L = 6 \).
 d. Seal class B, Rectangular duct, \(C_L = 12 \).
 e. Seal class C, Round or oval duct, \(C_L = 12 \).
 f. Seal class C, Rectangular duct, \(C_L = 24 \).

4. Record all tests using the procedure and forms in the above referenced standard.

5. All plenums and casings shall be tested by pressuring to the pressure class indicated and visually observing leakage and panel deflection.
 a. No noticeable leakage shall be allowed.
 b. Deflection shall be less than 1/8" per foot.

3.9 EQUIPMENT CONNECTIONS:

A. General: Connect metal ductwork to equipment as indicated. Provide flexible connection for each ductwork connection to equipment mounted on vibration isolators, and/or equipment containing
rotating machinery. Provide access doors where required for service, maintenance and inspection of ductwork accessories.

3.10 ADJUSTING AND CLEANING:

A. Clean ductwork internally, unit by unit as it is installed, of dust and debris. Clean external surfaces of foreign substances. Where ductwork is to be painted clean and prepare surface for painting.

B. Protection:

1. Store duct a minimum of 4" above ground or floor to avoid damage from weather or spills.

2. Cover all stored ducts to protect from moisture, dust or debris.

3. Maintain a cover on all ends of installed ductwork at all times, except when actually connecting additional sections of duct.

C. Ductwork contaminated or damaged above "shop" or "mill" conditions shall be cleaned, repaired or replaced to the Engineer's satisfaction.

D. Strip protective paper from stainless ductwork surfaces, and repair finish wherever it has been damaged.

E. Balancing: Refer to Division-23 section "Testing, Adjusting, and Balancing" for air distribution balancing of metal ductwork; not work of this section. Seal any leaks in ductwork that become apparent in balancing process.

END OF SECTION
SECTION 23 60 00 - LABORATORY PIPING SYSTEMS

PART 1 - GENERAL

1.1 SYSTEM DESIGN REQUIREMENTS

A. Vacuum Piping System:
 1. Modifications to the existing vacuum system.

PART 2 - PRODUCTS

2.1 MATERIALS GENERAL

A. Vacuum Piping:
 1. All vacuum piping shall be Type “L” copper with brazed joints.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Plumbing: No lead solder shall be utilized.

B. All piping installed per most recent IPC.

END OF SECTION 23 60 00
PART 1 - GENERAL:

1.1 RELATED DOCUMENTS:

A. All drawings associated with the entire project, including general provisions of the Contract, including The General Conditions of the Contract for Construction, General and Supplementary Conditions and Division-1 Conditions specification sections shall apply to the Division 26 specifications and drawings. The Contractor shall be responsible for reviewing and becoming familiar with the aforementioned and all other Contract Documents associated with the project.

B. Related Sections: Refer to all sections in Division 23. Refer to Division 26 and 28 specification sections and Division 26 and 28 drawings.

C. Where contradictions occur between this section and Division 1, the more stringent requirement shall apply.

D. Contractor shall be defined as any and all entities involved with the construction of the project.

E. Refer to UCD Campus Standards for more requirements.

1.2 SUMMARY:

A. This Section specifies the basic requirements for electrical installations and includes requirements common to more than one section of Division 26 and Division 28. It expands and supplements the requirements specified in sections of Division 1 through 23.

1.3 ELECTRICAL INSTALLATIONS:

A. Drawings are diagrammatic in character and do not necessarily indicate every required conduit, box, fitting, etc.

B. Drawings and specifications are complementary. Whatever is called for in either is binding as though called for in both. Report any discrepancies to the Engineer and obtain written instructions before proceeding. Where any contradictions occur between the specifications and the drawings the more stringent requirement shall apply. The contractor shall include pricing for the more stringent and expensive requirements.

C. Drawings shall not be scaled for rough-in measurements or used as shop drawings. Where drawings are required for these purposes or have to be made from field measurement, take the necessary measurements and prepare the drawings.

D. The exact location for some items in this specification may not be shown on the drawings. The location of such items may be established by the Engineer during the progress of the work.

E. The contractor shall make the installation in such a manner as to conform to the structure, avoid obstructions, preserve headroom and keep openings and passageways clear, without further instructions or costs to the Owner. All equipment shall be installed so access is maintained for serviceability.
F. Before any work is begun, determine that equipment will properly fit the space and that conduit can be run as contemplated without interferences between systems, with structural elements or with the work of other trades.

G. Verify all dimensions by field measurements.

H. Arrange for chases, slots, and openings in other building components to accommodate electrical installations.

I. Sequence, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the work. Give particular attention to large equipment requiring an access path for positioning prior to closing-in the building or space.

J. Where mounting heights are not detailed or dimensioned, install electrical conduits, boxes, and overhead equipment to provide the maximum headroom possible. In general, keep installations tight to structure.

K. Install electrical equipment to facilitate maintenance and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting and removal with minimum of interference with other installations.

L. Make allowance for expansion and contraction for all building electrical components and conduit systems that are subject to such.

M. The ceiling space shall not be “layered”. It is the contractor’s responsibility to offset and coordinate any systems as required to allow installation within the identified ceiling cavity. The contractor shall include labor and material in the base bid to accommodate such offsets.

N. In general, all conduit systems shall be routed as high as possible. Keep all equipment in accessible areas such as corridors and coordinate with systems and equipment from other sections.

O. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.

P. Coordinate the installation of electrical materials and equipment above and below ceilings with suspension system, luminaires and other building components. Ductwork and piping shall not be installed above electrical panelboards, switchboards, motor control centers, and transformers.

1.4 COORDINATION:

A. Work out all installation conditions in advance of installation. The Contractor shall be responsible for preparing coordination drawings, showing all work, in all areas. The Contractor shall be responsible for providing all labor and material, including but not limited to all fittings, hangers, control devices, lighting, low voltage equipment, cable tray, conduit, transformers, disconnects, etc., necessary to overcome congested conditions at no increase in contract sum. The Contractors base bid shall include any and all time and manpower necessary to develop such coordination efforts and drawings. Increases to contract sum or schedule shall not be considered for such effort.

B. Provide proper documentation of equipment, product data and shop drawings to all entities involved in the project. Coordination shall include, but not be limited to the following:

1. Fire Alarm Contractor shall provide shop drawings to other Contractors as required.
2. Automatic Temperature Controls, Building Management and Testing, Adjusting and Balancing Contractors shall be provided with equipment product data and shop drawings from other
Division 23 and Division 26 Contractors and shall furnish the same information involving control devices to the appropriate Contractor.

3. Automatic Doors and controls, Elevators and other building access equipment shall have cut sheets reviewed and shall furnish the same information to the appropriate Contractor.

C. Coordination Drawings:

1. Coordination drawings shall be prepared by the Contractor for his utilization and are his responsibility to assure systems will be installed in a manner to allow all systems to function properly.

2. Prepare and submit a set of coordination drawings showing major elements, components, and systems of electrical equipment and materials in relationship with other building components. Prepare 11”x17” or 24”x36” / 30”x42” drawings to an accurate scale of 1/4”=1'-0” or larger. Indicate the locations of all equipment and materials, including clearances for servicing and maintaining equipment. Indicate movement and positioning of large equipment into the building during construction.

3. Coordination drawings are informational submittals. Submit coordination drawings to Engineer for information only to document proper coordination of all portions of work and that coordination issues have been identified and resolved prior to submitting to the Engineer and prior to commencing construction in each affected area. The review of the coordination drawings by the Engineer does not constitute a relief of responsibility of the Contractor or a change to the contract documents. The Contractor shall have sole responsibility in developing a fully coordinated and integrated ceiling cavity.

4. Prepare floor plans, reflected ceiling plans, elevations, sections, and details to conclusively coordinate and integrate all installations. Indicate locations where space is limited, and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

 a. Electrical equipment room layouts
 b. Mechanical equipment room layouts

5. Clearly indicate solutions to space problems. Identification of space problems without solutions is not acceptable. Only areas clearly identified will be reviewed.

6. Prepare coordination drawings and other Shop Drawings at a suitable scale, showing the required dimension. In addition to the mentioned areas and systems above, also submit specific equipment installations, including, but not limited to the following:

 a. Pad mounted and/or dry type transformers
 b. Equipment connections
 c. Circuit and motor disconnects
 d. Feeder conduits

7. CADD Drawings: Electronic AutoCAD drawings are available for purchase by the Contractor from the Engineer. Contact Engineer for further information in acquiring CADD drawings. The Engineers Construction documents cannot be used directly for coordination drawings. They are for information and initial coordination only.

8. Wiring Diagrams: Provide wiring diagrams indicating: field installed electrical power; control wiring; cabling layouts; overcurrent protective devices; equipment, and equipment connections.

D. Existing Conditions:

1. Contractor shall carefully survey existing conditions prior to bidding work. In addition, Contractor shall complete a thorough ceiling cavity survey prior to developing 3D drawing.
2. Contractor shall be responsible for showing all existing conditions on the 3D coordination drawings.
3. Provide proper coordination of electrical work with existing conditions.
4. Contactor shall report any issues or conflicts immediately to Engineer before commencing with work and prior to purchasing equipment and materials.

1.5 COORDINATION WITH OTHER DIVISIONS:

A. General:
 1. Coordinate all work to conform to the progress of the work of other trades.
 2. Complete the entire installation as soon as the condition of the building will permit. No extras will be allowed for corrections of ill-timed work, when such corrections are required for proper installation of other work.

B. Coordinate ceiling cavity space carefully with all trades. In the event of conflict, install mechanical and electrical systems within the cavity space allocation in the following order of priority:
 1. Equipment and required clearances
 2. Plumbing waste, cooling coil drain piping and roof drain mains and leaders.
 3. Pneumatic tube systems.
 4. Ductwork mains.
 5. Plumbing vent piping.
 6. Medical gas/lab gas systems.
 7. Low pressure ductwork and air devices.
 8. Electrical and communication conduits, raceways and cable tray.
 9. Domestic hot and cold water.
 11. Fire sprinkler mains, branch piping and drops (locate as tight to structure as possible).
 12. DDC control wiring and other low voltage systems.
 13. Fire alarm systems.

C. Chases, Inserts and Openings:
 1. Provide measurements, drawings and layouts so that openings, inserts and chases in new construction can be built in as construction progresses.
 2. Check sizes and locations of openings provided, including the access panels for equipment in hard lid ceilings and wall cavities.
 3. Any cutting and patching made necessary by failure to provide measurements, drawings and layouts at the proper time shall be done at no additional cost in contract sum.

D. Support Dimensions: Provide dimensions and drawings so that concrete bases and other equipment supports to be provided under other sections of the specifications can be built at the proper time.

E. Coordinate the installation of required supporting devices and sleeves to be set in poured in place concrete and other structural components, as they are constructed.

F. Coordinate the cutting and patching of building components to accommodate the installation of electrical equipment and materials.
G. Modifications required as result of failure to resolve interferences, provide correct coordination drawings or call attentions to changes required in other work as result of modifications shall be paid for by responsible Contractor/Subcontractor.

1.6 DESIGN WORK REQUIRED BY CONTRACTOR:

A. The construction of this project requires the Contractor to include the detailing and design of several systems and/or subsystems. All such design work associated with the development of the coordination drawings shall be the complete responsibility of the Contractor.

B. The Contractor shall take the full responsibility to develop and complete routing strategies which will allow fully coordinated system to be installed in a fully functional manner. The Engineers contract drawings shall be for system design intent and general configurations.

C. Systems or subsystems which require design responsibility by the contractor include but are not limited to:

1. Temporary Facilities.
2. Utility Company Coordination details.
3. Final coordinated distribution systems within the ceiling cavity.
4. Any system not fully detailed.
5. Fire alarm shop drawings.
6. Equipment supports, hangers, anchors and seismic systems not fully detailed nor specified in these documents, or catalogued by the manufacturer.
7. Seismic restraint systems.

1.7 PROJECT CONDITIONS:

A. The contractor shall be required to attend a pre-bid walk-thru if required and shall make themselves familiar with the existing conditions. No additional costs to the Owner shall be accepted for additional work for existing conditions.

B. Field verify all conditions prior to submitting bids.

C. Report any damaged equipment or systems to the Owner prior to any work.

D. Protect all work against theft, injury or damage from all causes until it has been tested and accepted.

E. Be responsible for all damage to the property of the Owner or to the work of other contractors during the construction and guarantee period. Repair or replace any part of the work which may show defect during one year from the final acceptance of all work, provided such defect is, in the opinion of the Architect, due to imperfect material or workmanship and not due to the Owner's carelessness or improper use.

F. The Contractor shall coordinate and co-operate with Owner at all times for all new to existing connections.

G. Provide temporary electrical connections where required to maintain existing areas operable.

H. Coordinate all services shut-down with the Owner; provide temporary services. Coordinate any required disruptions with Owner, at a minimum one week in advance.

I. Minimize disruptions to operation of electrical systems in occupied areas.
1.8 SAFETY:
 A. Refer to Division 1.

1.9 EQUAL EMPLOYMENT OPPORTUNITY REQUIREMENTS:
 A. Refer to Division 1 and conform with the Owners requirements.

1.10 REQUIREMENTS OF REGULATORY AGENCIES:
 A. Refer to Division 1.
 B. Execute and inspect all work in accordance with Underwriters Laboratories (UL), and all local and
 state codes, rules and regulations applicable to the trade affected as a minimum, but if the plans
 and/or specifications call for requirements that exceed these rules and regulations, the more
 stringent requirement shall be followed. Follow application sections and requirements and testing
 procedures of NFPA, IEEE, NEMA, CBM, ANSI, NECA, ICEA and IETA.
 C. Comply with standards in effect at the date of these Contract Documents, except where a standard
 or specific date or edition is indicated.
 D. Energy Codes: All equipment and installations shall conform to Federal, State, and local Energy
 Conservation Standards.
 E. The handling, removal and disposal of regulated liquids or other materials shall be in accordance
 with U.S. EPA, state and local regulations.
 F. The handling, removal and disposal of lead based paint and other lead containing materials shall
 comply with EPA, OSHA, and any other Federal, State, or local regulations.
 G. After entering into contract, Contractor will be held to complete all work necessary to meet these
 requirements without additional expense to the Owner.
 H. All material used on this project shall be UL listed and labeled and be acceptable to the authority
 having jurisdiction as suitable for the use intended.

1.11 REQUIREMENTS OF LOCAL UTILITY COMPANIES:
 A. Comply with rules and regulations of local utility companies. Include in bid the cost of all meter
 boxes, meters and such accessory equipment which will be required but not provided by Local
 Utility Company for the project.
 B. Utility Connections:
 1. Coordinate connection of electrical systems with exterior underground and overhead utilities and
 services. Comply with requirements of governing regulations, franchised service companies and
 controlling agencies. Provide required connection for each service.
 2. The contract documents indicate the available information on existing utilities and services and on
 new services (if any) to be provided to the project by utility companies and agencies. Notify
 Engineer immediately if discrepancies are found.
 3. Coordinate electrical utility interruptions at least one week in advance as approved in writing with
 the Owner and the Utility Company. Plan work so that duration of the interruption is kept to a
 minimum.
4. Nominal System Voltages have been identified on the contract documents. Coordinate and install relay settings, circuit breaker settings, generator output settings, transformer taps, etc. with measured utility voltage obtained from the Utility. Identify Phase rotation and other parameters with Shop Drawings for Service Entrance Equipment Submittals.

5. Provide Utility Company approved equipment and install all CT enclosures/bus, conduit and wiring, meter sockets, connection cabinets, etc. as required by Serving Utility. Locate final Meter location in conjunction with Utility representative and coordinate with Architect/Engineer.

6. Make all applications for service including Temporary services for construction and coordinate service requirements. Arrange and pay for all Utility fees and costs of electricity until final services are transferred to owner.

7. Document final phase rotation, voltages on each phase, neutral and ground currents and voltages once serving Utility services are connected at service entrance location. Adjust tap, relay, and other settings as necessary for delivered Utility electric services. Submit final configurations and values with Testing and Equipment Settings Report.

1.12 PERMITS AND FEES:

A. Refer to Division 1.

B. Contractor shall pay all fees required for connection to municipal and public utility facilities.

C. Contractor shall arrange for and pay for all inspections, licenses and certificates required in connection with the work.

1.13 PROJECT SEISMIC REQUIREMENTS:

A. Installation shall comply with the local seismic requirements for the area of installation. Provide restraints, bracing, anchors, vibration isolation, seismic snubbers, and all other components required for the installation.

B. All electrical and fire alarm systems shall be installed to meet NFPA and IBC Seismic requirements.

1. Where any conflicts arise the more stringent requirements shall be applicable.

2. The design of the seismic requirements shall be the responsibility of the contractor.

1.14 TEMPORARY FACILITIES:

A. Light, Heat, Power, Etc. Responsibility for providing temporary electricity, heat and other facilities shall be as identified in these specifications, as shown on the drawings and as specified in Division 1.

B. Building distribution equipment and devices (existing or new) shall not be used without written permission of the Owner. If used for temporary power, the equipment shall be properly maintained and any damage resulting from use shall be repaired by the Contractor. The guarantee period for new equipment shall not begin until the equipment is turned over to the Owner.

C. If AC power systems or their backup systems serving telecommunications, computer equipment, or their associated HVAC equipment and controls are taken out of service, for any reason, the Contractor shall be responsible for providing temporary systems during the period when the AC power systems or their backup systems are out of service. The Contractor shall be responsible for providing temporary power to all loads being interrupted.
1.15 PRODUCT OPTIONS AND SUBSTITUTIONS:

A. Refer to the Instructions to Bidders and Division 1.

B. The burden of proof that proposed equipment is equal in size, capacity, performance, and other pertinent criteria for this specific installation, or superior to that specified is up to the Contractor. Substituted equipment will only be allowed where specifically listed in a written addendum. If substitutions are not granted, the specified materials and equipment must be installed. Where substituted equipment is allowed, it shall be the Contractor's responsibility to notify all related trades of the accepted substitution and to assume full responsibility for all costs caused as a result of the substitution.

C. Materials and equipment of equivalent quality may be submitted for substituted prior to bidding. This may be done by submitting to the Architect/Engineer at least ten (10) working days prior to the bid date requesting prior review. This submittal shall include all data necessary for complete evaluation of the product.

1. Substitutions shall be allowed only upon the written approval of the Architect/Engineer NO EXCEPTIONS.
2. The Contractor shall be responsible for removal, replacement and remedy of any system or equipment which has been installed which does not meet the specifications or which does not have prior approval.

1.16 SUBMITTALS:

A. General

1. The submittals shall be submitted as a fully complete package identified by the specification section. Submittals that are not complete with the required information will be sent back to be corrected.
2. The Contractor shall identify any "long lead time" items which may impact the overall project schedule. If these submittal requirements affect the schedule, the Contractor shall identify the impacts and confer with the Engineer within two weeks of entering into the contract.
3. The front of each submittal package shall be identified with the specification section number, job name, Owner's project number, date, Prime Contractor and Subcontractor's names, addresses, and contact information, etc. Each Specification Section shall be submitted individually and submittal shall be tabbed for the equipment/materials/etc. within the section.
4. Submittals shall be provided electronically. Submittals will be reviewed, marked appropriately and returned by the same means received.
5. An index shall be provided which includes:
 a. Product
 b. Plan Code (if applicable)
 c. Specification Section
 d. Manufacturer and Model Number

7. Submittals shall be provided for review within four (4) working weeks from award of contract to successful bidder.

B. Basis of Design: The manufacturer's material or equipment listed first in the specifications or on the drawings are the types to be provided for the establishment of size, capacity, grade and quality. If alternates are used in lieu of the first names, the cost of any changes in construction required by their use shall be borne by this Contractor.
C. Contractor Review: Submittal of shop drawings, product data, and samples will be accepted only when submitted by the Contractor. Each submittal shall be reviewed by the contractor for general conformance with contract requirements and stamped by the respective contractor prior to submittal to the Architect/Engineer. All submittals need to be complete. Any submittal not stamped or complete will be sent back. Data submitted from subcontractors and material suppliers directly to the Architect/Engineer will not be processed unless written prior approval is obtained by the Contractor.

D. Submittal Review Process: Before starting work, prepare and submit to the Architect/Engineer shop drawings and descriptive product data. Continue to submit in the stated format after each Architect/Engineer's action until a "No Exception Taken" or "Make Correction Noted" action is received. When a "Make Corrections Noted" is received, make the required corrections for inclusion in the operation and maintenance manual. Submittals marked "Make Corrections Noted" shall not be resubmitted during the submittal process. Unless each item is identified with specification section and sufficient data to identify its compliance with the specifications and drawings, the item will be returned "Revise and Resubmit". Where an entire submittal package is returned for action by the Contractor, the Engineer will summarize comments in letter format and return the entire set. Submittals shall be prepared per the ELECTRICAL SUBMITTAL CHECKLIST, paragraph 1.35 of this section; supplemental requirements are listed in each Division 26 Section.

E. The Design Professional’s review and appropriate action on all submittals and shop drawings is only for the limited purpose of checking for conformance with the design concept and the information expressed in the contract documents. This review shall not include:

1. Accuracy or completeness of details, such as quantities, dimensions, weights or gauges, fabrication processes
2. Construction means or methods
3. Coordination of the work with other trades
4. Construction safety precautions

F. The Design Professional’s review shall be conducted with reasonable promptness while allowing sufficient time in the Design Professional’s judgment to permit adequate review. Review of a specific item shall not indicate that the Design Professional has reviewed the entire assembly of which the item is a component.

G. The Design Professional shall not be responsible for any deviations from the contract documents not brought specifically to the attention of the Design Professional in writing by the Contractor. This shall clearly identify the design and the specific element which vary from the Design. The Contractor shall be responsible for all remedy for lack of strict conformance associated with this criteria.

H. If more than two submittals (either for product data, shop drawings, record drawings, test reports, or O&M’s are made by the Contractor, the Owner reserves the right to charge the Contractor for subsequent reviews by their consultants. Such extra fees shall be deducted from payments by the Owner to the Contractor.

I. The contractor shall cloud all changes made on submittals that are marked “Revise and Resubmit.”

J. Submit letters certifying compliance with ANSI standards for medium or high voltage gear. These letters shall be signed by a corporate officer and shall list applicable standards. Letters signed by local representatives will not be acceptable.
K. Submit proposed changes to electrical room or other equipment room layouts when revised from contract documents prior to installation.

L. Mark submittals with designations as shown on the drawings and identify as required by Specification Sections. Identification shall contain the information as required in details and each label shall be submitted in list form with disconnects, MCC’s, panelboards, switchboards, overcurrent protection devices and utilization equipment.

M. The Design Professional shall not be required to review partial submissions or those for which submissions of correlated items have not been received.

1.17 SPECIFIC CATEGORY SUBMITTAL REQUIREMENTS:

A. Product Listing:

1. Prepare listing of major electrical equipment and materials for the project, within (2) two weeks of signing the Contract Documents and transmit to the Architect

 a. Provide all information requested.
 b. Submit this listing as a part of the submittal requirement; see Paragraph 1.15 "PRODUCT OPTIONS AND SUBSTITUTIONS."

2. Unless otherwise specified, all materials and equipment shall be of domestic (USA) manufacture and shall be of the best quality used for the purpose in commercial practice.

3. When two or more items of same material or equipment are required (lighting, wiring devices, switchgear, panelboards, protective devices, etc.) they shall be of the same manufacturer. Product manufacturer uniformity does not apply to raw materials, bulk materials steel bar stock, welding rods, solder, fasteners, except as otherwise indicated.

 a. Provide products which are compatible within systems and other connected items.

4. For conduit, wire and fittings, the Contractor shall select a prime and alternate manufacturer from the list of acceptable manufacturers provided in the appropriate sections of this Division. The prime and alternate manufacturers shall be identified in the product listing. The contractor shall make every effort to use the prime manufacturer for the entire project. If products from this manufacturer are unavailable, the Contractor shall use the listed alternate with the following provisions.

 a. Wire: All wire placed in a single conduit or installed in multiple conduits making up parallel feeders shall be of the same manufacturer.
 b. Conduit and Fittings: All conduits and fittings installed exposed within the same room or immediate area shall be of the same manufacturer.

B. Schedule of Values

1. Provide Preliminary Schedule of Values to Engineer with product data submittal within four (4) weeks from award of contract to successful bidder. Provide according to the following descriptions:

 a. General Construction (total)
 b. Demolition
 c. Lighting - Interior
 d. Lighting Controls
 e. Basic Materials/Devices/Equipment Connections (Mechanical)
f. Fire Alarm (Material/Installation)
 1) Building F.A. System
 2) Air Sampling Smoke Detection System

2. Provide a final Schedule of Values at close-out of project including updated values based on actual installation.

C. Product Data:

1. Where pre-printed data covers more than one distinct product, size, type, material, trim, accessory group or other variation, mark submitted copy with black pen to indicate which of the variations is to be provided.
2. Delete or mark-out portions of pre-printed data which are not applicable.
3. Where operating ranges are shown, mark data to show portion of range required for project application.
4. For each product, include the following:
 a. Sizes.
 b. Weights.
 c. Speeds.
 d. Capacities.
 e. Conduit and electrical connection sizes and locations.
 f. Statements of compliance with the required standards and regulations.
 g. Performance data.
 h. Manufacturer's specifications.
5. Checklist: Where identified in ELECTRICAL SUBMITTAL CHECKLIST or within individual Division 26 Sections or necessary for confirmation of products, submit a detailed checklist which acknowledges compliance or a reason for non-compliance to each of the specification requirements. Arrange the checklist according to the headings of each item identified in each specification (i.e. Shop Drawings, Wiring Diagrams, Product requirements, individual line items, etc.) Mark items as "N/A" where the item is not applicable.

D. Shop Drawings:

1. Shop Drawings are defined as electrical system layout drawings prepared specifically for this project, or fabrication and assembly type drawings of system components to show more detail than typical pre-printed materials.
2. Prepare Electrical Shop Drawings, except diagrams, to accurate scale, min 1/8"-1'-0", unless otherwise noted.
3. Shop drawings shall include:
 a. Proposed equipment installations.
 b. Electrical characteristics and connection requirements.
 c. Clearance dimensions at critical locations.
 d. Dimensions of spaces required for operation and maintenance.
 e. Interfaces with other work, including structural support.
 f. Elevations when necessary in areas with multiple pieces of equipment on common walls or to clarify incoming/exiting methods/clearances, etc.
 g. Wall and floor penetrations.
 h. Wiring diagrams shall showing all components, internal connecting wiring, and contractor connection requirements including terminal blocks/lugs, wire sizes, etc.
E. Coordination Drawings: See section 1.4 of this specification section.

F. Test Reports:
 1. Submit test reports which have been signed and dated by the accredited firm or testing agency performing the test.
 2. Prepare test reports in the manner specified in the standard or regulation governing the test procedure (if any) as indicated.
 3. Submit test reports as required for O & M manuals.

G. Operation and Maintenance Data: See section 1.30 of this specification section.

H. Equipment Settings Report: Where identified in the ELECTRICAL SUBMITTAL CHECKLIST or within individual Division 26 Sections or necessary for confirmation of products, submit Equipment Settings Report for each device indicating final configurations and settings. Report shall be submitted and received by the Engineer at least fifteen calendar days prior to the contractor's request for final observation (include circuit breaker, relay, transformer tap, lighting control settings, and other equipment settings). Include in the O & M Manual after review with "No Exceptions Taken" has been accomplished.

I. Record Drawings: See section 1.29 of this specification section.

1.18 DELIVERY, STORAGE AND HANDLING:
 A. Refer to the Division 1, Sections on Transportation and Handling and Storage and Protection.
 B. Deliver products to project properly identified with names, model numbers, types, grades, compliance labels, and similar information needed for distinct identifications; adequately packaged and protected to prevent damage during shipment, storage, and handling.
 C. Check delivered equipment against contract documents and submittals.
 D. Store equipment and materials at the site, unless off-site storage is authorized in writing. Protect stored equipment and materials from damage and weather.
 E. Coordinate deliveries of electrical materials and equipment to minimize construction site congestion. Limit each shipment of materials and equipment to the items and quantities needed for the smooth and efficient flow of installations.

1.19 DEMOLITION/REMODEL WORK:
 A. Refer to Division 1 Section on Summary of work for requirements on working in Owner-occupied areas of the existing building and Division 2 section on selective demolition. The following are additions and modifications.
 B. During the demolition phase of this contract it is the responsibility of this Contractor to carefully remove existing equipment, conduits, boxes, and related items either as shown on the demolition drawings as being removed, or as required for the work. These items shall be tagged, protected from damage and stored as directed by the Owner. A list of all items stored shall be turned over to the Architect/Engineer. At the completion of the remodeling work or when directed by the Architect, all stored items not reused or wanted by the Owner shall be removed from the premises.
C. The project involves renovation and remodel of the existing building. On the drawings, work may be denoted by showing items as bold or light line weight and certain renovation symbols are used. These indications and symbols are amplified as follows:

1. **Bold Print** (when used): Work included in this contract is denoted in bold print or darker line weight.
2. Light Print (when used): Work shown lightly indicates existing conditions to remain.

D. Existing equipment that is removed and not scheduled to be reused shall remain the property of the Owner and be delivered for disposition unless specifically indicated otherwise and shall be stored in a location designated by the Owner. Items which are removed and not wanted by the Owner shall become the property of the Contractor and shall be removed from the site.

E. Existing equipment that is removed and is to be reused shall be cleaned, serviced and operable before being reinstalled.

F. Revise panelboard schedules to reflect removal or relocation of equipment. Circuit integrity of equipment in adjacent areas shall be left intact.

G. Where remodeling interferes with existing circuits and equipment which are not to be removed, such circuits and equipment shall be reworked and relocated as required to complete the project.

H. The Contractor shall remove all distribution equipment, conductors, etc., which are indicated to be removed or which must be removed to accommodate demolition. Equipment to be removed may require reworking conduit and wiring in order to maintain service to other equipment.

I. Where remodeling interferes with circuits serving areas outside of the project or phase limits or which are remodeled in later phases of the project, circuits shall be reworked or temporary circuits provided as required.

J. Existing equipment and circuiting shown are based on field surveys and/or Owner furnished drawings. The Contractor shall verify conditions as they exist with necessary adjustments being made to the drawing information.

K. Coordinate the routing of all conduits with the existing mechanical and plumbing systems in order to avoid conflicts with ducts, pipes, etc. Where existing electrical boxes, conduit, or equipment interfere with installation of new ducts, plumbing, walls, soffits, luminaires, outlets, etc., the Contractor shall resolve the conflict with the appropriate trade.

L. Reuse of existing luminaires, devices, conduits, boxes, or equipment will be permitted only where specifically indicated on the drawings or allowed under the appropriate section of the specifications.

M. Electrical Outages: Electrical outages must be held to a minimum. The Contractor shall submit a Method of Procedure (MOP) for each outage to the Owner, detailing the reasons for the outage, areas affected, sequence of procedures to accomplish work, estimated maximum length of time along with the date and time of day outage will occur. The Contractor shall meet with the Owner to set a schedule and date for the outage based on the MOP. Due to the critical implications of power outages, the Owner may direct the Contractor as to the time of day or night and date an outage may take place.

1. The Contractor will be responsible for providing temporary power required for the duration of the outages. The required outages to connect and disconnect the temporary power will require a MOP as described above.
N. PCB Ballasts: PCB type ballasts may be present in existing luminaires. If PCB ballasts are discovered by the Contractor, report such occurrence to the Owner immediately. The Contractor shall remove and dispose of PCB type ballasts at an E.P.A. (Environmental Protection Agency) approved site in the prescribed manner acceptable to the EPA. The Contractor shall pay all fees associated with this work.

O. Hazardous Material: If suspected hazardous material, in any form, is discovered by this Contractor in the process of his work, he shall report such occurrence to the Owner immediately. The Owner will determine the action to be taken. Hazardous material removed is not a part of the work to be done under this Division.

P. Lamp Disposal: Contractor is responsible for sending removed lamps to be recycled. The Contractor should ensure the recycling agency meets RCRA and CERCLA regulations. Provide certificate of compliance in O&M Manuals.

Q. On Site Metering: When called for in the specifications or on the drawings, the Contractor shall meter the points indicated for a period of 30 days prior to start of construction to verify existing load. Meter shall record voltage; amperage; KVA; and Power Factor for each phase and sum of the phases. The meter shall continually average the power demand over maximum 15 minute intervals as required by NEC 220.87. Compile a metering summary report and deliver results to engineer after 7 days and after 30 days. Verify existing loads at and downstream of the metering location and provide list to engineer of what loads are not on during the 30 day metering and the reason why. Organize list by equipment name. If any loads have been removed or permanently abandoned, Turn circuit breaker off and relabel as SPARE.

1.20 CUTTING AND PATCHING:

A. This Article specifies the cutting and patching of electrical equipment, components, and materials to include removal and legal disposal of selected materials, components, and equipment. Coordinate the cutting and patching of building components to accommodate the installation of electrical equipment and materials.

B. Refer to the Division 1 Section covering cutting and patching for general requirements.

C. Do not endanger or damage installed Work through procedures and processes of cutting and patching.

D. Arrange for repairs required to restore other work, because of damage caused as a result of electrical installations.

E. No additional compensation will be authorized for cutting and patching Work that is necessitated by ill-timed, defective, or non-conforming installations.

F. Perform cutting, fitting, and patching of electrical equipment and materials required to:

1. Uncover Work to provide for installation of ill-timed Work;
2. Remove and replace defective Work;
3. Remove and replace Work not conforming to requirements of the Contract Documents;
4. Remove samples of installed Work as specified for testing;
5. Install equipment and materials in existing structures;
6. Upon written instructions from the Architect/Engineer, uncover and restore Work to provide for Architect/Engineer observation of concealed Work.
G. Cut, remove and legally dispose of selected electrical equipment, components, and materials as indicated, including, but not limited to removal of conductors, conduit, luminaires, boxes, devices and other electrical items made obsolete by the new Work.

H. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

I. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

J. Locate, identify, and protect electrical services passing through remodel or demolition area and serving other areas required to be maintained operational.

1.21 ROUGH-IN:

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

B. Refer to equipment shop drawings and manufacturer's requirements for actual provided equipment for rough in requirements.

C. Work through all coordination before rough-in begins.

1.22 ACCESSIBILITY:

A. Install equipment and materials to provide required code clearances and access for servicing and maintenance. Coordinate the final location with piping, ducts, and equipment of other trades to insure proper access for all trades. Coordinate locations of concealed equipment, disconnects, and boxes with access panels and doors. Allow ample space for removal of parts, fuses, lamps, etc. that require replacement or servicing.

B. Extend all conduits so that junction and pull boxes are in accessible locations.

C. Provide access panel or doors where equipment or boxes are concealed behind finished surfaces.

D. Furnish hinged steel access doors with concealed latch, whether shown on drawings or not, in all walls and ceilings for access to all concealed valves, shock absorbers, air vents, motors, fans, balancing cocks, and other operating devices requiring adjustment or servicing. Refer to Division 1 for access door specification and requirements.

E. The minimum size of any access door shall not be less than the size of the equipment to be removed or 12 inches x 12 inches if used for service only.

F. Furnish doors to trades performing work in which they are to be built, in ample time for building in as the work progresses. Whenever possible, group valves, cocks, etc., to permit use of minimum number of access doors within a given room or space.

G. Factory manufactured doors shall be of a type compatible with the finish in which they are to be installed. In lieu of these doors, approved shop fabricated access doors with DuroDyne hinges may be used.

H. Access doors in fire rated walls and ceilings shall have equivalent U.L. label and fire rating.
1.23 TESTING:

A. Submit test reports as outlined in Division 1 Sections on Quality Control Services and each Division 26 Section.

B. Testing as required by these specifications shall pertain to all equipment, wiring, devices, etc. installed under this contract and being reused.

C. General Scope:

1. Perform all tests and operational checks to assure that all electrical equipment, both Contractor and Owner-supplied, is operational within industry and manufacturer's tolerances and is installed in accordance with design specifications.
2. The tests and operational checks shall determine the suitability for energization.
3. Schedule tests and give a minimum of two weeks advance notice to the Architect. Reschedule testing for Owner convenience if required.

D. Test Report: Submit three copies of the completed report to the Architect no later than fifteen (15) days after completion of test unless directed otherwise. The test report shall be bound and its contents certified. A final compilation of all Test Reports shall be submitted with the Testing and Equipment Settings Report (Refer to Operation and Maintenance Data paragraphs).

E. Each test report shall include the following:

1. Project information including: Building, name, address, date, and other pertinent information.
2. List of equipment tested.
3. Description of test.
4. List of test equipment used and calibration date.
5. Baseline, acceptable, or published target value for test with code or standard reference indicating where value was derived.
6. Test results that summarize all measured values with baseline values.
7. Conclusions and recommendations.
8. Appendix, including appropriate test forms that show all measured values.

F. Failure to Meet Test:

1. Any system material or workmanship which is found defective on the basis of performance tests shall be reported directly to the Architect.
2. All failed tests shall be sent immediately by email to Engineer with proposed corrective action and proposed re-test date and time.
3. Contractor shall replace the defective material or equipment as necessary, and have test repeated until test proves satisfactory without additional cost to the Owner.

G. The Contractor or testing agency shall have a calibration program which maintains all applicable test instrumentation within rated accuracy. The accuracy shall be traceable to the National Institute of Standards and Technology (NIST) in an unbroken chain. Instruments shall be calibrated in accordance with the following frequency schedule:

1. Field Instruments: 6 months
2. Laboratory Instruments: 12 months
3. Leased specialty equipment: 12 months. (Where accuracy is guaranteed by lessor
4. Dated calibration labels shall be visible on all test equipment.
1.24 NAMEPLATE DATA:

A. Provide equipment with permanent operational data nameplate on each item of power operated equipment, indicating manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and similar essential data. Install equipment so that nameplate is readily visible.

B. Phase Rotation

1. Existing Building: Match existing phase rotation.

1.25 METHODS OF PROCEDURE (MOP):

A. Definition: Method of Procedure (MOP) is a written plan which describes the activities and procedures to safeguard the building's occupants and contents and to interface with the building's management, operations and security. Building occupants shall be defined as employees, patients, and visitors.

B. Requirements:

1. An MOP is required when a construction activity affects the safety of the occupants, equipment or valuable contents, or any supporting system; or essentially affects the building's management, operations or security.

2. An MOP is required for any shutdown or interruption of any system which affects the building occupants, including, but not limited to, infrastructure, life safety, electrical, and building management systems.

3. An MOP is required when requested or deemed necessary by the Owner or Engineer.

C. Development:

1. The Prime Contractor shall develop, submit, track and process the MOP. Any assistance required by the Subcontractors shall be provided. All MOPs shall be reviewed by the Prime Contractor prior to submitting the MOP to the Engineer.

2. All MOPs Shall Be Typed.

3. Contractor shall develop the MOP in a timely fashion prior to review and approval by all required parties.

4. Contractor shall develop the MOP with input from the subcontractor, where necessary.

D. Form: Each MOP shall be a written document in narrative, descriptive or outline form supplemented with drawings, diagrams and schedules as necessary.

E. Review and Approval: Contractor shall submit each MOP to the Engineer for review and approval. All MOPs require Owner's approval.

F. Implementation: Contractor shall implement the MOP when approved by the Engineer and Owner in writing. No construction activity which requires a MOP shall proceed until the MOP is approved.

G. Compliance: Contractor shall comply with the approved MOP. The Owner and Engineer reserve the right to stop the work for non-compliance with the MOP. Any cost or time delay resulting from the work stoppage shall be borne by the Contractor.

H. Posting: Work shall not proceed on any facet of the work involving any MOP if an approved and signed MOP is not posted in the work area.
1.26 CLEANING:

A. Refer to the Division 1 Section on project closeout or final cleaning for general requirements for final cleaning.

B. Clean all luminaires, lamps and lenses per manufacturer’s recommendations prior to final acceptance. Replace all inoperative lamps.

1.27 RECORD DOCUMENTS:

A. Refer to the Division 1 Section on Project Closeout or Project Record Documents for requirements. The following paragraphs supplement the requirements of Division 1.

B. Keep a complete set of record document prints in custody during entire period of construction at the construction site. Documents shall be updated on a weekly basis.

C. Mark Drawings to indicate revisions to conduit size and location both exterior and interior; actual equipment locations, dimensioned from column lines; concealed equipment, dimensioned to column lines; distribution and branch electrical circuitry; fuse and circuit breaker size and arrangements; support and hanger details; Change Orders; concealed control system devices, and any other relevant deviations from the Contract Documents.

D. Mark shop drawings to indicate approved substitutions; Change Orders; actual equipment and materials used.

E. Schedules:

1. Mark luminaire schedule on drawings to indicate manufacturer and complete catalog numbers of installed equipment.

2. Mark schedules including panelboard, switchboard, motor control center, mechanical, kitchen and similar equipment schedules on drawings to indicate installed equipment and materials used, and any deviations or revisions to electrical load data and calculations.

F. Revisions to the Contract Documents shall be legible and shall be prepared using the following color scheme.

1. Red shall indicate new items, deviations and routing.

2. Green shall indicate items removed or deleted.

3. Blue shall be used for relevant notes and descriptions.

G. At the completion of the project, obtain from the Architect a complete set of the Contract Documents in a read-only electronic format (.pdf unless otherwise noted). This set will include all revisions officially documented through the Architect/Engineer. Using the above color scheme, transfer any undocumented revisions from the construction site record drawings to this complete set. Submit completed documents to the Architect/Engineer. This contract will not be considered completed until these record documents have been received and reviewed by the Architect/Engineer.

H. Contractor may propose methods of maintaining record documents on electronic media. Obtain approval of Engineer and Owner prior to proceeding. Marked-up .pdf format readable by Bluebeam is preferred.
1.28 OPERATION AND MAINTENANCE DATA:

A. Refer to the Division 1 Section on project closeout or operation and maintenance data for procedures and requirements for preparation and submittal of maintenance manuals.

B. No later than four (4) weeks prior to the completion of the project provide complete set of operating and maintenance manuals, or as specified in Sections of Division 1 (whichever is more stringent). Operation and Maintenance Data shall be submitted in electronic format.

C. Operation and Maintenance Data: Submit operation and maintenance data in maintenance manual in accordance with requirements of applicable Division 26 Sections and Division 1. Provide Operating and Maintenance Instructions in electronic format covering all equipment furnished. Manuals shall include all information required below, as indicated in each Division 26 Section, and the following for each piece of equipment:

1. The job name and address, contractor’s name, address, and phone number, and each subcontractor's name, address, and phone number shall be identified at the front of the electronic submittal.
2. Name, address and telephone number to be contacted of the local authorized service organization/company and individual to be contacted for service and maintenance for each item of equipment.
3. Submit operation and maintenance data, schedule of recommended service and parts lists for all materials and products specified and intended for installation. Include description of function, normal operating characteristics and limitations, fuse curves, engineering data and tests, and complete nomenclature and commercial numbers of all replaceable parts.
4. Manufacturer's printed operating procedures to include start-up, break-in, routine and normal operating instructions; regulation, control, stopping, shut-down, and emergency instructions; and summer and winter operating instructions.
5. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.
6. Servicing instructions and lubrication charts and schedules.
7. Manufacturer's service manuals for all electrical equipment provided under this contract.
8. Complete equipment and protection wiring diagrams. All wiring diagrams shall show color coding of all connections and mounting dimensions of equipment.
9. Equipment identification numbers and adjustment clearly indicated for each piece of equipment.
11. Provide manuals tabbed and divided into major sections and special equipment. Mark the individual equipment when more than one model or make is listed on a page. Provide detailed table of contents.
12. Record Set of Shop Drawings: Shop drawings corrected to show as-built conditions. Transfer modifications from field set.

D. This contract will not be considered completed nor will final payment be made until all specified material, including test reports, settings reports, and final Schedule of Values with all Electrical and Information Technology change order costs included and identified is provided and the manual is reviewed by the Architect/Engineer.

1.29 PROJECT CLOSEOUT LIST:

A. In addition to the requirements specified in Division 1, complete the requirements listed below.
1. The contractor shall be responsible for providing the items listed on the Electrical Submittal Checklist prior to applying for certification of substantial completion. Refer to individual specification sections for additional requirements (Checklist is located at the end of this section.)

1.30 WARRANTIES:

A. Refer to the Division 1 Section on Warranties and Bonds for procedures and submittal requirements for warranties. Refer to individual equipment specifications for warranty requirements. In no case shall the warranty for the total electrical system be less than one year from date of acceptance by the Owner.

B. Compile and assemble the warranties specified in Division 26, into a separated set of vinyl covered, three ring binders, tabulated and indexed for easy reference.

C. Provide complete warranty information for each item. Information to include product or equipment description, date of beginning of warranty or bond; duration of warranty or bond; and names, addresses, and telephone numbers and procedures for filing a claim and obtaining warranty services.

1.31 CONSTRUCTION REQUIREMENTS:

A. The contractor shall maintain and have available at the jobsite current information on the following at all times:

1. Up to date record drawings.
2. Submittals
3. Site observation reports with current status of all action items.
4. Test results; including recorded values, procedures, and other findings.
5. Outage information.

1.32 EQUIPMENT HOUSEKEEPING PADS:

A. Provide 4" concrete housekeeping pad for all floor mounted equipment including, but not limited to: switchgear, switchboards, motor control centers, floor mounted distribution panelboards, floor mounted branch panelboards, and floor mounted dry type transformers. Fabricate pads as follows:

1. Coordinate size of equipment bases with actual unit sizes provided. Fabricate base 4" larger in both directions than the overall dimensions of the supported unit.
2. Form concrete pads with framing lumber with form release compounds. Chamfer top edge and corners of pad.
3. Place concrete and allow curing before installation of units. Use Portland cement that conforms to ASTM C 150, 54000-psi compressive strength, and normal weight aggregate.
4. Anchor housekeeping pads to slab using #3 rebar bent in “L” or “Z” shape 12 inch on center on each side of slab.

1.33 ELECTRICAL SUBMITTAL CHECKLIST:

A. Provide submittals including product data, shop drawings, tests and reports, training, extra material, O&M manuals, product checklists, device setting reports, and software licenses per the following schedule:

Division 26

C – Product Checklist; D – Device Setting Report; S – Software License
<table>
<thead>
<tr>
<th>SPEC Section</th>
<th>TITLE</th>
<th>Report Data</th>
<th>Test</th>
<th>Factory Test</th>
<th>Report</th>
<th>Factory Rep Supervision at Site</th>
<th>Training Req’d at Site</th>
<th>Extra Material</th>
<th>O&M</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 05 00</td>
<td>Common Work Results For Electrical</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Coordination Drawings</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existing Conditions Survey Drawings</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temporary Facilities</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Listing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preliminary Schedule Of Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Schedule Of Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lamp disposal Certificates /PCB/Hazardous Material</td>
<td>X X</td>
<td></td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical On-Site Metering Reports</td>
<td></td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completed/Signed MOP’s</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Record Drawings including changes to existing Equip.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O&M Manuals</td>
<td>X X X X X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X X X</td>
<td>C D S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Closeout List</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contractor/Equipment Warranties</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26 05 19</td>
<td>Low Voltage Electrical Power Conductors And Cables</td>
<td></td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26 05 26</td>
<td>Grounding And Bonding For Electrical Systems</td>
<td>X X X X X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26 05 29</td>
<td>Hangers And Supports For Electrical Systems</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26 05 33</td>
<td>Raceway And Boxes For Electrical Systems</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Metallic Tubing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flexible Metal Conduit</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate Metal Conduit</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid-Tight Flexible Conduit</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPEC Section</td>
<td>TITLE</td>
<td>Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Report Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shop Drawing s</td>
<td>Product Data</td>
<td>Test</td>
<td>Factory Test</td>
<td>Repor t</td>
<td>Factory Rep Supervision at Site</td>
<td>Training Req’d at Site</td>
<td>Extra Material</td>
<td>O&M</td>
<td>Other</td>
</tr>
<tr>
<td>26 05 34</td>
<td>Cabinets, Boxes & Fittings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 05 53</td>
<td>Identification For Electrical Systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 05 83</td>
<td>Wiring Connections</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>26 09 23</td>
<td>Lighting Control Devices</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C,D,S</td>
<td></td>
</tr>
<tr>
<td>26 22 00</td>
<td>Transformers</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>D,S</td>
</tr>
<tr>
<td>26 24 16</td>
<td>Panelboards</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>26 27 26</td>
<td>Wiring Devices</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 28 00</td>
<td>Overcurrent Protective Devices</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>26 50 00</td>
<td>Lighting</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Ballasts</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 31 00</td>
<td>Fire Alarm Systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

END SECTION
SECTION 26 05 19 – LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY:

A. This section includes wires, cables, and connectors for power, lighting, signal, control, and related systems rated 600 volts and less.

1.2 QUALITY ASSURANCE:

A. Manufacturers: Firms regularly engaged in manufacture of electrical wire and cable products of types, sizes, and ratings required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firm with at least 3 years of successful installation experience with projects utilizing electrical wiring and cabling work similar to that required for this project.

C. Conform to applicable code regulations regarding toxicity of combustion products of insulating materials.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product Data: Submit manufacturer's data on electrical wires, cables and connectors.

1.4 DELIVERY, STORAGE, AND HANDLING:

A. Deliver wire and cable properly packaged in factory-fabricated type containers, or wound on NEMA-specified type wire and cable reels.

B. Store wire and cable in clean dry space in original containers. Protect products from weather, damaging fumes, construction debris and traffic.

C. Handle wire and cable carefully to avoid abrading, puncturing and tearing wire and cable insulation and sheathing. Ensure that dielectric resistance integrity of wires/cables is maintained.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide products by the following (for each type of wire, cable, and connector):

1. Wire and Cable:
 a. American Insulated Wire
 b. Belden
 c. General Cable Corporation.
 d. Okonite
 e. Superior Essex:
1) Triangle

2. Connectors:
 a. O-Z/Gedney Co.
 b. AMP, Inc.
 c. Burndy Corporation.
 d. Ideal Industries, Inc.
 e. 3M Company
 f. Thomas and Betts Corp.

2.2 WIRES AND CABLES:

A. General: Provide wire and cable suitable for the temperature, conditions, and location where installed.

B. Conductors: Provide solid conductors and approved connectors for power, control, and lighting circuits 12 AWG and smaller. Provide stranded conductors for 10 AWG and larger.

C. Conductor Material: Provide copper for all wires and cables.
 1. Metal Clad Cable - Type MC: Sizes 12 AWG and 10 AWG, copper conductors with 600 volt thermoplastic insulation rated 90 degrees C, galvanized steel interlocked metal type covering. Fitting shall be steel with double grip saddle and locking nut.
 2. Portable Cord:
 a. Type SO: Sizes 12 AWG through 2 AWG, copper conductors with 600 volt thermoset insulation 0.1 resistant insulation.
 b. Type G-GC: Sizes 1 AWG through 500 KCMIL, copper conductors with 600/2000 volt, 90 degrees C, ethylene-propylene insulation.
 3. Cables: Provide the following types of cables in NEC approved locations and applications where permitted by the contract documents. Cables shall be U.L. listed and approved by the local building authority. All cables shall contain a green insulated equipment ground conductor of the same size as the neutral conductor.

2.3 CONNECTORS:

A. Description: Provide UL-type factory-fabricated, solderless metal connectors of sizes, ampacity ratings, materials, types and classes for applications and for services indicated. Use connectors with temperatures equal to or greater than those of the wires upon which used.

B. Provide 2-hole compression lugs for all power feeder, neutral, and grounding connections when installed on bus bars. (Including phase, neutral and grounding conductors).

C. Provide connectors that are designed to accept stranded conductors where stranded conductors are used.

PART 3 - EXECUTION

3.1 WIRE AND CABLE INSTALLATION SCHEDULE:

A. Building Wire: Install all building wire in raceway regardless of location.

B. Metal Clad Cable:
1. Maximum of 6 feet unsupported length for connecting luminaires in accessible ceilings to the local junction box.
2. Maximum of 6 feet unsupported length for connecting luminaires in non-accessible ceilings to the local junction box.
3. In stud walls and casework for horizontal branch circuit runs between devices.
4. For vertical branch circuit drops from a local junction box in each room above an accessible ceiling to the direct or single device in a stud wall, casework, under counter lighting.
5. May not be used for branch circuit home runs, feeders, motor feeder circuits or in the following locations:
 a. Hazardous locations
 b. Emergency Systems
6. Branch circuit conductors shall match color coding schedule within this specification section.

C. Portable Cord: Use for flexible pendant leads to luminaires, outlets, and equipment where indicated and in compliance with codes.

3.2 INSTALLATION OF WIRES AND CABLES:

A. General: Install electrical cables, wires and connectors in compliance with applicable requirements of NEC, NEMA, UL, and NECA's "Standard of Installation", and in accordance with recognized industry practices.

B. Coordinate wire/cable installation work, including electrical raceway and equipment connection work, with other work.

C. Pull conductors simultaneously where more than one is being installed in same raceway. Use pulling compound or lubricant, where necessary; compound used must not deteriorate conductor or insulation.

D. Use pulling means including, fish tape, cable, rope and basket weave wire/cable grips which will not damage cables or raceway. Do not use rope hitches for pulling attachment to wire or cable.

E. Keep conductor splices to minimum. Splice only in accessible junction boxes. No splices are allowed in feeder, control or fire alarm wiring. Connect unspliced wire to numbered terminal strips at each end.

F. Install splices and taps which possess equivalent or better mechanical strength and insulation ratings than conductors being spliced.

G. Use splice and tap connectors which are compatible with conductor material.

H. Tighten electrical connectors and terminals, including screws and bolts, in accordance with manufacturer's published torque tightening values. Where manufacturer's torqueing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL Std. 486A for copper and 486B for aluminum.

I. Support cables above accessible ceilings. Independent from the ceiling suspension system to support cables from structure, do not rest on ceiling tiles.

J. Provide adequate length of conductors within electrical enclosures and train the conductors to terminal points with no excess. Bundle multiple conductors, with conductors larger than No. 10 AWG cabled to individual circuits. Make terminations so there is no bare conductor at the terminal.
K. For 8 AWG and smaller, use insulated screw on type spring wire connectors with plastic caps, push on type are not acceptable.

L. Use copper compression connectors for copper wire splices and taps, 6 AWG and larger. Tape uninsulated conductors and connectors with electrical tape to 150 percent of the insulation value of the conductor.

M. Make splices, taps and terminations to carry full ampacity of conductors without perceptible temperature rise.

N. Thoroughly tape the ends of spare conductors in boxes and cabinets.

O. Install exposed cable, parallel and perpendicular to surfaces, or exposed structural members, and follow surface contours, where possible.

P. Make all ground, neutral and line connections to receptacle and wiring device terminals as recommended by manufacturer. Provide ground jumper from outlet box to individual ground terminal of devices.

Q. Branch circuits whose length from panel to first outlet exceeds 100 feet for 120 volt circuits or 175 feet for 277 volt circuit shall be #10 or larger, as required to comply with the National Electrical Code.

R. Parallel conductors shall be cut to the same length.

S. All splices in control panels, terminal junction boxes, low voltage control circuits, fire alarm, etc., conductors shall be on numbered terminal strip.

T. Where conduit is not required, plenum rated cable shall be provided in ceiling, floor or other air plenum spaces.

U. Provide wire training, lacing, labeling, and terminal blocks as required in panelboards and all control cabinets including, but not limited to, lighting, transfer switch, fire alarm, and security cabinets. All wiring shall be installed neat and be labeled to match wiring diagrams, control devices, etc.

1. Make temporary connections to panelboard devices with sufficient slack conductor to facilitate reconnections required for balancing loads between phases.

V. Color coding of switch leg shall be pink. Color of travelers shall be purple.

3.3 FIELD QUALITY CONTROL:

A. Test installed wires and cables with 1000 VDC megohm meter to determine insulation resistance levels to ensure requirements are fulfilled. Test shall be made on all feeders regardless of size and on all branch circuits with No. 4 AWG and larger conductors. The megger values obtained shall be compared to the minimum values listed in NETA. All phase conductors and cables shall be meggered after installation, and prior to termination. Submit test report.

B. Prior to energization, test wires and cables for electrical continuity and for short-circuits.

C. Subsequent to wire and cable hook-ups, energize circuitry and demonstrate functioning in accordance with requirements. Where necessary, correct malfunctioning units, and then retest to demonstrate compliance.
3.4 COLOR CODING SCHEDULE:

A. Color code secondary service, feeder, and branch circuit conductors as follows:

<table>
<thead>
<tr>
<th>120/208 Volts</th>
<th>Phase</th>
<th>277/480 Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>A</td>
<td>Brown</td>
</tr>
<tr>
<td>Red</td>
<td>B</td>
<td>Orange</td>
</tr>
<tr>
<td>Blue</td>
<td>C</td>
<td>Yellow</td>
</tr>
<tr>
<td>White</td>
<td>Neutral</td>
<td>Gray</td>
</tr>
<tr>
<td>Green</td>
<td>Ground</td>
<td>Green</td>
</tr>
</tbody>
</table>

B. Conductors shall be solid color for entire length.

C. If solid color conductor insulation is not available and specific acceptance is given by the engineer for use of black conductor insulation, provide the following:

1. Conductors 10 AWG and smaller shall be solid color for the entire length.
2. Conductors 8 AWG and larger shall have either solid color insulation as specified above for the entire length or be black with color coding at each termination and in each box or enclosure. For a distance of 6 inches use half-lapped ¾ inch plastic tape in the above specified color. Do not cover cable identification markings. Adjust tape locations to prevent covering of markings.

3.5 METAL CLAD WIRING INSTALLATION:

A. The location of system components, including cable routing shown on the plans, are approximate. Use good judgment in their placement to eliminate all interference with ducts, piping, etc.

B. All cable routing shall be done in a neat and workmanlike manner, consistent with recognized good practice and in accordance with the manufacturer's instructions.

C. Route the cables along the grid system. Do not route cables diagonally or in any way which restricts removal of lay-in ceiling material.

D. Support cable on ceiling wires adjacent to each luminaire and at four foot intervals using clamp supports manufactured specifically for that purpose.

END OF SECTION
SECTION 26 05 26 – GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY:

A. This Section includes solid grounding of electrical systems and equipment. It includes basic requirements for grounding for protection of life, equipment, circuits, and systems. Grounding requirements specified in this Section may be supplemented in other sections of these Specifications.

1.2 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product data for ground rods, connectors and connection materials, and grounding fittings.

C. Wiring Diagrams: Submit wiring diagrams for electrical grounding and bonding work which indicates layout of ground rings, location of system grounding electrode connection, routing of grounding electrode conductors, also include diagrams for circuits and equipment grounding connections.

1.3 QUALITY ASSURANCE:

A. Listing and Labeling: Provide products specified in this Section that are listed and labeled. The terms "listed" and "labeled" shall be defined as they are in the National Electrical Code, Article 100.

B. Manufacturer's Qualifications: Firms regularly engaged in manufacture of grounding and bonding products, of types, and ratings required, and ancillary grounding materials, including stranded cable, copper braid and bus, grounding electrodes and plate electrodes, and bonding jumpers whose products have been in satisfactory use in similar service for not less than 5 years.

C. Installer's Qualifications: Firm with at least 3 years of successful installation experience on projects with electrical grounding work similar to that required for project.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Burndy Corporation
2. Cadweld Div.; Erico Products Inc.
3. Ideal Industries
4. OZ Gedney Div.
5. Thermoweld
6. Thomas and Betts Corp.

2.2 GROUNDING AND BONDING PRODUCTS:

A. Products: Of types indicated and of sizes and ratings to comply with NEC. Where types, sizes, ratings, and quantities indicated are in excess of NEC requirements, the more stringent requirements and the greater size, rating, and quantity indications govern.
B. Conductor Materials: Copper.

2.3 WIRE AND CABLE CONDUCTORS:

A. General: Comply with Division 26 Section on Wires and Cables. Conform to NEC, except as otherwise indicated, for conductor properties, including stranding.

B. Equipment Grounding Conductor: Green insulated.

C. Grounding Electrode Conductor: Stranded cable.

D. Bare Copper Conductors: Conform to the following:
 1. Solid Conductors: ASTM B-3
 2. Assembly of Stranded Conductors: ASTM B-8
 3. Tinned Conductors: ASTM B-33

2.4 MISCELLANEOUS CONDUCTORS:

A. Ground Bus: Bare annealed copper bars of rectangular cross section.

B. Braided Bonding Jumpers: Copper tape, braided No. 30 gage bare copper wire, terminated with copper ferrules.

C. Bonding Strap Conductor/Connectors: Soft copper, 0.05 inch thick and 2 inches wide, except as indicated.

2.5 CONNECTOR PRODUCTS:

A. General: Listed and labeled as grounding connectors for the materials used.

B. Pressure Connectors: High-conductivity-plated units.

C. Bolted Clamps: Heavy-duty units listed for the application.

D. Exothermic Welded Connections: Provided in kit form and selected for the specific types, sizes, and combinations of conductors and other items to be connected.

2.6 GROUNDING ELECTRODES:

A. Ground Rods: Copper-clad steel with high-strength steel core and electrolytic-grade copper outer sheath, molten welded to core.
 1. Size: ¾” by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATION:

A. Equipment Grounding Conductor Application: Comply with NEC for sizes and quantities of equipment grounding conductors, except where larger sizes or more conductors are indicated.

 1. Install separate insulated equipment grounding conductors with circuit conductors for the following in addition to those locations where required by Code:
a. Feeders and branch circuits.
 b. Provide individual grounding and neutral conductors for each isolated ground receptacle. When individual or groups of isolated ground receptacles are on dedicated circuits, individual ground and neutral conductors for each circuit is acceptable.

2. Laboratory Panel Circuits: Install separate insulated equipment ground wire in branch circuits from laboratory area power panels.

3. Air Duct Equipment Circuits: Install an insulated equipment grounding conductor to duct-mounted electrical devices operating at 120-V and above including air cleaners and heaters. Bond the conductor to each such unit.

4. Water Heater, Heat Tracing, and Anti-Frost Heater Circuits: Install separate insulated equipment ground conductor to each electric water heater, heat tracing, and surface anti-frost heating cable. Bond this conductor to heater units, piping, and connected equipment and components.

B. Underground Conductors: Bare, tinned, stranded copper except as otherwise indicated.

C. Signal and Communications: For telephone, alarm, and communication systems, provide a #6 AWG minimum green insulated copper conductor in raceway from the grounding electrode system to each terminal cabinet or central equipment location.

D. All systems shall be grounded in accordance with the NEC.

3.2 INSTALLATION:

A. General: Ground electrical systems and equipment in accordance with NEC requirements except where the Drawings or Specifications exceed NEC requirements. Connect together system neutral, service equipment enclosures, exposed noncurrent carrying metal parts of electrical equipment, metal raceway systems, grounding conductor in raceways and cables, receptacle ground connectors, and plumbing systems.

B. Route grounding conductors along the shortest and straightest paths possible without obstructing access or placing conductors where they may be subjected to strain, impact, or damage, except as indicated.

C. Labeling: Provide a phenolic tag for all grounding electrode conductors as described in section on Electrical Identification.

D. Where grounding conductors, grounding electrode conductors, or bonding conductors are non-exposed, identify each with a 6-inch band of green tape at each end and at 10 foot intervals. When run in conduits, provide color banding on conduit per section on Electrical Identification.

3.3 CONNECTIONS:

A. General: Make connections in such a manner as to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to assure high conductivity and make contact points closer in order of galvanic series.
2. Make connections with clean bare metal at points of contact.
3. Coat and seal connections involving dissimilar metals with inert material such as red lead paint to prevent future penetration of moisture to contact surfaces.

B. Terminate insulated equipment grounding conductors for feeders and branch circuits with pressure-type grounding lugs. Where metallic raceways terminate at metallic housings without mechanical and
electrical connection to the housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to the ground bus in the housing. Bond electrically non-continuous conduits at both entrances and exits with grounding bushings and bare grounding conductors. Terminate each conductor on an individual ground lug terminal.

C. Tighten grounding and bonding connectors and terminals, including screws and bolts, in accordance with manufacturer's published torque tightening values for connectors and bolts. Where manufacturer's torquing requirements are not indicated, tighten connections to comply with torque tightening values specified in UL 486A.

D. Compression-Type Connections: Use hydraulic compression tools to provide the correct circumferential pressure for compression connectors. Use tools and dies recommended by the manufacturer of the connectors. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on the ground conductor.

E. Moisture Protection: Where insulated ground conductors are connected to ground rods or ground buses, insulate the entire area of the connection and seal against moisture penetration of the insulation and cable.

3.4 FIELD QUALITY CONTROL:

A. Upon completion of installation of electrical grounding and bonding systems, test ground resistance with ground resistance tester. Where tests show resistance-to-ground is over 5 ohms, take appropriate action to reduce resistance to 5 ohms, or less, by driving additional ground rods; then retest to demonstrate compliance.

B. Ground Resistance Test:

1. Grounding electrode resistance testing shall be accomplished with a ground resistance direct-reading single test meter utilizing the fall-of-potential method and two reference electrodes. Perform test prior to interconnection to other grounding systems. Orient the ground electrode to be tested and the two reference electrodes in a straight line spaced fifty (50) feet apart. Drive the two reference electrodes five (5) feet deep.

C. Correct Deficiencies, Retest and Report:

1. Correct unsatisfactory conditions and retest to demonstrate compliance; replace conductors, units and rods as required to bring system into compliance.
2. Prepare a written report and show temperature, humidity and condition of soil at time of tests. Report shall be certified by testing agency that identifies components checked and describes results. Include notation of deficiencies detected, remedial action taken, and observations and test results after remedial action.

3.5 CLEANING AND ADJUSTING:

A. Restore surface features at areas disturbed by excavation and reestablish original grades except as otherwise indicated. Where sod has been removed, replace it as soon as possible after backfilling is completed. Restore areas disturbed by trenching, storing of dirt, cable laying, and other Work to their original condition. Include necessary top-soiling, fertilizing, liming, seeding, sodding, sprigging, or mulching. Restore vegetation and disturbed paving to original condition.

END OF SECTION
SECTION 26 05 29 – HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY:

A. This Section includes secure support from the building structure for electrical items by means of hangers, supports, anchors, sleeves, inserts, seals, and associated fastenings.

1.2 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product data for each type of product specified.

 1. Hanger and support schedule showing manufacturer's figure number, size, spacing, features, and application for each required type of hanger, support, sleeve, seal, and fastener to be used.

C. Shop drawings indicating details of fabricated products and materials.

D. Engineered Design consisting of details and engineering analysis for supports for the following items:

 1. Suspended transformers
 2. Cable trays
 3. Trapeze hangers for multiple conduit runs.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1. Slotted Metal Angle and U-Channel Systems:

 a. Allied Tube & Conduit
 b. B-Line Systems, Inc.
 c. Unistrut Diversified Products

 2. Conduit Sealing Bushings:

 a. O-Z/Gedney
 b. Cooper Industries, Inc.
 d. Madison Equipment Co.
 e. Raco, Inc.
 f. Spring City Electrical Mfg. Co.
 g. Thomas & Betts Corp.
2.2 COATINGS:

A. Coating: Supports, support hardware, and fasteners shall be protected with zinc coating or with treatment of equivalent corrosion resistance using approved alternative treatment, finish, or inherent material characteristic. Products for use outdoors shall be hot-dip galvanized.

2.3 MANUFACTURED SUPPORTING DEVICES:

A. Raceway Supports: Clevis hangers, riser clamps, conduit straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring steel clamps.

B. Fasteners: Types, materials, and construction features as follows:

1. Expansion Anchors: Carbon steel wedge or sleeve type.
2. Toggle Bolts: All steel springhead type.

C. Conduit Sealing Bushings: Factory-fabricated watertight conduit sealing bushing assemblies suitable for sealing around conduit, or tubing passing through concrete floors and walls. Construct seals with steel sleeve, malleable iron body, neoprene sealing grommets or rings, metal pressure rings, pressure clamps, and cap screws.

D. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for non-armored electrical cables in riser conduits. Provide plugs with number and size of conductor gripping holes as required to suit individual risers. Construct body of malleable-iron casting with hot-dip galvanized finish.

E. U-Channel Systems: 16-gage steel channels, with 9/16 inch-diameter holes, at a minimum of 8 inches on center, in top surface. Provide fittings and accessories that mate and match with U-channel and are of the same manufacture.

F. Supports: Provide supporting devices of types, sizes and materials indicated; and having the following construction features:

1. One-Hole Conduit Straps: For supporting ¾ inch and smaller rigid metal conduit; galvanized steel.
2. Two-Hole Conduit Straps: For supporting 1 inch and larger rigid metal conduit, galvanized steel; ¾ inch strap width; and 2-1/8 inch between center of screw holes.

2.4 FABRICATED SUPPORTING DEVICES:

A. General: Shop- or field-fabricated supports or manufactured supports assembled from U-channel components.

B. Steel Brackets: Fabricated of angles, channels, and other standard structural shapes. Connect with welds and machine bolts to form rigid supports.

C. Pipe Sleeves: Provide pipe sleeves of one of the following:

1. Steel Pipe: Fabricate from Schedule 40 galvanized steel pipe.
2. EMT, IMC, or Rigid Conduit.
2.5 FIRE SEALS:

A. Material: Fire stopping material shall be asbestos free, 100 percent intumescent, have code approval under BOCA, ICBO, SSBC, NFPA 101, NFPA 70, and be capable of maintaining an effective barrier against flame and gases in compliance with the following requirements.

B. Flame Spread: 25 or less, ASTM E84

C. Fire Resistance and Hose Stream Tests: Fire stopping materials shall be rated "F" and "T" in accordance with ASTM E 814 or UL 1479. Rating periods shall conform to the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>3 (T) 3</td>
</tr>
</tbody>
</table>
| Openings between floor slabs and curtain wall.

D. Manufacturers: Subject to compliance with requirements, provide fire seals of the following:

1. 3M Company
2. STI
3. Tremco
4. Hilti

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Install supporting devices to fasten electrical components securely and permanently in accordance with NEC requirements.

B. Coordinate with the building structural system and with other electrical installation.

C. Junction Box Supports: Comply with the NEC and the following requirement:

1. Use ¼” all-thread rod from structure to support junction boxes.

D. Raceway Supports: Comply with the NEC and the following requirements:

1. Conform to manufacturer's recommendations for selection and installation of supports.
2. Strength of each support shall be adequate to carry present and future load multiplied by a safety factor of at least four. Where this determination results in a safety allowance of less than 200 lbs., provide additional strength until there is a minimum of 200 lbs. safety allowance in the strength of each support.
3. Install individual and multiple (trapeze) raceway hangers and riser clamps as necessary to support raceways. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assembly and for securing hanger rods and conduits.
4. Use #9 ceiling wire to support individual conduits up to 3/4 inch with spring steel fasteners. Use of ceiling support wires is unacceptable.
5. Support parallel runs of horizontal raceways together on trapeze-type hangers. Use 3/8 inch diameter or larger threaded steel rods for support.
6. Support individual horizontal raceways by separate pipe hangers. Spring steel fasteners may be used in lieu of hangers only for 1-1/2 inch and smaller raceways serving lighting and receptacle branch circuits above suspended ceilings only. For hanger rods with spring steel fasteners, use ¼ inch-diameter or larger threaded steel. Use spring steel fasteners that are specifically designed for...
supporting single conduits or tubing. For hanger rods supporting 1-1/2 inch or larger conduits provide 3/8 inch minimum threaded steel rods with pipe hangers.

7. Space supports for raceways in accordance with NEC. When there are 4 or more 2 inch conduits in a trapeze, supports shall be spaced 5 feet O.C.

8. In all runs, arrange support so the load produced by the weight of the raceway and the enclosed conductors is carried entirely by the conduit supports with no weight load on raceway terminals.

9. Threaded rod supports to have bottoms cut off at a maximum length equal to rod diameter below bottom nut.

E. Conductor or Cable Supports: Comply with the NEC and the following requirements:

1. Support individual conductors or cables by separate clamps with rubber or plastic grommet, fasten using a non-metallic bolt and nut, and secure clamps to unistrut supports anchored to structure (multiple clamps may be secured to a single unistrut support). Individual conductors or cables may be served utilizing a vinyl or fiberglass clamp which shall be anchored to the structure.

2. Space supports as follows:
 a. Horizontal conductors not more than 3 feet o.c.
 b. Vertical conductors not more than 5 feet o.c.

3. Install simultaneously with installation of conductors.

4. MC Cable shall be supported by UL listed clip or clamp. Cable tie support is not acceptable.

F. Miscellaneous Supports: Support miscellaneous electrical components separately and as required to produce the same structural safety factors as specified for raceway supports. Install metal channel racks for mounting cabinets, panelboards, disconnects, control enclosures, pull boxes, junction boxes, transformers, and other devices.

G. In overhead spaces, support metal boxes directly from the building structure via 1/4" minimum all-thread or by bar hangers. Where bar hangers are used, attach the bar to raceways on opposite sides of the box and support the raceway with an approved type of fastener not more than 24 inches from the box. Supporting metal boxes utilizing ceiling type wire is not acceptable.

H. Sleeves: Install in concrete slabs and walls and all other fire-rated floors and walls for cable installations as required. Where sleeves through floors are installed, extend above finish floor. For sleeves through fire rated-wall or floor construction, apply UL-listed fire stopping sealant in gaps between sleeves and cables in accordance with "Fire Resistant Joint Sealers" requirement of Division 7 Section "Joint Sealers." See Architectural plans for location and extent of fire rated assemblies.

I. Conduit Seals: Install seals for conduit penetrations of exterior walls below grade. Tighten sleeve seal screws until sealing grommets have expanded to form watertight seal.

J. Fastening: Unless otherwise indicated, fasten electrical items and their supporting hardware securely to the building structure, including but not limited to conduits, raceways, cables, cable trays, busways, cabinets, panelboards, transformers, boxes, disconnect switches, and control components in accordance with the following:

1. Fasten by means of wood screws or screw-type nails on wood, toggle bolts on hollow masonry units, concrete inserts or expansion bolts on concrete or solid masonry, and machine screws, welded threaded studs, or spring-tension clamps on steel. Threaded studs driven by a powder charge and provided with lock washers and nuts may be used instead of expansion bolts and machine or wood screws, where authorized by the Owner and structural engineer. Do not weld conduit, pipe straps, or items other than threaded studs to steel structures. In partitions of light steel construction, use sheet metal screws.
2. Holes cut to depth of more than 1-1/2 inches in reinforced concrete beams or to depth of more than 3/4 inch in concrete shall not cut the main reinforcing bars. Fill holes that are not used.
3. Ensure that the load applied to any fastener does not exceed 25 percent of the proof test load. Use vibration- and shock-resistant fasteners for attachments to concrete slabs.

K. Communication and Telephone Cable Supports: Use No. 9 ceiling wire to support individual or small bundles of cables run above accessible ceilings.

3.2 PERSONNEL PROTECTION:

A. Where U-channel systems, angles, brackets or other standard structural metal shapes are readily accessible and exposed to personnel, provide plastic or rubber end caps.

B. Where threaded rod supports are readily accessible and exposed to personnel, provide plastic or rubber end caps.

3.3 FIRE STOPPING LOCATIONS:

A. Preparation:

1. Coordination: Coordinate the work with other trades. Fire stopping materials at penetrations of insulated pipes and ducts can be applied after insulation is in place. If insulation is composed of combustible material, the thickness of fire stopping materials must be equivalent to that of the insulation. If the insulation is composed of non-combustible material, it may be considered as part of the penetrating item.

2. Surface Preparation: Surface Preparation to be in contact with fire stopping materials shall be free of dirt, grease, oil, loose material or other substances that may affect proper fitting or the required fire resistance.

B. Installation: Install fire stopping materials in accordance with the manufacturer's instructions.

C. Cleaning: After completion of fire stopping work in any area, equipment shall be reviewed and walls, ceilings and all other surfaces shall be cleaned of deposits of firestop materials.

D. Inspection: The architect may select and the Owner will pay an independent testing laboratory to examine fire stopped areas to ensure proper installation prior to concealing or enclosing the fire stopped areas.

END OF SECTION
SECTION 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY:

A. Extent of raceway work is indicated by drawings and schedules. Provide complete conduit systems for all conductors unless otherwise specified.

B. Types of raceways specified in this section include the following:

1. Electrical metallic tubing (EMT).
2. Flexible metal conduit.
3. Intermediate metal conduit (IMC).
4. Liquid-tight flexible metal conduit.
5. Non-metallic Conduit and Ducts.
6. Rigid metal conduit (RGC).
7. Surface metal raceways.
8. Wireways.

1.2 QUALITY ASSURANCE:

A. Manufacturers: Firms regularly engaged in manufacture of raceway systems of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firm with at least 3 years of successful installation experience on projects with electrical raceway work similar to that required for this project.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product Data: Submit manufacturer's technical product data, including specifications and installation instructions, for each type of raceway system required. Include data substantiating that materials comply with requirements.

C. Shop Drawings: Submit dimensioned drawings of surface metal raceway systems showing layout of raceways and fittings, spatial relationships to associated equipment, and adjoining raceways, if any. Show connections to electrical power panels and feeders.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Subject to compliance with requirements, provide products by the following:

1. Rigid Metal Conduit:
 a. Allied
2. Intermediate Metal Conduit (IMC):
 a. Allied

3. EMT Conduit:
 a. Allied
 b. Republic

4. Non-Metallic Conduit:
 a. Carlon

5. Steel Fittings:
 a. O/Z Gedney
 b. Raco
 c. Appleton

6. Conduit Bodies:
 a. O/Z Gedney
 b. Appleton

7. Surface Metal Raceways:
 a. Wiremold Co.

2.2 METAL CONDUIT AND TUBING:

A. Rigid Galvanized Steel Conduit (RGC):
 2. Fittings: Threaded galvanized steel, bushings shall have nylon insulated throat.

B. Intermediate Metal Conduit (IMC):
 2. Fittings: Threaded galvanized steel, bushings shall have nylon insulated throat.

C. PVC Externally Coated Rigid Steel Conduit:
 1. Conduit: Rigid steel zinc-coated with external coating of PVC.
 2. Fittings: Threaded galvanized steel with external PVC coating, bushings shall have nylon insulated throat.

D. Electrical Metallic Tubing (EMT):
 2. Fittings: Steel compression fittings for rain-tight and concrete-tight applications. Steel set-screw for all other connections. Set-screw quick fit type for 2-1/2 inches and larger may be used. Bushings shall be threaded and have nylon insulated throat or nylon bushing.

E. Rigid Aluminum Conduit:
1. Not allowed unless otherwise noted.

F. Flexible Metal Conduit:

1. Conduit: Continuous spiral wound, interlocked, zinc-coated steel, approved for grounding.
2. Fittings: Zinc coated, malleable iron. Straight connector shall be one-piece body, female end with clamp and deep slotted machine screw for securing conduit, and threaded male end provided with a locknut. Angle connectors shall be two piece body with removable upper section, female end with clamp and deep slotted machine screw for securing conduit, and threaded male end provided with a locknut. All fittings shall be terminated with threaded bushings having nylon insulated throats.

G. Liquid-Tight Flexible Metal Conduit:

1. Conduit: Continuous spiral wound, interlocked zinc-coated steel with polyvinyl chloride (PVC) jacket, approved for grounding.
2. Fittings: Zinc coated malleable iron. Straight and angle connectors shall be the same as used with flexible metal conduit but shall be provided with a compression type steel ferrule and neoprene gasket sealing rings.

2.3 NON-METALLIC CONDUIT AND DUCTS:

A. Rigid Non-Metallic Conduit (RNC):

1. Conduit: Schedule 40 or 80 polyvinyl chloride (PVC), 90°C for direct burial or concrete encasement.
2. Fittings: Mate and match conduit type and material. Cement as recommended by manufacturer.

B. PVC and ABS Plastic Utilities Duct:

1. Conduit: Type 2 (EB) for encased burial in concrete; Type II (DB) for direct burial.
2. Fittings: Mate and match conduit type and material. Cement as recommended by manufacturer.

2.4 CONDUIT BODIES:

A. General: Types, shapes and sizes, as required to suit individual applications and NEC requirements. Provide matching gasketed covers secured with corrosion-resistant screws.

B. Metallic Conduit and Tubing: Use malleable iron conduit bodies. Use bodies with threaded hubs for threaded raceways and in hazardous locations.

C. Nonmetallic Conduit: Use nonmetallic conduit bodies.

2.5 WIREWAYS:

A. General: Provide electrical wireways of types, grades, sizes, and number of channels for each type of service as indicated. Provide complete assembly of raceway including, but not limited to, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other components and accessories as required for complete system.

B. Lay-In Wireways: Construct lay-in wireways with hinged covers in accordance with UL 870 with components UL listed. Construct units to be capable of sealing cover in closed position with sealing wire.
1. Connectors: Provide wireway connectors suitable for "lay-in" conductors, with connector covers permanently attached so that removal is not necessary to utilize the lay-in feature.

2. Finish: Protect sheet metal parts with rust inhibiting coating and baked enamel finish. Plate finish hardware to prevent corrosion. Protect screws installed inside of wireway with spring nuts to prevent wire insulation damage.

C. Rain-tight Troughs: Construct in accordance with UL 870, with components UL listed.

1. Construction: 16-gauge galvanized sheet metal parts for 4" x 4" to 6" x 6" sections, and 14 gauge parts for 8" x 8" and larger sections. Provide knockouts only in bottom of troughs, with suitable adapters to facilitate attaching to other NEMA 3R enclosures. Do not use Gasketing that can rip or tear during installation, or would compromise rain-tight capability of the trough. Do not use cover screws that will protrude into the trough area and damage wire insulation.

2. Finish: Provide 14-gauge and 16-gauge galvanized sheet metal parts with corrosion-resistant phosphate primer and baked enamel finish. Plate hardware to prevent corrosion.

2.6 SURFACE METAL RACEWAYS:

A. General: Sizes and channels as indicated. Provide fittings that match and mate with raceway. All circuits either factory or field installed shall have a separate neutral conductor. Verify color with Architect/Engineer prior to order.

B. Boxes for Surface Raceways: Designed, manufactured and supplied by raceway manufacturer for use with specified raceway.

2.7 CONDUIT SIZES:

A. Conduit sizes shall be as shown on the drawings. If the conduit size is not given on the drawings, the conduit shall be sized in accordance with NEC based on the number of conductors enclosed plus a parity sized equipment ground conductor and be subject to the following minimum sizes:

1. Rigid, Intermediate, and EMT Conduit: 3/4 inch for all runs except lighting switch legs, 277 volt lighting branch circuits, temperature control and fire alarm which may be 1/2inch.
2. Flexible and Liquid-Tight Flexible Conduit: 1/2inch for all runs.
3. MC Cable: 3/8 inch to under-counter luminaires, 1/2inch for all other runs.
4. Underground or Concrete Encased Nonmetallic Conduit: 3/4inch for all runs.
5. Conduits used for home runs shall contain only the conductors for the circuits indicated on the drawings. Combining multiple home runs into a single conduit will not be permitted.

2.8 RACEWAY SEALING COMPOUND:

A. Non-hardening, safe for human skin contact, not deleterious to cable insulation, workable at temperatures as low as 35 deg. F (1 deg. C), withstands temperature of 300 deg. F (149 deg. C) without slump, and adheres to clean surfaces of plastic ducts, metallic conduits, conduit coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials and the common metals.

PART 3 - EXECUTION

3.1 INSPECTION:

A. Examine areas and conditions under which raceways are to be installed, and substrate which will support raceways. Notify Contractor in writing of conditions detrimental to proper completion of the work. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.
3.2 CONDUIT SCHEDULE:

A. Raceways in locations subject to mechanical injury: Rigid steel galvanized conduit or intermediate metal conduit. Locations subject to mechanical injury include, but are not limited to, the following:

1. Exposed conduits outdoors up to 8’ A.F.G.
2. Exposed conduits in dock areas and high/medium bay locations up to 25 feet above finished floor.
3. Exposed conduits in parking garages.
4. Exposed conduits in a Fire Pump Room.
5. Exposed service entrance feeders.

B. Motor and equipment connections: PVC jacketed liquid-tight flexible metallic conduit with liquid tight connectors.

C. Raceways in all other areas shall be electrical metallic tubing unless otherwise noted.

D. Use flexible metal conduit inside movable partition wireways, from junction boxes to devices and between devices in casework, from outlet boxes to recessed luminaires, and for "fishing" of existing walls.

E. Emergency/Essential Electrical System Circuits: All emergency and Essential Electrical system circuits shall be run totally in non-flexible metal conduit.

F. Rework or extensions of existing conduit shall include the use of similar materials to the existing conduit type unless otherwise noted.

G. BSL2 and BSL3 Level Spaces: Rigid steel galvanized conduit or Intermediate metal galvanized conduit.

3.3 INSTALLATION OF CONDUITS:

A. General: Install electrical raceways in accordance with manufacturer's written installation instruction, applicable requirements of NEC, and as follows:

1. Conceal all conduits unless indicated otherwise, within finished walls, ceilings, and floors. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot water pipes. Install raceways level and square and at proper elevations.

2. Elevation of Raceway:
 a. Where horizontal raceway is installed near water and steam piping, route raceway above piping and as close to structure as possible and practical.
 b. Route raceway as close to structure as possible.

3. Complete installation of electrical raceways before starting installation of conductors within raceways.

4. Provide supports for raceways as specified elsewhere in Division 26.

5. Prevent foreign matter from entering raceways by using temporary closure protection.

6. Protect stub-ups from damage where conduits rise from floor slabs. Arrange so curved portion of bend is not visible above the finished slab.

7. Make bends and offsets so the inside diameter is not effectively reduced. Unless otherwise indicated, keep the legs of a bend in the same plane and the straight legs of offsets parallel.

8. Use raceway fittings that are types compatible with the associated raceway and suitable for the use and location. Install expansion fittings across all structural construction joints and expansion/deflection couplings across all structural expansion joints.
9. Run raceways parallel and perpendicular to building elements and other equipment with a minimum of bends in the shortest practical distance considering the type of building construction and obstructions except as otherwise indicated.

10. Raceways embedded in slabs: (Allowed only by written authorization of Structural Engineer/Architect): Install with a minimum of bends, in the shortest practical distance, in middle third of the slab thickness where practical, and leave at least 1 inch concrete cover. Tie raceways to reinforcing rods or otherwise secure them to prevent sagging or shifting during concrete placement. Space raceways laterally to prevent voids in the concrete. Run conduit larger than 1 inch trade size, parallel with or at right angles to the main reinforcement; where at right angles to the reinforcement, the conduit shall be close to one of the supports of the slab. Where nonmetallic conduit is used, raceways must be converted to PVC coated rigid steel conduit before rising above floor.

11. Install exposed raceways parallel and perpendicular to nearby surfaces or structural members and follow the surface contours as much as practical.

12. Install vertical feeder conduits in exterior walls, core walls, or chase spaces. Do not install in interior wall partition areas.

13. Run exposed and parallel raceways together. Make bends in parallel runs from the same center line so that the bends are parallel. Factory elbows may be used only where they can be installed parallel. In other cases provide field bends for parallel raceways.

14. Make raceway joints tight. Where joints cannot be made tight, use bonding jumpers to provide electrical continuity of the raceway system. Make raceway terminations tight. Where terminations are subject to vibration, use bonding bushings or wedges to assure electrical continuity. Where subject to vibration or dampness, use insulating bushings to protect conductors. Joints in non-metallic conduits shall be made with solvent cement in strict accordance with manufacturer's recommendations.

15. Tighten set screws of thread less fittings with suitable tool.

16. Terminations: Where raceways are terminated with locknuts and bushings, align the raceway to enter squarely and install the locknuts with dished part against the box. RGC and IMC shall be secured with double locknuts and an insulated metallic bushing. EMT shall be secured with one locknut and shall have nylon insulated throats or threaded nylon bushings from 1/2” to 1”. 1-1/4” and above shall be metal with nylon insulated throats. Use grounding type bushings for feeder conduits at switchboards, panelboards, pull boxes, transformers, motor control centers, VFD's, etc.

17. Where terminating in threaded hubs, screw the raceway or fitting tight into the hub so the end bears against the wire protection shoulder. Where chase nipples are used, align the raceway so the coupling is square to the box, and tighten the chase nipple so no threads are exposed.

18. Provide nylon pull string with printed footage indicators having not less than 200 pounds tensile strength. Leave not less than 12 inches of slack at each end of the pull string. Identify with tags at each end the origin and destination of each empty conduit and indicate same on all empty or spare conduits on the as-built drawings.

19. Telephone and Signal System Raceways: Install raceways with maximum lengths at 100 feet and with a maximum of two, 90 degrees radius bends or equivalent. Install 2’ x 2’ pull boxes where necessary to comply with these requirements. Install long sweep bends for all data and voice raceways.

20. Install raceway sealing fittings in accordance with the manufacturer's written instructions. Locate fittings at suitable, approved, accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points and elsewhere as indicated:

 a. Where conduits enter or leave hazardous locations.
 b. Where conduits pass from warm locations to cold locations, such as the boundaries of refrigerated spaces and air-conditioned spaces.
 c. Where conduits enter through a foundation wall or stub-up through a slab on grade floor.
 d. Where required by the NEC.
21. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment with an adjustable top or coupling threaded inside for plugs and set flush with the finished floor. Extend conductors to equipment with rigid steel conduit; flexible metal conduit may be used 6 inches above the floor. Where equipment connections are not made under this contract, install screwdriver-operated threaded plugs flush with floor.
22. Flexible Connections: Use short length (maximum of 6 feet) of flexible conduit for recessed and semi-recessed luminaires, for equipment subject to vibration, noise transmission, or movement; and for all motors. Use liquid-tight flexible conduit in wet locations. Install separate ground conductor across flexible connections.
23. PVC externally coated rigid steel conduit: Patch all nicks and scrapes in PVC coating after installing conduit.
24. Where conduits are to be installed through structural framing members, the Contractor shall provide sleeves. The Architect/Engineer's written approval must be obtained prior to cutting, notching or drilling of structural framing members.
25. Ream the ends of all cut and/or threaded conduit. Ends shall be cut square.
26. Use of running threads for rigid or intermediate metallic conduit are not permitted. When threaded couplings cannot be used, provide 3 piece union or solid coupling.
27. Route conduit through roof openings for piping and ductwork where possible; otherwise, route through jack with pitch pocket.
28. Conduit stub-ups from below grade or thru the slab shall be PVC coated or PVC taped rigid steel galvanized conduit and shall extend 6 inches above grade.
29. Wherever conduits enter a structure through a foundation or basement wall below grade, grout around the conduit with water-proof grout or install entrance seals. Seals shall be OZ Type WS or approved equivalent for new construction and OZ type CSM Series for existing structures.
30. Conduits shall not cross pipe shafts or ventilation duct openings. Where conduits must penetrate air-tight spaces or plenums, seal around the conduit with a mastic acceptable to the Architect/Engineer.
31. Install an insulated ground conductor in all conduits.
32. Where individual conduits penetrate existing fire-rated walls and floors, pack void around conduit with fire rated insulation and seal opening around conduit with UL listed foamed silicone elastomer compound. Where conduits penetrate exterior walls, new floors, or roof, provide pipe sleeve one size larger than conduit, pack void around conduit with fire rated insulation, and seal opening around conduit with UL listed foam silicone elastomer compound.
33. Where conduit sleeves penetrate fire rated floors or walls for installation of system cables, AC or MC cables, or modular wiring cables pack void around cables or empty sleeve with fire rated insulation and fill ends with fire-resistive compound. Seal opening around sleeve with UL listed foam silicone elastomer compound.
34. Use PVC-coated rigid steel or Fiberglass factory elbows for bends in plastic conduit runs longer than 100 feet, or in plastic conduit runs which have more than two bends regardless of length. Use long sweep bends for wiring larger than 350 mcm.
35. Wipe plastic conduit clean and dry before joining. Apply full even coat of cement to entire area that will be inserted into fitting. Let joint cure for 20 minutes minimum.
36. No PVC conduit shall be run exposed or inside stud or masonry walls unless specifically called for on the drawings. Transition from PVC to metal conduit shall be made below grade.
37. Provide separate raceway systems for each of the following:
 a. Lighting
 b. Power Distribution
 c. Communications and Data
 d. Emergency Systems
 a) Lighting
 b) Power Distribution
 e. Fire Alarm
 f. Temperature Control
38. Paint new exposed conduits to match existing exposed conduits where installed in areas with existing painted conduits or where otherwise indicated.
39. Provide rebar and tie downs for all conduits and conduit racks to be installed with concrete or slurry to prevent conduit “float”.
40. Patient Care Areas: Provide metal conduit systems for all branch circuits in patient care areas.

B. Install buried electrical line warnings per Division 26 section - “Electrical identification”.

C. Install labeling as required in Division 26 section - “Electrical Identification”.

3.4 INSTALLATION OF SURFACE RACEWAYS AND WIREWAYS:

A. Surface Raceways and Wireways: Mechanically assemble metal enclosures and raceways to form continuous electrical conductor and connect to electrical boxes, fittings and cabinets as to provide effective electrical continuity and rigid mechanical assembly.

1. Where practicable, avoid use of dissimilar metals throughout system to eliminate possibility of electrolysis. Where dissimilar metals are in contact, coat all surfaces with corrosion inhibiting compound before assembling.
2. Install expansion fittings in all raceways wherever structural expansion joints are crossed.
3. Make changes in direction of raceway run with proper fittings, supplied by raceway manufacturer. Field bends of raceway sections are not permitted.
4. Properly support and anchor raceways for their entire length by structural materials. Raceways are not to span any space unsupported.
5. Use boxes as supplied by raceway manufacturer wherever junction, pull or device boxes are required. Standard electrical "handy" boxes, etc., are not permitted for use with surface raceway installations.
6. Install an insulated grounding conductor in all wireways and surface raceways. Bond grounding conductor to all wireways and surface raceways.
7. Paint new exposed surface metal raceway to match adjacent surfaces where raceway is installed in finished areas such as lobbies, corridors, and normally occupied spaces.
8. Surface raceways and wireways are acceptable only where specifically indicated on the drawings. The proposed use of surface raceways and wireways shall be submitted for review by the Engineer prior to installation.
9. Common wireways are not acceptable for convergence of multiple circuits unless specifically indicated on the drawings. The proposed use of a common wireway shall be submitted for review by the Engineer prior to installation.
10. The proposed use of wireways above or below panelboards, switchboards, motor control centers, and other electrical equipment shall be submitted along with a layout drawing for review by the Engineer prior to installation.

3.5 ADJUSTING AND CLEANING:

A. Upon completion of installation of raceways, inspect interiors of raceways; clear all blockages and remove burrs, dirt and construction debris.

END OF SECTION
SECTION 26 05 34 CABINETS, BOXES, AND FITTINGS

PART 1 - GENERAL

1.1 SUMMARY:

A. This section includes cabinets, boxes, and fittings for electrical installations and certain types of electrical fittings not covered in other sections. Types of products specified in this section include:

1. Outlet and device boxes
2. Pull and junction boxes
3. Floor boxes and service fittings
4. Cabinets
5. Hinged door enclosures
6. Boxes and fittings for hazardous locations

B. Conduit-body-type electrical enclosures and wiring fittings are specified in the Division 26 Section on Raceways.

1.2 DEFINITIONS:

A. Cabinets: An enclosure designed either for surface or for flush mounting and having a frame, or trim in which a door or doors may be mounted.

B. Device Box: An outlet box designed to house a receptacle device or a wiring box designed to house a switch.

C. Enclosure: A box, case, cabinet, or housing for electrical wiring or components.

D. Hinged Door Enclosure: An enclosure designed for surface mounting and having swinging doors or covers secured directly to and telescoping with the walls of the box.

E. Outlet Box: A wiring enclosure where current is taken from a wiring system to supply utilization equipment.

F. Wiring Box: An enclosure designed to provide access to wiring systems or for the mounting of indicating devices or switches for controlling electrical circuits.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Submit product data for cabinets and enclosures with classification higher than NEMA 1.

C. Shop drawings for floor boxes and boxes, enclosures, and cabinets that are to be shop fabricated (non-stock items). For shop fabricated junction and pull boxes, show accurately scaled views and spatial relationships to adjacent equipment. Show box types, dimensions, and finishes.
PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Floor Boxes:
 c. Cooper Industries, Inc.
 d. Raco, Inc.
 e. Thomas & Betts Corp.

2. Cabinets:
 b. Erickson Electrical Equipment Co.
 c. Electric Panelboard, Inc.
 e. Spring City Electrical Mfg. Co.
 f. Square D Co.
 g. Circle AW

3. Boxes and Fittings for Hazardous Locations:
 a. OZ/Gedney.
 b. Cooper Industries, Inc.
 d. Adalet-PLM.
 e. Robroy Industries, Inc.
 f. Spring City Electrical Mfg. Co.
 g. Appleton

2.2 CABINETS, BOXES, AND FITTINGS, GENERAL:

A. Electrical Cabinets, Boxes, and Fittings: Of indicated types, sizes, and NEMA enclosure classes. Where not indicated, provide units of types, sizes, and classes appropriate for the use and location. Provide all items complete with covers and accessories required for the intended use. Provide gaskets for units in damp or wet locations.

2.3 MATERIALS AND FINISHES:

A. Sheet Steel: Flat-rolled, code-gage, galvanized steel.

B. Fasteners for General Use: Corrosion resistant screws and hardware including cadmium and zinc plated items.

C. Fasteners for Damp or Wet Locations: Stainless steel screws and hardware.

D. Cast Metal for Boxes, Enclosures, and Covers; Copper-free aluminum except as otherwise specified.

E. Exterior Finish: Gray baked enamel for items exposed in finished locations except as otherwise indicated.
F. Painted Interior Finish: Where indicated, white baked enamel. Emergency system cabinets and boxes shall be red.

G. Fittings for Boxes, Cabinets, and Enclosures: Conform to UL 514B. Malleable iron or zinc plated steel for conduit hubs, bushings and box connectors.

2.4 METAL OUTLET, DEVICE, AND SMALL WIRING BOXES:

A. General: Conform to UL 514A, "Metallic Outlet Boxes, Electrical," and UL 514B, "Fittings for Conduit and Outlet Boxes." Boxes shall be of type, shape, size, and depth to suit each location and application.

B. Steel Boxes: Conform to NEMA OS 1, "Sheet Steel Outlet Boxes, Device Boxes, Covers, and Box Supports." Boxes shall be sheet steel with stamped knockouts, threaded screw holes and accessories suitable for each location including mounting brackets and straps, cable clamps, exterior rings and fixture studs.

C. Malleable or Cast-Iron Boxes: Iron alloy, waterproof, with threaded raceway entries and features and accessories suitable for each location, including mounting ears, threaded screw holes for devices and closure plugs.

D. Malleable or Cast-Iron Floor Boxes: Fully adjustable, waterproof, with threaded raceway entrances, adjusting rings, gaskets, and brass floor plates. Where indicated, provide multi-section boxes with individual hinged section covers. Provide for power, data, and communication outlets as indicated on the drawings.

E. Steel Floor Boxes: Sheet steel, concrete tight, fully adjustable, with stamped knockouts, adjusting rings, and brass floor plates. Where indicated, provide multi-section boxes with concealed individual section covers under a common flush floor plate. Provide for power, data, and communication outlets as indicated on the drawings.

F. Concealed Service Floor Box: Malleable, cast iron, or steel floor boxes as specified above designed to deliver power, data, and communications services from outlets concealed within the box and accessible through a single hinged cover. The cover shall fit into the top of the floor box and include a carpet or tile floor flange, a hinged steel reinforced floor plate with provision for mounting a piece of carpet or tile, and a small retractable cable exit. Provide for power, communications, and data outlets as indicated on the drawings.

2.5 NONMETALLIC OUTLET, DEVICE, AND SMALL WIRING BOXES:

A. General: Conform to NEMA OS 2, "Nonmetallic Outlet Boxes, Device Boxes, Covers, and Box Supports" and UL 514C, "Nonmetallic Outlet Boxes, Flush Device Boxes and Covers." Boxes shall be molded PVC units of type, shape, size, and depth to suit location and application.

B. Boxes for Concealed Work: Mounting provisions and wiring entrances to suit installation conditions and wiring method used.

C. Boxes for Exposed Work: Ultra-violet stabilized, nonconductive, high impact-resistant boxes with integrally molded raceway entrance hubs and removable mounting flanges. Boxes shall be equipped with threaded screw holes for device and cover plate mounting. Each box shall have a molded cover of matching PVC material suitable for the application.
2.6 PULL AND JUNCTION BOXES:

A. General: Comply with UL 50, "Electrical Cabinets and Boxes", for boxes over 100 cubic inches volume. Boxes shall have screwed or bolted on covers of material same as box and shall be of size and shape to suit application.

B. Steel Boxes: Sheet steel with welded seams. Where necessary to provide a rigid assembly, construct with internal structural steel bracing.

C. Hot-Dipped Galvanized Steel Boxes: Sheet steel with welded seams. Where necessary to provide a rigid assembly, construct with internal structural steel bracing. Hot-dip galvanized after fabrication. Cover shall be gasketed.

D. Stainless-Steel Boxes: Fabricate of stainless steel conforming to Type 302 of ASTM A 167, "Specification for Stainless and Heat Resisting Chromium-Nickel Steel Plate, Sheet, and Strip." Where necessary to provide a rigid assembly, construct with internal structural stainless steel bracing. Cover shall be gasketed.

E. Cast-Aluminum Boxes: Molded of copper free aluminum, with gasketed cover and integral threaded conduit entrances.

F. Malleable or Cast-Iron Boxes: Molded of iron alloy with gasketed cover and integral threaded conduit entrances.

G. Boxes Approved for Classified Locations: Cast metal boxes conforming to UL 886, "Outlet Boxes and Fittings for Use in Hazardous (Classified) Locations," listed and labeled for use in the specific location classification, and with the specific hazardous material encountered. Conduit entrances shall be integral threaded type.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL:

A. Locations: Install items where indicated and where required to suit code requirements and installation conditions.

B. Cap unused knockout holes where blanks have been removed and plug unused conduit hubs.

C. Support and fasten items securely in accordance with Division 26 Section on Supporting Devices.

D. Sizes shall be adequate to meet NEC volume requirements, but in no case smaller than sizes indicated.

E. Remove sharp edges where they may come in contact with wiring or personnel.

3.2 APPLICATIONS:

A. Outlet Boxes and Fittings: Install outlet and device boxes and associated covers and fittings of materials and NEMA types suitable for each location and in conformance with the following requirements:

1. Interior Dry Locations: Sheet steel, NEMA Type 1.
2. Locations Exposed to Weather or Dampness: Cast metal, NEMA type 3R.
3. Wet Locations: NEMA Type 4 enclosures.
5. Hazardous (Classified) Locations: NEMA type listed and labeled for the location and class of hazard indicated.

B. Pull and Junction Boxes: Install pull and junction boxes of materials and NEMA types suitable for each location except as otherwise indicated.

C. Floor Boxes: In slabs on grade and wet locations use NEMA type 4 boxes. At other locations in slabs, use concrete-tight NEMA 1 boxes.

3.3 INSTALLATION OF OUTLET BOXES:

A. Outlets at Windows and Doors: Locate close to window trim. For outlets indicated above doors center outlets above the door opening except as otherwise indicated.

B. Column and Pilaster Locations: Locate outlet boxes for switches and receptacles on columns or pilasters so the centers of the columns are clear for future installation of partitions.

C. Locations in Special Finish Materials: For outlet boxes for receptacles and switches mounted in desks or furniture cabinets or in glazed tile, concrete block, marble, brick, stone or wood walls, use rectangular shaped boxes with square corners and straight sides. Install such boxes without plaster rings. Saw cut all recesses for outlet boxes in exposed masonry walls.

D. Gasketed Boxes: At the following locations use malleable or cast metal, threaded hub type boxes with gasketed weatherproof covers:

1. Exterior locations.
2. Where surface mounted on unfinished walls, columns or pilasters. (Cover gaskets may be omitted in dry locations).
3. Where exposed to moisture laden atmosphere.
4. At food preparation equipment within four ft. of steam connections.
5. Where indicated.

E. Mounting: Mount outlet boxes for switches with the long axis vertical or as indicated. Mount boxes for receptacles vertically, except above counter receptacles to be mounted horizontally. Three or more gang boxes shall be mounted with the long axis horizontal. Locate box covers or device plates so they will not span different types of building finishes either vertically or horizontally. Locate boxes for switches near doors on the side opposite the hinges and close to door trim, even though electrical floor plans may show them on hinge side. Provide far side box supports, for electrical switch boxes installed on metal studs and provide stud to stud support for electrical receptacle boxes installed on metal studs.

F. Ceiling Outlets: For fixtures, where wiring is concealed, use outlet boxes 4 inches square by 1-1/2 inches deep, minimum.

G. Cover Plates for Surface Boxes: Use plates sized to box front without overlap.

H. Protect outlet boxes to prevent entrance of plaster, and debris. Thoroughly clean foreign material from boxes before conductors are installed.

I. Concrete Boxes: Use extra deep boxes to permit side conduit entrance without interfering with reinforcing, but do not use such boxes with over 6 inch depth.

J. Floor Boxes: Install in concrete floor slabs so they are completely enveloped in concrete except for the top. Where normal slab thickness will not envelop box as specified above, provide increased thickness of the slab. Provide each compartment of each floor box with grounding terminal consisting of a
washer-in-head machine screw, not smaller than no. 10-32, screwed into a tapped hole in the box. Adjust covers of floor boxes flush with finished floor.

K. Existing Outlet Boxes: Where extension rings are required to be installed, drill new mounting holes in the rings to align with the mounting holes on the existing boxes where existing holes are not aligned.

L. Back to back outlet boxes are not permitted. Separate boxes a minimum of 6 inches in standard walls and 24 inches in acoustical walls.

M. BSL2 and BSL3 Spaces: Use Cast Bell Boxes fully sealed with all threaded connections and seal off fittings in accessible spaces where conduits enter/exit space.

3.4 INSTALLATION OF PULL AND JUNCTION BOXES:

A. Box Selection: For boxes in main feeder conduit runs, use sizes not smaller than 8 inches square by 4 inches deep. Do not exceed 6 entering and 6 leaving raceways in a single box. Quantities of conductors (including equipment grounding conductors) in pull or junction box shall not exceed the following:

<table>
<thead>
<tr>
<th>Size of Largest Conductors in Box</th>
<th>Maximum no. of Conductors in Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4/0 AWG</td>
<td>30</td>
</tr>
<tr>
<td>250 MCM</td>
<td>20</td>
</tr>
<tr>
<td>500 MCM</td>
<td>15</td>
</tr>
<tr>
<td>Over 500 MCM</td>
<td>10</td>
</tr>
</tbody>
</table>

B. Cable Supports: Install clamps, grids, or devices to which cables may be secured. Arrange cables so they may be readily identified. Support cable at least every 30 inches inside boxes.

C. Mount pull boxes in inaccessible ceilings with the covers flush with the finished ceiling.

D. Size: Provide pull and junction boxes for telephone, signal, and other systems at least 50 percent larger than would be required by Article 370 of NEC, or as indicated. Locate boxes strategically and provide shapes to permit easy pulling of future wires or cables of types normal for such systems.

3.5 GROUNDING:

A. Electrically ground metallic cabinets, boxes, and enclosures. Where wiring to item includes a grounding conductor, provide a grounding terminal in the interior of the cabinet, box or enclosure.

3.6 CLEANING AND FINISH REPAIR:

A. Upon completion of installation, inspect components. Remove burrs, dirt, and construction debris and repair damaged finish including chips, scratches, abrasions and weld marks.

B. Galvanized Finish: Repair damage using a zinc-rich paint recommended by the tray manufacturer.

C. Painted Finish: Repair damage using matching corrosion inhibiting touch-up coating.

END OF SECTION
SECTION 26 05 53 – IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY:

A. This Section includes identification of electrical materials, equipment, and installations. It includes requirements for electrical identification components including but not limited to the following:

1. Identification labeling for raceways, cables, and conductors.
2. Operational instruction signs.
3. Warning and caution signs.
4. Equipment labels and signs.

1.2 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product Data for each type of product specified.

C. Schedule of identification nomenclature to be used for identification signs and labels for each piece of equipment shall include, but not be limited to, the following equipment types as specified in Division 26.

1. Cabinets and enclosures
2. Transformers
3. Panelboards
4. Disconnect switches
5. Circuit breakers and switches
6. Fire alarm system panels and all ancillary cabinets and equipment
7. Identification required in this section shall apply to equipment furnished in Division 26 and any other applicable Divisions including Division 23.

1.3 QUALITY ASSURANCE:

A. ANSI Compliance: Comply with requirements of ANSI Standard A13.1, "Scheme for the Identification of Piping Systems," with regard to type and size of lettering for raceway and cable labels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Ideal Industries, Inc.
2. LEM Products, Inc.
3. Markal Corp.
4. Panduit Corp.
5. W.H.Brady, Co.
2.2 ELECTRICAL IDENTIFICATION PRODUCTS:

A. Identify System Raceways with Painted Couplings & Connectors: Provide painted couplings &
connectors for all concealed raceways. Install painted couplings at all conduit connecting couplings
including end couplings at stub outs. Refer to UCD Standards for colors.

B. Adhesive Marking Labels for Exposed Raceway and Busway: Pre-printed, flexible, self-adhesive labels
with legend indicating voltage and service (Emergency, Lighting, Power, Power D.C., HVAC,
Communications, Control, Fire).

1. Label Size for Raceways and Busway: Kroy or Brother Labels 1 inch high by 12 inches long
(minimum) with 5/8 inch minimum height letters.

C. Provide colored Adhesive Marking Tape for banding Wires and Cables: Self-adhesive vinyl tape not less
than 3 mils thick by 1 inch to 2 inches in width. Make each color band completely encircling cables, at
penetrations of walls and floors, at each junction box and at 20-foot maximum intervals in straight runs.

D. Wire/Cable Designation Tape Markers: Vinyl or vinyl-cloth, self-adhesive, wraparound, cable/conductor
markers with preprinted numbers and letter.

E. Engraved, Plastic-Laminated Labels, Signs and Instruction Plates: Engraving stock melamine plastic
laminate, 1/16 inch minimum thick for signs up to 20 square inches, or 8 inches in length; 1/8 inch thick
for larger sizes. Engraved legend in white letters on black face for normal and white letters on red face
for emergency, black letters on yellow face for UPS and punched for mechanical fasteners. Where
required for ground connections, provide engraved legend in white letters on green face.

F. Fasteners for Plastic-Laminated and Metal Signs: Self-tapping stainless steel screws or number 10/32
stainless steel machine screws with nuts and flat and lock washers.

G. Cable Ties: Fungus-inert, self-extinguishing, one-piece, self-locking nylon cable ties, 0.18-inch
minimum width, 50 lb minimum tensile strength, and suitable for a temperature range from minus 50
degrees F to 350 degrees F. Provide ties in specified colors when used for color coding.

H. Adhesive Marking Tape for Device Cover Plates: 3/8 inch Kroy tape or Brother labels with 3/16 inch
minimum height letters. Tape shall have black letters on clear background for normal and red letters on
clear background for emergency. Embossed Dymo-Tape labels are not acceptable.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Lettering and Graphics: Coordinate names, abbreviations, colors, and other designations used in
electrical identification work with corresponding designations specified or indicated. Install numbers,
lettering, and colors as approved in submittals and as required by code.

B. Install identification devices in accordance with manufacturer's written instructions and requirements of
NEC.

C. Sequence of Work: Where identification is to be applied to surfaces that require finish, install
identification after completion of finish work.

D. Conduit Identification: Label conduits with painted couplings & connectors concealed or with labels at
10 foot intervals (medium voltage or exposed) to identify all conduits run exposed or located above
accessible ceilings. Conduits located above non-accessible ceiling or in floors and walls shall be labeled
within 3 feet of becoming accessible. Labels for multiple conduits shall be aligned and read the same direction. Use the colors as identified above:

E. Identify Junction, Pull and Connection Boxes: Identification of systems and circuits shall indicate system voltage and identity of contained circuits on outside of box cover. Color code shall be same as conduits for pressure sensitive labels. Use self-adhesive marking tape labels at exposed locations and indelible black marker at concealed boxes. All fire alarm boxes shall have covers painted red. All temperature control boxes shall have covers painted blue.

F. Circuit Identification: Tag or label conductors as follows:

1. Future Connections: Conductors indicated to be for future connection or connection under another contract with identification indicating source and circuit numbers.
2. Multiple Circuits: Where multiple branch circuits, control wiring or communications/signal conductors are terminated or spliced in a box or enclosure, label each conductor or cable with circuit number. For control and communications/signal wiring, use wire/cable marking tape at terminations in wiring boxes, troughs and control cabinets. Use consistent letter/number conductor designations throughout on wire/cable marking tapes.
3. Match identification markings with designations used in panelboards shop drawings, Contract Documents, and similar previously established identification schemes for the facility's electrical installations.

G. Apply warning, caution and instruction signs and stencils as follows:

1. Install warning, caution or instruction signs where required by NEC, where indicated, or where reasonably required to assure safe operation and maintenance of electrical systems and of the items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions or explanations are needed for system or equipment operation. Install butyrate signs with metal backing for outdoor items.
2. Emergency Operating Signs: Install, where required by NEC, where indicated, or where reasonably required to assure safe operation and maintenance of electrical systems and of the items to which they connect, engraved laminate signs with white legend on red background with minimum 3/8 inch high lettering for emergency instructions on power transfer, load shedding, or other emergency operations.
 a. Provide sign at main service entrance switch, indicating type and location of on-site stand-by generator as required by NEC. Sign shall read “Secondary Source Provided by Engine Generator Located In Room NAME and NUMBER”.

H. Install equipment/system circuit/device identification as follows:

1. Apply equipment identification labels of engraved plastic-laminate on each major unit of electrical equipment in building, including central or master unit of each electrical system. This includes communication/signal/alarm systems, unless unit is specified with its own self-explanatory identification. Text shall match terminology and numbering of the Contract Documents and shop drawings. Apply labels for each unit of the following categories of electrical equipment.
 a. Panelboards, electrical cabinets and enclosures.
 b. Access doors and panels for concealed electrical items.
 c. Dimmers.
 d. Control devices.
 e. Transformers.
 f. Fire alarm master station or control panel.
I. Apply circuit/control/item designation labels of engraved plastic laminate for disconnect switches, breakers, pushbuttons, pilot lights, motor control centers, and similar items for power distribution and control components above, except panelboards and alarm/signal components, where labeling is specified elsewhere.

J. For panelboards, provide framed, typed circuit schedules (label all spares and spaces in pencil) with explicit description and identification of items controlled by each individual breaker.

K. Tag all grounding electrode conductors, associated bonding conductors, and grounding conductors at their point of attachment to any ground bus and grounding electrode (where possible) with a 2 inch diameter round green phenolic nameplate. Lettering shall be 1/4 inch high with 1/5 inch between lines centered on the tag stating "DO NOT DISCONNECT," "MAIN GROUND." Nameplate shall attach to conductor with a short length of small chain.

L. Install labels at locations as required and at locations for best convenience of viewing without interference with operation and maintenance of equipment.

M. Provide tape labels for identification of individual receptacles including receptacles in furniture systems and light switch wall-plates. Locate tape on front of plate and identify panel/branch circuit serving the receptacle. Provide tape labels for identification of individual switches or thermal overload switches which serve as equipment disconnects. Locate the tape on the front of the cover-plate and identify panel/branch circuit serving the equipment.

END OF SECTION
SECTION 26 05 83 – WIRING CONNECTIONS

PART 1 - GENERAL

1.1 SUMMARY:

A. Extent of electrical connections for equipment is indicated by drawings and schedules. Electrical connections are hereby defined to include connections used for providing electrical power to equipment.

B. Applications of electrical power connections specified in this section include the following:
 1. To resistive heaters.
 2. From electrical source to motor starters.
 3. From motor starters/motor controllers/VFD's/etc. to motors.
 4. To lighting equipment.
 5. To converters, rectifiers, transformers, inverters, rheostats, and similar current adjustment features of equipment.
 6. To grounds including earthing connections.
 7. To master units of communication, signal, alarm, clock, public address, sound, and video systems.
 8. From push buttons to equipment requiring electrical connection.
 9. Other connections as shown.

1.2 QUALITY ASSURANCE:

A. Manufacturers: Firms regularly engaged in manufacture of electrical connectors and terminals, of types and ratings required, and ancillary connection materials, including electrical insulating tape, soldering fluxes, and cable ties, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firms with at least 2 years of successful installation experience with projects utilizing electrical connections for equipment similar to that required for this project.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product Data: Submit manufacturer's data on electrical connections for equipment products and materials. All mechanical and plumbing equipment shall be coordinated with unit nameplate information per the actual nameplate to be included on the equipment. As a minimum, information shall include: Operating Voltage; MCA (Min. circuit amperes); FLA (Full load amperes); MFS (Max. fuse size) or MOP (Max. overcurrent protection); and SCCR (Short Circuit Current Rating) and shall match electrical equipment and protection/distribution sizes and be rated for available short circuit currents as shown on the drawings. Bracing for equipment shall be provided at incoming terminals and as an option throughout the equipment for the available fault current or downstream equipment and devices shall be protected by current limiting fuses.

1.4 DEFINITIONS:

A. Load voltage wiring shall be defined as:
1. Conduit and wiring required to carry power to motors and other equipment or devices. Wiring from control devices to equipment that carry power to drive that equipment such as line voltage thermostats, etc., shall be included as load voltage wiring. Wiring that provides power to control panels, control transformers, control relays, time clocks, etc., shall also be included as load voltage wiring.

1.5 DELIVERY, STORAGE, AND HANDLING:

A. Deliver electrical connection products wrapped in proper factory fabricated type containers.

B. Store electrical connection products in original cartons and protect from weather, construction traffic and debris.

C. Handle electrical connection products carefully to prevent breakage, denting, and scoring finish.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide circuit and motor disconnects by one of the following:

1. General Electric Co.
2. Eaton
3. Square D Company
5. Westinghouse Electric Corp.

2.2 GENERAL:

A. Overcurrent Protective Devices (OCPDs): Provide type, rating, and features as indicated. Comply with Division 26 Section on Low Voltage Circuit Protective Devices, with OCPDs adapted to equipment connection installation. Tandem circuit breakers shall not be used. Multiple breakers shall have common trip.

B. Provide motor controllers that are horsepower rated to suit the motor controlled.

C. Contacts shall open each ungrounded connection to the motor. Contacts shall be NEMA rated, 75 degrees C.

D. Overload relays shall be ambient-compensated type with inverse-time-current characteristic. Provide with heaters or sensors in each phase matched to nameplate full load current of the specific motor to which connected with appropriate adjustment for duty cycle and power factor correction supplied with the motor.

2.3 MATERIALS AND COMPONENTS:

A. General: For each electrical connection indicated, provide complete assembly of materials, including but not necessarily limited to, pressure connectors, terminals (lugs), electrical insulating tape, electrical solder, electrical soldering flux, heat-shrinkable insulating tubing, cable ties, solderless wire-nuts, disconnect, starter, contactor, relays, etc., and other items and accessories as needed to complete splices and terminations of types indicated.

B. Metal Conduit, Tubing and Fittings:
1. General: Provide metal conduit, tubing and fittings of types, grades, sizes and weights (wall thicknesses) indicated for each type service. Provide products complying with Division-26 section on Raceways.

C. Wires, Cables, and Connectors:

1. General: Provide wires, cables, and connectors complying with Division-26 section on Wires and Cables.
2. Wires/Cables: Unless otherwise indicated, provide wires/cables (conductors) for electrical connections which match, including sizes, ratings, and material of wires/cables which are supplying electrical power.
3. Connectors and Terminals: Provide electrical connectors and terminals which mate and match, including sizes and ratings, with equipment terminals and are recommended by equipment manufacturer for intended applications.
4. Electrical Connection Accessories: Provide electrical insulating tape, heat-shrinkable insulating tubing and boots, electrical solder, electrical soldering flux, wire-nuts and cable ties as recommended for use by accessories manufacturers for type services indicated.
5. Cord and Plug Connected Equipment: Where indicated, contractors shall provide a length of SO cord complete with a straight blade or twist-lock receptacle for connection of equipment. Cord and plug rating shall be suitable for the connected equipment load and rating of the branch circuit overcurrent protective device. Plug shall match receptacle configuration included on the plans and cord length shall be as required. Contractor shall connect cord to equipment.

2.4 MANUAL MOTOR STARTERS:

A. Manual starters shall be flush-mounting type except where conduits are run exposed or as otherwise noted. Manual starters shall be complete with properly sized overload protection and neon pilot light. Manual starters shall be Square D Class 2510 or Allen-Bradley Bulletin 600 with stainless steel plates.

B. Heater units in all manual motor starters shall be sized for approximately 115 percent of full load motor current. Check and coordinate all thermal protective devices with the equipment they protect.

2.5 CIRCUIT AND MOTOR DISCONNECT SWITCHES:

A. General: Provide circuit and motor disconnect switches in types, sizes, duties, features, ratings, and enclosures as indicated. All equipment with maximum fuse size listed in nameplate shall have fusible disconnect switch provided. Provide NEMA 1 enclosure. For outdoor switches and switches indicated as weatherproof, provide NEMA 3R enclosures with rain-tight hubs. For motor and motor starter disconnects, provide units with horsepower ratings suitable to the loads.

B. Fusible Switches: Provide UL type "HD" 100 percent duty rated switches, with fuses of classes and current ratings indicated. Where current limiting fuses are indicated, provide switches with non-interchangeable feature suitable only for current limiting type fuses. All disconnect switches shall be fusible unless otherwise noted.

C. Non-fusible Disconnects: Provide UL type "HD" 100 percent duty rated switches of classes and current ratings as indicated.

D. Double-Throw Switches: Provide heavy duty switches of classes and current ratings as indicated.

E. Switches for Classified (Hazardous) Locations: Provide heavy duty switches, with UL labels and listings for hazardous location classifications in which installed.

F. Accessories:
1. Electrical Interlocks: Provide number and arrangement of interlock contacts in switches as indicated or required.

2. Special Enclosure Material: Provide special enclosure material as follows for switches indicated:
 a. Stainless Steel Type 304: For NEMA Type 4.
 b. Molded Fiberglass Reinforced Plastic: For NEMA Type 4x.
 c. Heavy Cast Aluminum: For hazardous locations. NEMA Types 7 through 9.

3. Handles shall be lockable in open and closed position without modification.

4. Disconnect switches provided in the motor feeders between a VFD and the motor shall be provided with auxiliary contacts at the disconnect that de-energizes power to the VFD.

2.6 MOTOR STARTERS:
 A. See Division 23 for Requirements

2.7 AUXILIARY CONTROL DEVICES:
 1. Built in 120 volts control circuit transformer, fused from line side, where service exceeds 120 volts.
 2. Ammeters, Voltmeters, and Frequency Meters: Panel type, 2-1/2 inch minimum size with 90 degree or 120 degree scale and plus or minus 2 percent accuracy. Where indicated. Current Sensors: Rated to suit application.

PART 3 - EXECUTION

3.1 INSPECTION:
 A. Inspect area and conditions under which electrical connections for equipment are to be installed and notify Contractor in writing of conditions detrimental to proper completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner acceptable to Installer.

3.2 INSTALLATION OF ELECTRICAL CONNECTIONS:
 A. Furnish, set in place, and wire (except as may be otherwise indicated) all heating, ventilating, air conditioning, plumbing and fire protection, elevator, etc., motors and controls in accordance with the following schedule and in accordance with equipment manufacturer's written instructions and with recognized industry practices, and complying with applicable requirements of UL, NEC and NECA's "Standard of Installation" to ensure that products fulfill requirements. Carefully coordinate with work performed under the Mechanical Division of these Specifications.

 B. Coordinate with other work, including wires/cables, raceway and equipment installation, as necessary to properly interface installation of electrical connections for equipment with other work.

 C. Connect electrical power supply conductors to equipment conductors in accordance with equipment manufacturer's written instructions and wiring diagrams. Mate and match conductors of electrical connections for proper interface between electrical power supplies and installed equipment.

 D. Maintain existing electrical service and feeders to equipment serving occupied areas and operational facilities, unless otherwise indicated, or when authorized otherwise in writing by Owner, or Architect/Engineer. Provide temporary service during interruptions to existing facilities. When necessary, schedule momentary outages for replacing existing wiring systems with new wiring systems. When that "cutting over" has been successfully accomplished, remove, relocate, or abandon existing wiring as indicated.
E. Cover splices with electrical insulating material equivalent to, or of greater insulation resistivity rating, than electrical insulation rating of those conductors being spliced.

F. Prepare cables and wires, by cutting and stripping covering armor, jacket, and insulation properly to ensure uniform and neat appearance where cables and wires are terminated. Exercise care to avoid cutting through tapes which will remain on conductors. Also avoid "ringing" copper conductors while skinning wire.

G. Trim cables and wires as short as practicable and arrange routing to facilitate inspection, testing and maintenance.

H. Tighten connectors and terminals, including screws and bolts, in accordance with equipment manufacturers published torque tightening values for equipment connectors. Accomplish tightening by utilizing proper torqueing tools, including torque screwdriver, beam-type torque wrench, and ratchet wrench with adjustable torque settings. Where manufacturer's torqueing requirements are not available, tighten connectors and terminals to comply with torqueing values contained in UL's 486A.

I. Install pre-finished cord set where connection with attachment plug is indicated or specified, or use attachment plug with suitable strain-relief clamps.

J. Provide suitable strain relief clamps for cord connection to outlet boxes and equipment connection boxes.

K. Make wiring connections in control panel or in wiring compartment of pre-wired equipment and interconnecting wiring in accordance with manufacturer's instructions.

L. Install disconnect switches, controllers, control stations, and control devices such as limit switches and temperature switches as indicated or per manufacturer's instructions.

M. Provide each motor with a fused disconnect switch for 3 phase motors and horsepower rated and/or thermal rated disconnect switch for single phase motors as shown on schedules or required. Coordinate with manufacturers of standalone, packaged and other equipment for factory installed and field installed motors and controllers.

N. Provide circuit and motor disconnect switches as indicated and where required by Code. Comply with switch manufacturers printed installation instructions. Install within sight of motors.

O. All splices in control panels, terminal junction boxes, low voltage control circuits and fire alarm conductors shall be on numbered terminal strip.

P. Each branch circuit serving dedicated, isolated or emergency receptacles, multi-outlet assemblies or equipment connections shall be furnished with a dedicated neutral conductor. Neutrals common to more than one circuit shall only be permitted where specifically noted.

Q. Where conduit is not required, plenum rated cable shall be provided in ceiling, floor or other air plenum spaces.

3.3 FIELD QUALITY CONTROL:

A. Upon completion of installation of electrical connections, and after circuitry has been energized with rated power source, test connections to demonstrate capability and compliance with requirements. Ensure that direction of rotation of each motor fulfills requirement. Correct malfunctioning units at site, then retest to demonstrate compliance.
3.4 EQUIPMENT CONNECTION SCHEDULES:

A. Mechanical Equipment:

1. Refer to Mechanical Equipment Schedule on the drawings.
2. It is suggested that all load voltage wiring shall be provided under Division 26.
3. Unless otherwise indicated, it is suggested that all equipment motors and control shall be furnished, set in place, and wired in accordance with the schedule contained herein. The exact furnishing and installation of the equipment is left to the Contractors involved. Contractor should note that the intent of this schedule is to have the Contractor responsible for coordinating all wiring as outlined, whether or not specifically called for by the Division 23 or Division 26 drawings and specifications. Comply with the applicable requirements of Division 26 for all electrical work which is not otherwise specified. No extras will be allowed for contractor's failure to provide for these required items. Contractor shall refer to the Division 26 and Division 23 specifications and plans for all power and control wiring and shall advise the Architect/Engineer of any discrepancies prior to bidding.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>FURNISHED BY</th>
<th>SET BY</th>
<th>CONTROL WIRING (non-load voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mechanical Equipment Motors</td>
<td>M</td>
<td>M</td>
<td>--</td>
</tr>
<tr>
<td>2. Special Equipment (i.e., elevators, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Motors</td>
<td>G</td>
<td>G</td>
<td>--</td>
</tr>
<tr>
<td>b. Magnetic Motor Starters</td>
<td>G</td>
<td>E*</td>
<td>--</td>
</tr>
<tr>
<td>c. Disconnect Switches</td>
<td>E</td>
<td>E</td>
<td>--</td>
</tr>
<tr>
<td>d. Thermal OL Switches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Manual Operating Switches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Motor Starters, combination motor starter/disconnect and Variable Frequency Drives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Automatically controlled, with or without HOA switches.</td>
<td>M</td>
<td>E*</td>
<td>M</td>
</tr>
<tr>
<td>b. Manually controlled.</td>
<td>M</td>
<td>E*</td>
<td>--</td>
</tr>
<tr>
<td>c. Starters integral with motor control center including control relays and transformers.</td>
<td>E</td>
<td>E</td>
<td>--</td>
</tr>
<tr>
<td>d. Combination Starter/Disconnects</td>
<td>M</td>
<td>E*</td>
<td>M</td>
</tr>
<tr>
<td>4. Pushbutton stations, pilot lights</td>
<td>M</td>
<td>E*</td>
<td>M</td>
</tr>
<tr>
<td>5. Disconnect switches, thermal overload switches, manual operating switches.</td>
<td>E</td>
<td>E*</td>
<td>M</td>
</tr>
<tr>
<td>6. Multi-speed switches</td>
<td>M</td>
<td>E*</td>
<td>M</td>
</tr>
<tr>
<td>7. Control relays, transformers.</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>8. Load voltage control items such as line voltage thermostats not connected to control panel systems.</td>
<td>M</td>
<td>M</td>
<td>E</td>
</tr>
<tr>
<td>9. Non-load voltage control items.</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>ITEM</td>
<td>FURNISHED BY</td>
<td>SET BY</td>
<td>CONTROL WIRING (non-load voltage)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>10. Electric thermostats, remote bulb thermostats, motor valves, float controls, etc., which are an integral part of mechanical equipment or directly attached to ducts, pipes, etc.</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>11. Motor valves, damper motor, solenoid valves, EP and PE switches, VAV box controls, actuators, etc.</td>
<td>M</td>
<td>M</td>
<td>M**</td>
</tr>
<tr>
<td>12. Control circuit outlets</td>
<td>E</td>
<td>E</td>
<td>--</td>
</tr>
<tr>
<td>a. Load voltage control items such as line voltage thermostats not connected to control panel systems.</td>
<td>M</td>
<td>M</td>
<td>E</td>
</tr>
<tr>
<td>b. Non-load voltage control items.</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>c. Electric thermostats, remote bulb thermostats, motor valves, float controls, etc., which are an integral part of mechanical equipment or directly attached to ducts, pipes, etc.</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>d. Motor valves, damper motor, solenoid valves, EP and PE switches, VAV box controls, actuators, etc.</td>
<td>M</td>
<td>M</td>
<td>M**</td>
</tr>
<tr>
<td>e. Control circuit outlets</td>
<td>E</td>
<td>E</td>
<td>--</td>
</tr>
<tr>
<td>13. Load voltage control items such as line voltage thermostats not connected to control panel systems.</td>
<td>M</td>
<td>M</td>
<td>E</td>
</tr>
<tr>
<td>14. Non-load voltage control items.</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>15. Electric thermostats, remote bulb thermostats, motor valves, float controls, etc., which are an integral part of mechanical equipment or directly attached to ducts, pipes, etc.</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>16. Motor valves, damper motor, solenoid valves, EP and PE switches, VAV box controls, actuators, etc.</td>
<td>M</td>
<td>M</td>
<td>M**</td>
</tr>
<tr>
<td>17. Control circuit outlets</td>
<td>E</td>
<td>E</td>
<td>--</td>
</tr>
<tr>
<td>18. Load voltage control items such as line voltage thermostats not connected to control panel systems.</td>
<td>M</td>
<td>M</td>
<td>E</td>
</tr>
<tr>
<td>19. Non-load voltage control items.</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>20. Fire protection controls (Including flow switches)</td>
<td>M</td>
<td>M</td>
<td>M**</td>
</tr>
<tr>
<td>21. Duct smoke detectors, including relays for fan shutdown.</td>
<td>E</td>
<td>M</td>
<td>M**</td>
</tr>
<tr>
<td>22. Temperature Control Panel</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>23. Interlocks</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

G = General, Division 13 or 14
M = Mechanical, Division 23
E = Electrical, Division 26
For factory pre-wired equipment specified under other Divisions, all wiring within the equipment shall be by the manufacturer. All required field wiring between sections or other field connection details for power and/or control shall be clearly identified on shop drawings for contractor installation. Division 26 drawings show the provided electrical characteristics for equipment.

Manufacturer's equipment provided under other divisions which varies from what is shown on Division 26 drawings shall be the responsibility of the Contractor to complete and pay for any costs for those variations.

Fire alarm system control modules and wiring from fire alarm contacts to fire alarm system shall be installed by Fire Alarm system installer and match other components of the system. Refer to Division 28. See details.

Integral control wiring under Electrical Division as manufacturer supplied equipment. Control wiring for automatic control portion under Mechanical Division.

4. Owner Furnished Equipment:
 a. Refer to Owner Equipment Schedule on drawings.

5. Laboratory Equipment:
 a. Refer to laboratory plan and elevation drawings and equipment Schedules.
 b. Prior to beginning rough-in, review manufacturer or installer shop drawings for exact locations of all electrical items and to verify mounting requirements.

END OF SECTION
SECTION 26 09 23 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY:

A. Extent of lighting control equipment work is indicated by drawings and schedules, and is hereby defined
to include, but not by way of limitation, programmable controllers, data equipment, relays, switches,
control wiring, and ancillary equipment.

B. Types of lighting control equipment specified in this section include the following:

1. Digital Programmable Lighting Controls
2. Occupancy Sensors
3. Manual Modular Dimming Systems
4. Integrated Multi-preset Manual Modular Dimming Systems
5. Multichannel Remote-Controlled Dimming Systems
6. Lighting Dimmer Racks
7. Time controlled switches
8. Emergency Shunt Relays
9. Photoelectric Relays

C. Refer to other Division-26 sections for wires/cables, electrical boxes and fittings and wiring devices
which are required in conjunction with lighting control equipment work.

1.2 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental
information is listed within this section.

B. Shop Drawings: Submit layout drawings of lighting control equipment and components including, but
not necessarily limited to, programmable controllers, manual override switches and stations,
occupancy/vacancy sensors, dimmers, dimmer system components, daylight sensors, transceivers,
printers, relays and other switches and equipment. Drawings shall show locations and associated
addresses of all devices and equipment. In addition, show spatial relationship of lighting control
equipment to other electrical equipment in proximity. Verify that design sequence of operation and
programmability have been provided for each lighting control zone.

C. Submit lists of Ballast/Driver and Lamp combinations compatible with dimmer systems, by manufacturer
and catalog number.

D. Wiring Diagrams: Submit wiring diagrams for lighting control equipment and components showing
control and interconnection wiring, include connections to equipment components and electrical power
feeders. Differentiate between portions of wiring that are manufacturer-installed and portions that are
field-installed. Provide a voltage drop calculation for network cabling to verify EOL voltage compliance.

E. Coordination Drawings: Submit evidence that lighting controls and devices are compatible with
connected monitoring and control devices. Show interconnecting signal and control wiring and
interfacing devices that prove compatibility of inputs and outputs. For networked controls, list network
protocols and provide statements from manufacturers that input and output devices meet interoperability
requirements of the network protocol.
F. Agreement to Maintain: Prior to time of final acceptance, the Installer shall submit an agreement for continued service and maintenance of lighting control equipment, for Owner's possible acceptance. Offer terms and conditions for furnishing parts and providing continued testing and servicing, including replacement of materials and equipment, for one year period with option for renewal of Agreement by Owner.

G. Maintenance Manuals: Ensure manual includes operating instructions in addition to instructions for maintenance of the system's software package.

H. Software licenses and upgrades required by and installed for operation and programming of digital and analog devices.

I. Commissioning Report: Submit Preliminary and Final Commissioning Report for all Lighting Control Equipment. Preliminary report shall be submitted no later than 90 days of the date of receipt of the certificate of occupancy. Reports shall be organized and include information as required by the current edition of the IECC-International Energy Conservation Code.

1.3 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of lighting control equipment and ancillary equipment, of types, ratings and capacities required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firm with at least 5 years of successful installation experience on projects with lighting control equipment work similar to that required for this project.

C. Agreement to Maintain: Engage Installer who is willing to execute with the Owner, required agreement for continued maintenance of lighting control equipment.

D. FCC Compliance: Comply with Part 68 of Federal Communications Commission Rules pertaining to telephone equipment registration by manufacturer.

1. Provide telephone equipment with FCC labels indicating applicable FCC registration and numbering of equipment.

E. Codes and Standards:

2. Electrical Code Compliance: Comply with applicable local electrical code requirements of the authority having jurisdiction and NEC as applicable to construction, installation of lighting control and communications equipment.

3. Control wiring shall be in accordance with the NEC requirements for Class 2 remote control systems, Article 725 and manufacturer specification.

4. UL Compliance: Comply with applicable requirements of UL Std. 486A, "Wire Connectors and Soldering Lugs for Use with Copper Conductors." Provide lighting control equipment and components which are UL-listed and labeled. Lighting control panels shall be UL 916 and UL 924 Listed.

5. NEMA Compliance: Comply with applicable requirements of NEMA's Std. Pub No. 250, "Enclosures for Electrical Equipment (1000-Volts Maximum)."

6. EIA Compliance: Comply with applicable requirements of Electronic Industries Association standards pertaining to telephone and electronic systems.
1.4 DELIVERY, STORAGE AND HANDLING:

A. Deliver lighting control equipment and components in factory-fabricated type containers or wrappings, which properly protect equipment from damage.

B. Store lighting control equipment in original packaging and protect from weather and construction traffic. Wherever possible, store indoors; where necessary to store outdoors, store above grade and enclose with watertight wrapping.

C. Handle lighting control equipment carefully to prevent physical damage to equipment and components. Do not install damaged equipment; remove from site and replace damaged equipment with new.

1.5 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Electrically Held Relays: Equal to 5% of amount installed.
2. Occupancy/Vacancy Sensors: Equal to 5% of the amount installed for each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide lighting control equipment of one of the following (for each type and rating of equipment):

1. Digital programmable lighting controls:
 a. Sensor Switch – nLight

2. Occupancy/Vacancy Sensors:
 a. Sensor Switch – nLight

3. Automatic Load Control Relays (ALCR) and Emergency Shunt Relays (ESR):
 a. Sensor Switch – nLight

2.2 DIGITAL PROGRAMMABLE LIGHTING CONTROLS:

A. General: Provide factory-fabricated lighting control equipment and ancillary components of sizes, types, ratings and electrical characteristics indicated; consisting of programmable controllers, data equipment, relays, switches, control wiring, interfaces to dimming systems, and interfaces to building management systems which comply with manufacturer's standard design, materials and components; and construct in accordance with published product information for duty indicated, and as required for a complete installation.

2.3 OCCUPANCY/VACANCY SENSORS:

A. Wall or ceiling-mounting, solid-state units with a separate relay unit.

1. Passive Infrared, Ultrasonic, Microphonic, or Dual Technology. Provide Dual Technology Devices unless otherwise shown. Spacing and coverage per the manufacturer’s recommendations.
2.4 AUTOMATIC LOAD CONTROL RELAYS (ALCR)/ EMERGENCY SHUNT RELAY UNITS (ESR):

A. Self-contained ALCR/ESR units shall comply with and be listed under UL 924.

1. Operation: Normally-closed electrically-held relay to be wired in parallel with control switch/relay. Relay automatically turns lamp on when power supply circuit voltage drops to 80 percent of nominal voltage or below. Unless otherwise indicated ALCR/ESR shall control as follows:

 a. Emergency luminaires shown in rooms with other switched luminaires (Not indicated “NL” (night light) and/or connected to an always on emergency circuit) provide ALCR/ESR to allow indicated control of all luminaires in space. Provide room controller or other devices necessary to accommodate dimming and other control equipment and requirements. Emergency lights in space shall be brought to full brightness from emergency circuit whenever the normal circuit serving the room loses voltage. Sensing from panelboard feeders is not acceptable; sensing shall be accomplished at the branch circuit level. Normal lighting and controls shall be restored automatically when normal power is available.

 b. Egress lighting shall meet requirements of NFPA 101.

2. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.

3. LED Indicator Light: Indicates status of normal and emergency power.

PART 3 - EXECUTION

3.1 EXAMINATION:

A. Examine areas and conditions under which lighting control equipment is to be installed and notify Contractor in writing of conditions detrimental to proper completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner acceptable to the Installer.

3.2 INSTALLATION OF LIGHTING CONTROL EQUIPMENT:

A. Install lighting control system components and ancillary equipment as indicated, in accordance with equipment manufacturer's written instructions, and with recognized industry practices, to ensure that lighting control equipment complies with requirements. Comply with requirements of NEC, and applicable portions of NECA's "Standard of Installation" pertaining to general electrical installation practices.

B. Low voltage control wiring terminations shall be made within electrical boxes.

C. Coordinate with other electrical work, including raceways, and electrical boxes and fittings, as necessary to interface installation of lighting control equipment work with other work.

D. Interconnect lighting control equipment with building management system, after lighting equipment installation work has been completed and is operating properly. Define groups in the lighting control system to interface with the building management system as indicated on the temperature control matrix.

E. Tighten electrical connectors and terminals, including screws and bolts, in accordance with equipment manufacturer's published torque tightening values for equipment connectors. Where manufacturer's torquing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL Std. 486A and B.
F. Co-locate equipment as much as practical for ease of maintenance.

3.3 GROUNDING:

A. Provide equipment grounding connections for lighting control equipment as indicated. Tighten connectors to comply with tightening torques specified in UL Std. 486A to assure permanent and effective grounding.

3.4 FIELD QUALITY CONTROL:

A. Upon completion of installation and after circuitry has been energized, demonstrate capability and compliance of system with requirements. Where possible, correct malfunctioning units at site, then retest to demonstrate compliance; otherwise, remove and replace with new units, and proceed with retesting. Testing and retesting at no cost to Owner.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust all field-assembled components and equipment installation, including connections, and assist in field testing. Report results in writing with commissioning report.

C. Perform the following field tests and inspections for each piece of equipment and each device and prepare test reports:

1. Test for circuit continuity.
2. Verify that the control module features are operational.
3. Check operation of local override controls.
4. Test system diagnostics by simulating improper operation of several components selected by facilities.

D. Install and program software with initial settings of adjustable values. Make backup copies of software and user-supplied values and submit settings list with Testing and Equipment Settings Report. Provide current licenses for software in O&M manuals.

E. Commissioning Report: Provide Commissioning services required to provide Preliminary and Final Commissioning Report for all Lighting Control Equipment. Preliminary report shall be submitted no later than 90 days of the date of receipt of the certificate of occupancy. Testing and Reports shall be organized and include information as required by the current edition of the IECC.

F. Testing and training shall be provided at times scheduled with the owner and may need to be done off hours.

3.5 PERSONNEL TRAINING:

A. Manufacturer's Field Service indicated above shall include Owner’s maintenance personnel.

B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting controls and software.

C. Provide extra scheduled time with owner to make corrections to the system to meet the functionality/time control requirements desired by the owner. Record any changes in the Testing and Equipment Settings Report and submit final documents.

END OF SECTION
SECTION 26 27 26 - WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY:

A. The extent of wiring device work is indicated by drawings and schedules. Wiring devices are defined as single discrete units of electrical distribution systems which are intended to carry but not utilize electric energy.

B. Types of electrical wiring devices in this section include the following:

1. Receptacles.
2. Ground-fault circuit interrupters.
5. Dimmers.
6. Plugs and connectors.

1.2 QUALITY ASSURANCE:

A. Manufacturers: Firms regularly engaged in manufacture of electrical wiring devices, of types, sizes, and ratings required, whose products have been in satisfactory use in similar service for not less than 3 years.

B. Installer's Qualifications: Firm with at least 2 years of successful installation experience on projects utilizing wiring devices similar to those required for this project.

C. Listing and Labeling: Provide products that are listed and labeled for their applications and installation conditions and for the environments in which installed.

1. The Terms "Listed" and "Labeled": As defined in the "National Electrical Code", Article 100.
2. Listing and Labeling Agency Qualifications: A "Nationally Recognized Testing Laboratory" (NRTL) as defined in OSHA Regulation 1910.7.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Samples of device plates for color selection and evaluation of technical features shall be submitted.

1.4 COORDINATION:

A. Wiring Devices for Owner Furnished Equipment: Match devices to plug connectors for Owner-furnished equipment.

B. Cord and Plug sets: Match cord and plug sets to equipment requirements.
PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide wiring devices of one of the following:

1. Devices:
 a. Hubbell Inc.
 b. Leviton Mfg. Co.
 c. Pass and Seymour Inc.
 d. Cooper Crouse-Hinds Co.
 e. General Electric Co.

2.2 WIRING DEVICES:

A. Color selection shall be verified with UCD Standards prior to ordering. Devices shall be White. All receptacles and switches connected to circuits served from a generator system shall have a red face.

B. Receptacles:

1. All duplex, single, Isolated Ground, Tamper Resistant, Ground Fault Interrupter (GFCI), and other special receptacles shall be minimum, specification grade commercial series, listed by Underwriter's Laboratories, UL 498 and Federal Specification FS W-C-596, 20 amp, nylon face and have a metal mounting strap with self-grounding and have a hex-head green grounding screw and be side and back wired. Each device shall bear the UL/FS Label. Meet NEMA standards for wiring devices including NEMA WD 1 for general requirements and NEMA WD 6 for dimensional standards.

 a. Each device shall have terminal screws and clamps listed for use with stranded wire. Plug-tail device connections are acceptable.

2. Convenience Receptacle Configuration: Duplex or Single as indicated on the drawings, Type 5-20R.

3. Ground-Fault Interrupter Receptacles: Where indicated or required provide "local reset" auto monitoring "self test" ground-fault circuit interrupters. Provide unit capable of being installed in a 2-3/4" deep outlet box without adapter, grounding type, Class A, Group 1 per UL Standard 943. Provide visual indication of lost protection.

4. Receptacles, Industrial Heavy-Duty: Where indicated or required provide connectors that Conform to NEMA Standard PK 4 "Plugs, Receptacles, and cable Connectors of the Pin and Sleeve Type for Industrial Use."

5. Pendant Cord/Connector Devices: Matching, locking type, plug and plug receptacle body connector, NEMA I5-20P and L5-20R, heavy-duty grade.

 b. External Cable Grip: Woven wire mesh type made of high strength galvanized-steel wire strand and matched to cable diameter and with attached provision designed for the corresponding connector.

6. Cord and Plug Sets: Match voltage and current ratings and number of conductors to requirements of the equipment being connected.
a. Cord: Rubber-insulated, stranded copper conductors, with type-SOW-A jacket. Grounding conductor has green insulation. Ampacity is equipment rating plus 30% minimum.

b. Plug: Male configuration with nylon body and integral cable-clamping jaws. Match to cord and to receptacle type intended for connection.

2.3 WIRING DEVICE ACCESSORIES:

A. Verify color and type with Architect/Engineer prior to ordering. Device color to match Wiring Device Color identified above.

B. Wall-plates: Provide wall-plates for single and combination wiring devices, of types, sizes, and with ganging and cutouts as indicated. Select plates which mate and match wiring devices to which attached. Construct with metal screws for securing plates to devices; screw heads colored to match finish of plates. Identify all wall plates used for receptacles with branch circuit number per requirements of section on Electrical Identification. Provide blank wall plates for all cable, data, telephone and junction and outlet boxes. Where cables are routed through the wall-plate, provide grommets in wall-plate openings to protect cables. Provide plates possessing the following additional construction features:

1. Material and Finish: 0.04" thick, type 302 satin finished stainless steel OR Nylon, smooth.

2. Material and Finish: 0.04" thick, type 302 satin finished stainless steel for use in unfinished areas, mechanical, and electrical rooms.

C. Weather proof covers: Where called out on the drawings as “WP” provide weatherproof junction box with gaskets and cover. Cover shall be rated while in use. Use low profile type covers with UV rated and resistant polycarbonate.

PART 3 - EXECUTION

3.1 INSTALLATION OF WIRING DEVICES:

A. Install wiring devices as indicated, in accordance with manufacturer's written instructions, applicable requirements of NEC and in accordance with recognized industry practices to fulfill project requirements.

B. Coordinate with other work, including painting, electrical boxes and wiring work, as necessary to interface installation of wiring devices with other work.

C. Install wiring devices only in electrical boxes which are clean; free from excess building materials, dirt, and debris.

D. Install wiring devices after wiring work is completed.

E. Install wall-plates after painting work is completed.

F. Tighten connectors and terminals, including screws and bolts, in accordance with equipment manufacturer's published torque tightening values for wiring devices. Where manufacturer's torqueing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL Stds. 486A.

G. Install telephone/power service poles in accordance with final furnishing arrangement. Poles shall be plumb, true, and secure.

H. Provide hospital grade devices in all patient care areas and corridors.
I. Provide GFCI type outlets as required in NEC 210, including but not limited to: each above counter duplex receptacle shown within 6 feet-0 inches of sinks/lavatories; Bathrooms; Kitchens; Roof Tops; Outdoors; Indoor Wet locations; Locker Rooms; Shower Facilities; Garages; Service Bays; vending machines; etc. For above counter multi-outlet assemblies which do not contain duplex receptacles that can be replaced with GFCI devices, provide GFCI circuit breakers on the branch circuit(s) feeding the assembly. Where GFCI devices are required and/or shown but are not readily accessible when equipment is installed, i.e. vending machines, etc., provide blank face GFCI device and cover-plate ahead of inaccessible receptacles. Mount adjacent to equipment at switch height unless otherwise shown. Install individual GFCI devices at each location shown, feed through devices are only acceptable where specifically called for.

J. Provide safety type receptacles in all pediatric patient rooms and associated waiting areas and play rooms.

3.2 PROTECTION OF WALLPLATES AND RECEPTACLES:

A. Upon installation of wall-plates and receptacles, advise Contractor regarding proper and cautious use of convenience outlets. At time of Substantial Completion, replace those items which have been damaged, including those burned and scored by faulty plugs.

3.3 GROUNDING:

A. Provide equipment grounding connections for wiring devices, unless otherwise indicated. Tighten connections to comply with tightening torques specified in UL Std. 486A to assure permanent and effective grounds.

3.4 CLEANING:

A. Internally clean devices, device outlet boxes and enclosures. Replace stained, cracked, damaged or improperly painted wall plates or devices. Remove temporary markings of labels.

3.5 TESTING:

A. Prior to energizing circuitry, test wiring for electrical continuity, and for short-circuits. Ensure proper polarity of connections is maintained and prepare test reports. Subsequent to energization, test wiring devices to demonstrate compliance with requirements.

1. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices or similar problems.

2. Tests for Convenience Receptacles:

 a. Line Voltage: Acceptable range is 114 to 126 V.
 b. Ground Impedance: Values of up to 2 ohms are acceptable.
 c. Polarity: Test for correct neutral conduct to neutral terminal connection.
 d. Using the test plug, verify that the device and its outlet box are securely mounted.
 e. GFCI Receptacles: Test for tripping values specified in UL 1436 and UL 943. Test with both local and remote fault simulations in accordance with manufacturing recommendations.
 f. SPD receptacle indicating lights for normal indication check.

3. Test Instruments:

 a. Use instruments that comply with UL 1436.
 b. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.
B. Correct Deficiencies and Report:

1. Correct unsatisfactory conditions and retest to demonstrate compliance; replace devices as required to bring system into compliance.
2. Correct malfunctioning units on-site, where possible and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Prepare a report that identifies enclosure, units, conductors and devices checked and describe results. Include notation of deficiencies detected, remedial action taken, and observations and test results after remedial action.

END OF SECTION
SECTION 28 31 11 - FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 SUMMARY:

A. Drawings indicate general design intent and do not indicate all equipment or devices or the full extent of the System. Provide complete design of the Fire Alarm System. The control panel is existing. Any references to the existing control operation equipment, etc., are for information on system operation. All existing devices such as call boxes, connections, shall remain as existing U.O.N. on drawings.

B. Provide system component devices compatible with the existing system with changes required for proper operation on the new, upgraded equipment.

C. Provide additions and modifications to existing system suitable for type occupancy as defined by local Building Code, as approved by local Fire Marshall, local authority having jurisdiction, and as approved by the Director of Facilities Management.

1.2 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of fire alarm systems of types, sizes, and electrical characteristics required, and whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer's Qualifications: Firm with at least 5 years of successful installation experience on projects with fire alarm systems work similar to that required for this project.

1. Firm with manufacturer's factory trained personnel.
2. Firm with factory authorized service organization and spare parts stock within 50 miles of the project and with a 24 hour response time.
3. Installation shall be accomplished by or supervised by NICET II or higher.

C. Codes and Standards:

1. The complete installation shall conform to the applicable sections of NFPA-72, Local Code Requirements and the National Electrical Code with particular attention to article 760. All control equipment must have transient protection to comply with UL 864 requirements or Standard #497B as applicable.

2. UL Compliance and Labeling: Comply with provisions of UL safety standards pertaining to fire alarm systems; and provide products and components which are UL-listed and labeled.

3. FM Compliance: Provide fire alarm components and accessories which are FM-approved.

4. The fire alarm system and devices shall comply with ADA 1990 and UL 1971 requirements.

5. International Building Code and other applicable local codes and standards.

1.3 SUBMITTALS:

A. See Section 26 05 00 Common Work Results for Electrical for Submittal requirements. Supplemental information is listed within this section.

B. Product Data: Submit manufacturer's technical product data, including specifications, data sheets, wiring diagrams, equipment ratings, dimensions, finishes and descriptions of system operation.
C. Shop Drawings: Provide shop drawing submittal for approval by the local Fire Department and/or The Authority having jurisdiction. The Contractor shall arrange to have the Fire Alarm System shop drawing submittal prepared, sealed, and signed by a professional engineer and NICET III or NICET IV in Fire Alarm Systems if/as required by the authority having jurisdiction. Preparer shall assume the duty of Engineer of Record for the Fire Alarm System design. Provide shop drawings showing system components, including panels and cabinets, locations, quantities, and full schematic of system wiring showing conductor routings and quantities, and connection details. Provide updated room names and numbers that match the names and numbers as labeled at the building. Room names and numbers shown on the contract documents are not necessarily those that are currently being used in the building. The fire alarm manufacturer shall coordinate with the contractor and owner on existing and new work and survey the site on existing work to identify the proper names and numbers. All conduit routing must be submitted to, and accepted by, the Architect/Engineer. Shop drawing documents must be submitted simultaneously with sprinkler system documents and prior to installation.

 1. This information shall be submitted on 1/8" = 1'-0" scale building floor plans. No other systems shall be included on these plans. Reproduction of contract drawing will not be acceptable. The following information shall be included in the shop drawings:

 a. Occupancy group and use.
 b. Number of stories.
 c. Indicate extent of building sprinkler system.
 d. Indicate addition to/modifications of existing system.
 e. One-line diagram showing/indicating number of devices and appliances per zone/circuit.
 f. Wire sizes, color coding, type(s) and voltage drop calculations.
 g. Indicate annunciation method and include graphic zone map.
 h. Addition to or modification of the system shall be distinguishable from the existing and be identified on the floor plans as well as the one-line diagram(s).
 i. Include wiring diagrams for all fire alarm junction boxes (new and existing) impacted by this project. Include wiring numbers on all connections.
 j. Proposed conduit routing, specifically if exposed conduit or wiremold is being proposed. All surface mounted conduit and wiremold routing must be submitted to, and accepted by, the Architect/Engineer.
 k. Connection details for new and existing devices/equipment.
 l. Provide updated room names and numbers that match the names and numbers as labeled at the building. Room names and numbers shown on the contract documents are not necessarily those that are currently being used in the building. The fire alarm manufacturer shall coordinate with the contractor and owner on existing and new work and survey the site on existing work to identify the proper names and numbers.

D. Submit manufacturer's installation instructions, including outlet or back box requirements for each piece of equipment.

E. Submit manufacturer's certificate that system meets or exceeds specified requirements.

F. Submit sequence of operation and verification of system operation by manufacturer or his authorized representative.

G. Submit back-up battery calculations.

H. All shop drawings, battery and voltage drop calculations shall be submitted to the authority having jurisdiction for review after review by the Architect/Engineer.

I. Submit graphic annunciator and/or map layouts for review by the Architect/Engineer prior to fabrication.
J. List all variances and attach as required.

K. Include brief description of scope of work.

L. Submit Zone schedule.

1.4 DELIVERY, STORAGE, AND HANDLING:

A. Handle fire alarm equipment carefully to prevent damage, breaking, and scoring. Do not install damaged equipment or components; replace with new.

B. Store fire alarm equipment in clean, dry place. Protect from weather, dirt, fumes, water, construction debris, and physical damage.

1.5 OPERATION:

A. The system alarm operation subsequent to the alarm activation of any manual station, automatic detection device. When owner has agreed to or asked for revisions to the evacuation plan, all new operational sequences shall be documented and approved in writing.

1.6 SUPERVISION:

A. Supervision shall be unchanged from the existing system. Supervision of additional devices shall be as follows:

1. Provide supervisory service initiation device circuits for connection of all sprinkler valve supervisory (tamper). Device activation shall cause a supervisory alarm at the control panel.

2. Provide independently supervised and independently fused indicating appliance circuits for alarm speakers and flashing alarm lamps. Disarrangement conditions of any circuit shall not affect the operation of other circuits.

3. Auxiliary manual control shall be supervised so that an "off normal" position of any switch shall cause an "off normal" system trouble.

4. Each independently supervised circuit shall include a discrete LCD readout to indicate disarrangement conditions per circuit.

5. The incoming power to the system shall be supervised so that any power failure must be audibly and visually indicated at the control panel and the remote annunciator. A green "power on" LED shall be displayed continuously while incoming power is present.

6. The system batteries shall be supervised so that a low battery condition or disconnection of the battery shall be audibly and visually indicated at the control panel.

7. The System Modules shall be electrically supervised for module placement. Should a module become disconnected the system trouble indicator shall illuminate and the audible trouble signal shall sound.

8. The system shall have provisions for disabling and enabling all circuits individually for maintenance or testing purposes.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS:

A. Manufacturers: Provide materials that mate and match with existing system components. Subject to compliance with requirements, provide fire alarm system components manufactured by the same manufacturer of the existing system.

B. Fire Alarm Cable
2.2 FIRE ALARM AND DETECTION SYSTEMS:

A. General: Provide complete fire alarm products of types, sizes and capacities indicated, which comply with manufacturer's standard design, materials, components; construct in accordance with published product information, and as required for complete installation. Provide fire alarm and detection systems for applications indicated.

B. Wiring System Materials: Provide basic wiring materials which comply with Division-26 sections; "Raceways", "Wires and Cables" and "Electrical Boxes and Fittings".

1. Provide wire and cable in accordance with requirements of manufacturer. Wire insulation shall comply with NEC Article 760.
2. Provide individual solid copper conductor sizes AWG #14, or larger.
3. Provide multi-conductor cables for wire sizes smaller than AWG #16.
4. Provide conductors which are UL listed for the installation and location, and approved for fire alarm usage.
5. Initiating circuits shall be color coded red for positive, red with black strip for negative. Indicating circuits shall be color coded red with yellow stripe for positive, red with brown stripe for negative.
6. All conductors shall be numbered and their numbers shall correspond to the terminal block numbering they are connected to. Provide conductor wiring and terminal block numbering.

C. Power Supplies: Existing system operates on 120 VAC power supply. Provide additional power supplies and other equipment necessary to accommodate new or modified existing devices.

1. Provide battery back-up and increase battery back-up to system as required. Design battery back-up to take over supply to system within 30 seconds of loss of primary system to 85 percent voltage. Provide battery system capable of operation of system for 4-hours under normal conditions and then for 15 minutes under alarm conditions.

D. Provide Control of additional auxiliary services as follows:

1. Fan shut down relays.
3. Start-up of smoke exhaust fans, or stair and elevator pressurization fans.
4. Operation of smoke vents.
5. Exterior flashing lights.
6. Interior flashing strobe lights.
7. Smoke door releases.
8. Fire door releases.
10. Alarm initiation from sprinkler flow switches.
11. Trouble indication from sprinkler valve tamper switches.
12. Alarm initiation from smoke detector operated doors and smoke hatches.
13. Interface with elevators (fire fighter's recall, etc.).

2.3 FIRE ALARM CONTROL PANEL:

A. Connect additional devices to existing fire alarm control panel. Modify and upgrade panel for compatibility with current codes and current UL requirements and as required for the additional features or equipment.
2.4 ADDRESSABLE COMMUNICATION NETWORK:
 A. Extend or modify existing communications network as required for the additional equipment.

2.5 ADDRESSABLE DEVICE TYPES:
 A. General: Devices will be located as shown on the drawings. The location of addressable devices will be
 selected to optimize the system layout in order to provide the level of protection, zone identification and
 control as shown on the drawings.

 B. Addressable Detector Bases: All addressable smoke and heat detector heads will plug into their bases.
 The base will contain electronics that communicate the detector status (normal, alarm, trouble) to the
 control panel over two wires. The same two wires shall also provide power to the base and detector.
 Detector heads (smoke or heat) must be interchangeable. Upon removal of the head, a trouble signal will
 be transmitted to the control panel.

 C. Photoelectric Detector Head: Photoelectric type detectors shall be of the solid state photoelectric type
 and shall contain no radioactive material. They will use a pulsed infrared LED light source and be sealed
 against rear air flow entry. The detector shall fit into an addressable base that is common with both the
 heat and photoelectric type detectors.

 D. Adaptor Module: Adapter Modules shall be used for monitoring of water flow, valve tamper, non-
 addressable detectors, and for control of smoke dampers, door holders, and other output control functions.
 Adapter Modules will be capable of mounting in a standard electric outlet box. Adapter Modules will
 include cover plates to allow surface or flush mounting. Adapter Modules will receive their 24VDC
 power from a separate two wire pair running from an appropriate power supply. There shall be two types
 of devices: Type 1; Monitor Adapter Modules - for conventional 2-wire thermal detector and/or contact
 device monitoring with Class B or Class A wiring supervision. Type 2; Control Adapter Modules - for
 signals, speakers, fire fighter phone jacks and other device control with Class B or Class A wiring
 supervision.

 1. Air Handling Equipment: Provide modules as required for monitor and control of Air Handling
 units such that the unit shall shut down upon detection of smoke at the unit. Provide relays as
 required.

2.6 ALARM SIGNAL DEVICES:
 A. Fire Alarm Speaker/Strobe Combination: Provide high impact resistant red LEXAN speaker /Strobe
 combination devices as shown on the plans. Each assembly shall consist of two independent devices
 which are manufactured as compatible with each other and with the control equipment. Each assembly
 shall provide a terminal strip or wire leads for true in-out wiring connections. The strobe unit shall have a
 candela-second rating in compliance with ADA requirements and be rated at 24 VDC. Strobes shall be
 clear with red letters "FIRE OR ALERT" on two sides.

 1. Provide wall mounting as shown on the plans. Verify manufacturer mounting requirements prior
 to rough in.

 B. Individual Strobe Unit: Provide strobe units mounted where shown. Units shall match those used in the
 combination speaker /strobe specified.

 C. Where multiple strobe units are visible from a single location and the potential visible flash rate is 5 hz or
 more, provide synchronizing modules and strobes compatible for synchronizing as required. Provide
 additional wiring, conduit, and power supplies as necessary.
D. Speakers/Horns have been located on the drawings. It is the Contractor's responsibility to provide adequate coverage to achieve the required 15 dBA above ambient at all locations throughout the building. If locations shown are inadequate, show additional speakers on shop drawing submittal. Additional speakers will be added at no additional cost to the contract including conduit wiring, power supplies, etc. System shall meet NFPA 72 Intelligibility Standards required by AHJ.

PART 3 - EXECUTION

3.1 EXAMINATION:
A. Examine areas and conditions under which fire alarm systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 IDENTIFICATION:
A. Provide electrical identification in accordance with Division-26 "Electrical Identification". SLC and NAC Devices shall be labeled with System Device Address and EOL locations shall be identified at each EOL device.

3.3 INSTALLATION OF BASIC WIRING SYSTEM MATERIALS:
A. Provide raceways and supports per code and UCD standards.
B. Install wiring, raceways, and electrical boxes and fittings in accordance with Division-26 sections; "Raceways", "Wires and Cables", and "Electrical Boxes and Fittings".
C. Install wiring in exposed ivory colored surface metal raceway only where specifically noted as allowed on wall or ceilings.
D. Install wires and cables without splices. Make connections at terminal strips in cabinets or at equipment terminals. Make soldered splices in electronic circuits in control cabinets.
E. Smoke Compartments/High Rise: Protect all Notification (NAC) circuits necessary for the operation of notification devices by a 2-hour rated cable system or a UL2196 protected method until they enter the signaling zone that they serve.

3.4 INSTALLATION OF FIRE ALARM SYSTEMS:
A. Install fire alarm system components as indicated, in accordance with equipment manufacturer's written instructions and complying with applicable portions of NEC and NECA's "Standard of Installation."
B. Wiring: Wiring of fire alarm system is work of this section, but is not specifically detailed on drawings. Refer to the manufacturer's shop drawings for detailed wiring and connection information.
 1. Complete wiring in accordance with manufacturer's requirements. Provide Striped Color coded wiring and install per manufacturer's point-to-point wiring diagram. Determine exact number of wires for each fire area zone from number and types of devices installed. Connect each device with sufficient wiring to complete its intended operation.
 2. Where there are a number of additional power requiring devices such as smoke detectors, fan relays, door holders and smoke damper operators installed in a circuit, group in numbers so power required does not exceed 80 percent of manufacturer's power supply rating. Provide extra wiring, or extra power supplies required to fulfill that requirement. In addition, provide extra or larger size wiring to alleviate voltage drops which makes device operate beyond voltage limits for which
it was designed. Determine above with manufacturer’s representative while equipment is being installed.

C. Mount audible and visual devices per Americans with disabilities Act (ADA) 1990 requirements.

D. The existing system shall remain in operation while the new devices are being installed, tested, and accepted. Make provisions to keep F.A. System active and/or provide fire watch as acceptable to the AHJ and owner so that existing wiring can be reused as practical.

3.5 FIELD QUALITY CONTROL:

A. Connection and Supervision: Make connections to panel under manufacturer's supervision. Complete connections from this cabinet to panel utilizing Manufacturer's technicians.

B. Prior to starting work, establish that the existing system is in proper working order. If condition exists which prevents normal operation of specified additions and extensions, bring this fact to Architect/Engineer's attention prior to doing work affecting existing system. Where work is done without such notification, it is assumed that connections have been made to a working system, and performance requirements and guarantee will apply to entire system.

C. System Test and Approval: Submit shop drawings for function and operation only, pre-approved by authority having local jurisdiction.

1. Prior to final acceptance of system, manufacturer shall, in presence of Contractor and Owner's Representative, test each additional sensing or detection and alarm device including devices and equipment interlocks such as equipment shutdown and smoke dampers. Schedule test with Owner.

2. The completed fire alarm system shall be fully tested in accordance with NFPA-72 by the contractor in the presence of the Owner's representative and the Local Fire Marshal. The contractor shall coordinate the testing of each fire alarm detector added or relocated under this project with the fire department and forward a completed checklist showing each detector operated properly and that proper indication of detector operation occurred at all control panels, annunciator panels, remote indicators, remote test switches, etc. In addition, proper interlocks, door release, etc. shall be documented with specific equipment affected listed by identifier. Upon completion of a successful test, the contractor shall so certify in writing to the Owner and General Contractor.

3. Submit copy of test results in duplicate after signed by Owner's Representative to Architect/Engineer, Owner, and local Fire Protection Authority. Mount copy of inspection record in lexan enclosed frame assembly on control panel.

4. Provide Record of Completion Documentation per NFPA-72.

3.6 MAINTENANCE CONTRACT:

A. Where a maintenance contract exists, the maintenance contractor shall make available to the owner a maintenance contract proposal to increase the scope of the maintenance agreement to provide a minimum of two (2) inspections and tests per year in compliance with NFPA-72 guidelines.

3.7 WARRANTY:

A. The Contractor shall guarantee all equipment and wiring provided under this contract free from inherent mechanical and electrical defects for a period of one year from the date of acceptance as set forth in the general conditions. If sections of the project are phased the acceptance and warranty should start and end at one time unless the project is phased and phased acceptance has been accepted by the owner.
3.8 OPERATING AND MAINTENANCE INSTRUCTIONS:

A. Provide three (3) copies of Operating and Maintenance Instructions in hardback, three-ring binders covering all equipment furnished. Manuals shall include the following information:

1. Name, address and telephone number of authorized service organization to be contacted for each equipment item. The local fire alarm supplier shall have a 24 hour telephone response service. An answering machine shall not be considered acceptable.
2. Parts list and wiring diagram, operating and maintenance instructions for each piece of equipment.
3. Record Set of Shop Drawings: Shop drawings corrected to show as-built conditions. Transfer modifications from field set.
4. Record of voltage sensitivity for each ionization detector head as recorded during final calibration.
5. All wiring diagrams shall show color coding of all connections and mounting dimensions of equipment.

3.9 DEMOLITION:

A. Upon completion of new fire alarm system, after final connections have been made, this contractor shall carefully remove all existing fire alarm apparatus where indicated, including fire alarm control panel, manual stations, audible signals, etc., and turn all such equipment over to Owner.

3.10 PAINTING AND PATCHING:

A. Contractor shall paint all exposed conduit to match adjacent surfaces. All surfaces or finishes damaged as a result of this work shall be properly patched, painted and/or repaired by trained craftsmen of the trade involved.

B. Contractor shall patch and paint where old devices are removed unless the old devices are in block walls or in concrete, where the Contractor shall provide blank plates on boxes. Blank plates shall be painted to match adjacent surfaces.

END OF SECTION