Contents:

3.1 University Program Guidelines

3.2 University Information Systems (Information included in this Section in previous versions of The Manual is now included in Part 4, Division 27, Communications)

3.3 University Utilities Mechanical Infrastructure (Information included in this Section in previous versions of The Manual is now included in Part 4, Division 23 00 00, Heating, Ventilating and Air Conditioning)

3.4 University BL3 Construction Standards (Information included in this Section in previous versions of The Manual is now included in Part 4, Section 01 41 00, Regulatory Requirements)

3.5 University Security (Information included in this Section in previous versions of The Manual is now included in Part 4, Division 28, Electronic Safety and Security)

3.6 High Performance Building Program (Information included in this Section in previous versions of The Manual is now included in Part 1, Section 1.2, University Design Management Administration and in Part 4, Division 1)

3.7 Audio Visual (Information included in this Section in previous versions of The Manual is now included in Part 4, Section 27 40 00, Audio Visual Systems)
3.1 University Program Guidelines

A. Service Entrances

1. The use of campus buildings may change over time. In the design of service areas, allow for flexibility in general use or the buildings.
 a. Locate the service entrance adjacent to storerooms, waste compactor, waste and recycling collection rooms and service elevator, as applicable.
 b. Include parking spaces for service vehicles. Service driveway should accommodate one 30-foot tandem axle vehicle.
 c. Include provisions for drainage and snow/ice removal. Provide weather protection where practicable.

2. The program for some facilities may require an elevated receiving bay or other receiving facility. In an effort to prevent personnel injuries, provide a 5000 lbs. capacity, weatherproof dock leveler. Unless the program requires an elevated receiving bay, provide for grade level loading and unloading.

3. In order to facilitate shipping and receiving, provide a six-foot by seven-foot service entrance door opening. Provide one active and one passive leaf with delayed action closure.

B. Service Elevators

1. Consider providing a service elevator in buildings two stories and higher, located adjacent to the service entrance, as applicable.

2. Consider providing elevator service to all floors in a building, including the roof, where mechanical rooms are located.

4. A “Door Hold” button shall be provided to facilitate loading and unloading.

5. In order to limit access of mechanical rooms to authorized personnel, elevators that open directly into mechanical rooms shall be equipped with a keyed switch, in the car station panel, designated for that landing.

6. Interior cab materials or protective coverings must be provided for the walls and floor, to minimize damage during the movement of any heavy equipment, carts, etc.

7. Consider requiring an analog telephone in every service elevator.

C. General Custodial Requirements

1. General
 a. During each design phase, verify the custodial requirements with University Facilities Operation through the University Project Manager. The equipment and supplies for each building will depend on the interior finishes, program requirements and the size of the building.
b. Provide a minimum of one custodial closet per floor. Locate the custodial closet so that the maximum distance between closets is approximately 250 feet and the area served by each does not exceed 15,000 gross square feet of floor area.

2. Custodial Equipment and Supplies
 a. The following is a list of the type, approximate size and quantity (to be determined by finishes and square footage) of equipment and supplies that will be stored in the buildings:

 1) Auto scrubber, minimum of three feet by five feet floor space, one per floor.
 2) Carpet extractor, minimum of three feet by three feet floor space, one per floor.
 3) 36-inch diameter trash barrel, one per custodial closet.
 4) Vacuum cleaner, minimum of three feet by three feet floor space, one per closet.
 5) 24 inch diameter floor buffer, one per floor and five, one-gallon pails of floor wax.
 6) Case of toilet paper, minimum of two feet by three feet floor space, one per closet.
 7) Case of paper towels, minimum of two feet by three feet floor space, one per closet.
 8) Cleaning materials such as bleach, cleansers, mop heads.

3. Custodial Closets
 a. A minimum of 50 square feet in area, with not less than a six foot width, is necessary for all custodial closets.
 b. Include a 6” deep floor mounted slop sink, hot and cold water, hose faucet with four feet of hose, mop rack for 3 mops, GFI duplex outlets and 20 feet of heavy duty shelving for cleaning supplies. In order to minimize the damage from overflowing slop sinks, spilled cleaning chemicals and spilled equipment reservoirs, provide a floor drain adjacent to the slop sink. Provide a five foot long board six feet above finish floor with hooks or pegs at six inch intervals in order to hang brooms, dust mops (hung by the head with the handle down), vacuum cleaner hoses and dust pans.
 c. In order to accommodate the storage of custodial equipment; provide doors 42-inches wide that open out.
 d. Provide adequate ventilation to compensate for the hydrogen gas that is produced when the battery operated equipment is recharged.

4. Exterior Services Closet
 a. Where appropriate consider providing a closet for exterior services; 80 sq. ft., exterior entrance, grounded duplex outlet and power for sprinkler controller.

D. Waste Disposal
 1. During each design phase, verify with University Facilities Support Services, through the University Project Manager, the requirements for the waste collection areas and the method of disposal, compaction, and hauling. These requirements will vary depending on the program needs and the size of the building.
2. If the volume of trash warrants, a stationary compactor should be located at the service entrance. This will reduce collection costs and keep the dock area clean and clear of trash.

3. If applicable, provide a room, located adjacent to the service entrance, for receiving, storing and disposing of wastes, including recycling. This room should be a minimum of 100 square feet.

E. Hazardous Wastes

1. Verify with University of Colorado Denver | Anschutz Medical Campus (University) Environmental Health and Safety Department (EHS), through the University Project Manager, the space requirements for the collection and control of hazardous wastes including, but not limited to, fluorescent light tubes, batteries, waste motor oil lubricants, solvents, paint, radioactive materials, medical waste, or laboratory chemicals. Hazardous wastes may be generated by either program or maintenance and operations procedures.

F. Recycling

1. Designate space throughout the building for “3 to 4” (2 recycling and 1-2 trash containers). The containers are a group of comingled separate waste containers (recycle cans and bottles, recycle newspaper, recycle office paper, trash). Each 3-4 container requires approximately 16 inches x 60 inches of floor space.

2. Provide space for a recycling / waste adjacent to each entrance within each classroom, laboratory, conference room, etc. For either open office designs, private offices or offices suites, provide dedicated space in a central location for one quad per every 10 to 15 people.

G. Public Toilet Rooms

1. Provide ceramic tile finishes on the floors and walls.

2. Toilet room ceilings shall be painted drywall, plaster, concrete or other approved moisture resistant material.

3. In order to facilitate maintenance, provide accessible isolation valves for each toilet group. In toilet room where there are 10 or more fixtures located back to back, provide a two-foot wide maintenance pipe chase with a man door.

H. Maintenance and Operation Room

1. Provide a minimum 100 sf Maintenance and Operation room for every 100,000 sf of Building space. Room should be suitable for work benches and tool storage, ladder storage and work space for a desk and computer.

I. Extra Stock Material Storage Room

1. Provide a minimum 100 sf Extra Stock Material Storage room for every 100,000 sf of Building space in which it resides. Room should be suitable for storage of Extra Stock Materials identified for that Building in Part 4, Section 01 78 46. Room should be located near Mechanical Room on the Ground Floor.
J. Mechanical and Electrical Equipment Rooms/Spaces/Locations

1. It is University’s experience that mechanical and electrical equipment rooms are often not designed or constructed to accommodate preventative maintenance and repair activities. Some examples of unsatisfactory mechanical room design and construction are:

a. Accessing a piece of equipment requires maintenance personnel to crawl under or over ductwork.
b. Piping is run across the floors.
c. Where light fixtures are located above equipment, ductwork or piping, the only way to relamp or repair the fixture is to install temporary scaffolding or use a mechanical lift.
d. Equipment located above other pieces of equipment preventing access to the upper equipment.
e. Equipment located in such a way that maintenance personnel have to stand on other pieces of equipment or piping in order to conduct maintenance service.
f. Inadequate clearance around equipment, such a wall needs to be removed in order to access it for repair or replacement, or to change filters.
g. Access panels swing in the wrong direction, away from the open access instead of towards the passageway.
h. Valve stems, wheels, etc. either too close to or imbedded in walls.

2. It is critical that mechanical and electrical equipment rooms are designed and constructed with adequate access to and clearance around equipment so that routine preventative maintenance can be conducted.

3. Incorporate the following items into the design of mechanical and electrical equipment rooms:

a. Indicate on the construction drawing the necessary maintenance service areas adjacent to the equipment (1-1/2 times the length of the chiller tube is required to service the tube, etc).
b. Design the equipment rooms so that the necessary maintenance service areas adjacent to the equipment are free of other equipment.
c. The service door into the rooms shall be a minimum of six foot wide by seven-foot high opening, with one active and one passive leaf and a delayed action closure.
d. Equipment rooms should be on a level served by an elevator. Stairs to the equipment room floor are prohibited.
e. Provide a wall mounted service sink, with a hose attachment on the faucet, in all mechanical rooms.
f. Provide lifting eyes or a beam/trolley/chain fall lifting point (beam must be free of fireproofing, or insulation, to be utilized), if applicable, in order to facilitate the removal of chiller end caps, and the replacement of elevator hoist machines and elevator generators.
g. Provide floor drains at all pumps, chillers, and air handling units.
h. Pitch floors to the floor drains.
i. Provide emergency lighting so that maintenance and operations staff can exit safely during a power outage.
j. Consider the safety of maintenance personnel when locating equipment. Provide adequate lighting (consider painting mechanical rooms as a means to increase light levels), electrical outlets, ventilation, access routes, walkways, stairs, protective enclosures, barriers, etc.
k. Provide service platforms to equipment when applicable.
l. Wall mounted deep utility sink for servicing parts and materials.
4. Service platforms at heights of four feet or greater must have either guardrails per OSHA 29 CFR 1910.23 or safety belt anchor points located to minimize a free fall not greater than the distance to the floor or six feet whichever is smaller.

5. Provide section drawings through mechanical rooms and review with University Building Maintenance & Operation, through the University Project Manager, who shall make the final determination if the adequacy of maintenance accessibility is in question.

6. Locate light switches at the entrance to equipment rooms.

7. Include means to provide access for future equipment replacement (access panels, knock-out panels).

8. Provide a designated electrical circuit to accommodate a welder.

9. Equipment serving building is preferred to be in mechanical rooms and not in ancillary space such as above ceilings or in floor plenums, chases, etc.) where it is difficult to service, creates interruptions to activities in occupied spaces and can be unsafe to access to maintain.

K. Mechanical and Electrical Equipment Maintenance

1. Typical maintenance procedures includes weekly, monthly, quarterly, and annual preventative maintenance work on fire alarm systems, cooling towers, steam systems, lighting, chillers, roof top units, clean out of roof drains, roof repair, change filters, clean air handling units, lubricate bearings on motors, plumbing fixtures, etc.

2. University complies with Federal Law, the Occupational Safety and Health Act (OSHA), 29 CFR 1910 General Industry Standard for the preventative maintenance and repair work conducted by the Maintenance and Operations Staff in University buildings.

L. Equipment/ Maintenance Accessibility

1. Smoke detectors, lighting fixtures, heat detectors, sprinkler heads, VAV’s, valves, fire dampers, temperature control sensors, etc. should not be located in areas and at elevations requiring scaffolding to maintain.

2. Provide panels for access to valves, cleanouts, dampers, controls and other mechanical and electrical components requiring servicing, adjustment or replacement wherever such items are concealed in ceilings or walls. Panel material and finish shall be resistant to damage or soil by normal anticipated use.

3. Mechanical and electrical equipment shall be designed and installed so that it is accessible for preventative maintenance and repair work.

4. Permanent access from non-public areas is required to all rooftops. Vertical ladders shall not be used for access to areas where equipment service is required and maintenance personnel need to carry toolboxes, etc. Elevators or stairs with handrails and landings are necessary in such cases. Accessing rooftops through windows in private program space shall be avoided. Locating equipment where access is in or through private program space shall also be avoided.
M. Trash Chutes are PROHIBITED

1. Trash is collected in containers and taken directly to collection rooms located adjacent to the service entrance.

N. Automatic Teller Machines (ATM’s)

1. Placement and installation of all ATM machines on the University Anschutz Medical Campus or Denver Campus where authorized by University shall be subject to the following guidelines:
 a. Placement and installation of ATM machines must provide access for service and maintenance of the equipment. Coordinate placement, media, and media pathway requirements with IS. Vendors should not arbitrarily install equipment without prior coordination.
 b. ATM’s must not protrude into the exit corridor. ATM machines must be recessed flush with the line of corridor walls, or in an alcove area.
 c. ATM machines not located on “ground” floor may require special security equipment such as a security camera and/or alarm system.
 d. ATM machines must be securely anchored.
 e. ATM machines should be installed in “public” areas that are readily observed from other occupied spaces.

2. The following are not permitted:
 a. Exterior ATM machines.
 b. Stand-alone ATM machines or facilities.
 c. ATM machines in isolated locations.
 d. Exterior signage or advertising, including interior signage visible from exterior areas.

O. Building Design Service Life Expectancy

<table>
<thead>
<tr>
<th>Design Life of Building</th>
<th>Inaccessible, or Structural Components</th>
<th>Components where replacement is expensive or is difficult (incl. below ground drainage)</th>
<th>Major, replaceable components</th>
<th>Services, installations and external works</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 years</td>
<td>75 years</td>
<td>50 years</td>
<td>25 years</td>
<td>years</td>
</tr>
</tbody>
</table>

P. Live Load Design

1. Floors of office, classroom, laboratory, and similar general purpose facilities of flexible use shall be designed for a uniformly distributed live load of 100 pounds per square foot, including partition loads.

2. Floors of mechanical rooms shall be designed for the equipment provided, but not less than 150 psf. Underground structures shall be designed for the appropriate fill and vehicle loading. Pay particular attention to structures that could be subject to fire truck or other vehicular traffic.
3. The design development drawings should show the design live loads for all floors, roofs, and underground structures. Areas of heavier than standard design loading should be clearly delineated.

Q. Air Permit Regulations

1. Air permit regulations require that certain equipment such as emergency generators, engine-powered fire pumps, boilers, emissions from printing facilities, and air pollution control devices be permitted by the Colorado Department of Public Health and Environment (CDPHE). Application for such permits needs to be initiated seven months before the start of any construction activities. This process applies when modifying existing equipment as well as to installing new equipment. AE’s shall notify the University Project Manager if a project will include this type of equipment.

R. Wastewater Regulations

1. Sanitary Sewer
Building wastewater effluent must meet local, state and federal codes and standards identified in Part 4, Section 01 41 00, Regulatory Requirements. Pre-treatment and related permitting may be necessary based upon specific equipment use and/or program activities. It is incumbent on the AE to determine whether pre-treatment of wastewater is required by the State or Publically Owned Treatment Works (POTW) or recommended based upon AE discussions with program representatives to discover the nature of chemicals and other materials that will be used in equipment processes or the manufacturer’s information regarding anticipated equipment effluent. This pertains to any equipment that ties to or is part of the sanitary sewer system (e.g., boilers [condensate pH], acid neutralization tanks, chemically resistant plumbing/piping, solids separators or silt traps, grease traps, cage/dish washing equipment, tissue digesters, non-residential garbage disposals, amalgam separators, holding tanks, sumps, or any type of wastewater generating, holding, or treatment equipment). This can include processes or equipment that can systematically alter what is discharged to sanitary sewer (e.g., DI water system, water softener, etc.). If chemically resistant piping is specified (for equipment or system), ultimate effluent conditions should be explored for adherence to POTW and local municipality standards. This does not include solid waste (including liquids) that are generated as part of the laboratory processes and can be containerized – only wastewater discharged directly to sanitary sewer (typically plumbed to waste lines or those piped to discharge floor drains).

2. Storm Water Sewer
All systems that discharge to stormwater sewer require a permit. No building system shall be designed to discharge to stormwater sewers. Stormwater sewer systems must meet the conditions of the University MS4 permit.

S. Electrical System Isolation

1. The University is a continuously operating facility. Construction of new and maintenance of existing electrical utility systems, equipment and distribution requires adequate capability of isolation of equipment, systems, and branches of the distribution system. It is therefore imperative that the design and installation of new and modified utility systems include sufficient isolation capability. All work involving the central electrical utility systems whether upgrade or the system or tie-in to the central system must include provisions for system isolation.

2. An isolation plan shall be submitted to the University PM as part of the Schematic Design and Construction Document phases of the project. The University PM will be responsible for approval of the plan and coordination with the AE.
T. Site Data

1. University will engage a Registered Land Surveyor to prepare a topographic plan showing adjacent property lines, existing building lines, grades, pavements, trees, adjacent conditions, existing structures, and utilities for use in preparation of a construction site plan coordinated with existing conditions.

2. The AE shall review the topographic plan and report any inconsistencies or incomplete information to the University PM.

3. The AE shall define contract and construction limits and outside staging areas on the site construction site plan.

U. University Access Requirements

1. Projects shall be designed according to the Americans with Disabilities Act Accessibility Guidelines and codes referenced in Part 4.0, Section 01 41 00, Regulatory Requirements.

2. The AE shall address the needs of persons with disabilities, both in the building design and within the contract and construction limits. Indicate on the drawings, circulation patterns and disability parking which may be affected by the construction.

3. Areas adjacent to the construction project shall remain accessible to persons with disabilities. Conduct construction activities to control potential hazards to disabled persons.

4. Projects shall be designed according to the Americans with Disabilities Act Accessibility Guidelines. Use International Building Code requirements where they are more restrictive.

V. Existing Conditions

1. AE must field verify existing conditions, including capacities and review existing record documents in advance of building design on all renovation projects.

W. Landscape Plans:

1. Landscaping plans shall be reviewed with University Facilities Operations, no later than the Design Development phase.

X. Furniture:

1. Movable furniture and equipment will normally be purchased and install by University under a separate contract and should not be included in the AE specifications. Installation may be specified by the AE depending upon circumstances. AE should coordinate furniture layout and modular furniture layout with building utilities.

2. Room dividers and screens (movable wall partitions) will normally be purchased and installed as movable equipment, unless otherwise approved. The AE will be expected to coordinate with the client in this design and specification.
Y. Materials Management:

1. General
 a. This section generally applies to material management guidelines for new projects. The AE must work with the University PM to determine materials management requirements on projects in existing buildings.

2. Materials Handling:
 a. Excellent service requires a pattern for smooth movement and coordination with vendors and the institution. University’s role is to provide adequate receiving, vehicle circulation and parking at each building. This includes docks with levelers or lifts, ramps and parking designated for loading and unloading.
 b. Carriers also provide a valuable service in shipping packages, letters and samples. To facilitate the pick up process, secured space in buildings should allow for letter drop boxes for FedEx, UPS, and USPS Priority letters. Space for the temporary storage of packages, packaging supplies, and preparation of packages should be provided.

3. Receiving and Vehicular Circulation:
 a. All new lab and clinical buildings should have accessible dock space, with elevated receiving docks and dock levelers. All new administrative and educational buildings should have accessible dock space, with elevated receiving docks and dock levelers or scissors lifts. Vehicles used by outside vendors have varying bed heights, ranging from 30” to 50”. The majority of straight trucks and truck trailer combinations have a bed height of 48” which is the recommended dock height for all buildings. For buildings with more than one dock, those with high receipt activity, such as lab and clinical buildings, each dock bay should have dock leveler, allowing a fast, efficient method to offload goods.
 b. Dock doors eight feet wide by ten feet high allow for the loading and unloading of larger sized items without the risk of damage to the operator, equipment or merchandise. The door should have some overhang or protection from the elements to prevent rain and snow entering the building during inclement weather. Each dock door should be equipped with a flexible lamp for lighting the interior of the truck, providing a safe work environment. The exterior of the dock should be well lighted for security.
 c. An area of twenty feet from the edge of the dock should be provided as a circulation and maneuvering space to allow access into the truck and the turning of pallet loads or carts with product. Docks must have a space separation between dock doors of ten feet for temporary staging and circulation. This circulation area must have adequate lighting.
 d. Provision for snow removal, snow melting and drains for the driveway leading to the dock and in the dock parking area needs to be included in any design.
 e. Adequate secured staging area should be provided at all buildings to hold materials until internal building delivery is accomplished. Building exceeding 100,000 gsf of building space should have 500 sq. ft. of storage area per 100,000 gsf of building space. This area provides a holding area of delivered and outgoing packages until distribution can be made.
f. Adequate secured staging area should be provided at all buildings to hold materials handling equipment used in the facility. Typical equipment consists of manual pallet jack(s), flat bed cart(s), 2 wheel dollies, delivery carts, compressed gas dolly and drum dolly. A power pallet jack is required for buildings in which excessively heavy equipment is used (i.e., large ultra cold freezers) and for the movement of compressed gas cylinders and pallet loaded deliveries to one location.

g. All new buildings will provide adequate turning space for access by vehicles expected to service the building type, with room for safe backing of vehicle and circulation around the vehicle while parked.

h. In addition to providing each building with an adequate height dock, with levelers or lifts as appropriate, a ramp to the dock should be provided. Ramping allows for vendors to utilize the vendor parking area, unload and deliver without occupying the dock. In buildings where the use of an electric vehicle is used to move radioactive and chemical wastes, the ramp should be eight feet in width. These ramps should also be ADA compliant.

i. Research buildings utilize compressed gas, both high and low pressure release. Cylinders are delivered on a daily basis to a holding area on the dock. Space to store a two-day supply of new cylinders plus empty cylinders must be provided. Storage for cylinders in preparation for extended weekends and special projects by labs must be allowed for. All cylinder must be caged or chained. Special provisions must be made if the cylinders contain flammable or hazardous materials. Both categories of gases require storage away from other gases. All storage areas must meet NFPA standards for gas storage.

j. Buildings serving one specific purpose should be evaluated for materials handling based on the specific use. Specialized storage may be needed.

k. Include freeze protected eye wash/ emergency shower station per dock.

4. Trash Removal:

a. Refuse bins or trash compactors must be sized appropriately for each building, and must be accessible for crews working in the evening. Since work in this area often occurs at night, the area should be well lighted for safety.

b. Access to the area must be kept free of snow and ice.

c. Exterior locations must provide a way to reenter the building without compromising the security of the building.

d. The area should be screened from public view.

e. Recycle bins should be provided, with one recycle bin per each type of material being recycled on each floor.

5. Internal Building Delivery:

a. Delivery routes must be planned within buildings creating minimal disruption of daily activities. Delivery routes should not be in public corridors. Routes must be logical and include direct access to service elevators. Since the majority of
deliveries are by wheeled transport, the delivery routes should be of a durable surface that handles traffic and spills, and should avoid carpet and ceramic tiles.

b. Service elevators should be sized to handle the receipt of crated equipment and pallet jacks, pallet lifts and furniture dollies to move the equipment. Hoods, refrigerators and ultra cold freezers are example of these items. Service elevators must be able to handle a lifting capacity of the combined weight of equipment, lifting equipment and passengers with a 25% safety margin. Service elevators should be activated by ID access per each command.

c. Delivery routes need to be sized to accommodate the items being transported within the area. Where electric lifts are required, such as in the delivery of compressed gas, or where large equipment (hoods, ultra cold freezers, etc.) will be replaced, hall width, door sizes and turning radii of combined lift and equipment, must be provided, along with a safety factor to prevent damage to the building.

d. Chemical showers and eye wash stations need to be recessed so as not to interfere with delivery routes.

6. Delivery Vehicle Types:

a. Multiple vehicle types are used as delivery vehicles to service all buildings.

b. Carriers such as FedEx and UPS utilize a package van with 36” bed height.

c. Electric delivery vehicles are used by University Mailing Services, and by Facilities Operation to service a variety of needs on the campus.

d. Lab and clinical buildings require access by over the road vehicles for direct delivery of large items. Typically, these items are crated, and have special storage and handling needs, as were described in other areas. These vehicles require concrete landing strips to handle the weight of trailers at the driving wheels and landing gear and prevent damage to the pavement.

7. Management and Disposal of Hazardous Materials:

Areas where hazardous materials are managed and stored must meet specific criteria depending on the nature of the material and the associated hazards or handling logistics. Each area (lab or clinic) within the building where hazardous materials are generated must meet specific requirements for storage (waste or inventory) depending on the nature of the material (flammable, corrosive, radioactive, biohazardous). Separate central collection/storage areas may be required for each of four types of waste: 1) Radioactive, 2) RCRA Hazardous Waste, 3) Infectious Medical Waste (biohazardous) and 4) building related wastes (i.e., spent lighting, unwanted computers, paints, batteries, etc). The specific needs will be driven by the program waste generation rates, building management logistics, and/or the building location. University EHS, Space and Asset Management (SAM), or Facilities Management (Building Maintenance and Operations and/or University Custodial Services) should be consulted. Central receiving areas (loading dock of buildings with laboratories, animal housing, engineering or industrial arts shops) also have specific storage and safety requirements.

Safety showers and eyewashes are required in any areas where hazardous materials are handled (with exception of areas only storing solids or instrument/sealed materials such as the building related wastes).
a. Radioactive Material:

1) Radioactive materials generated in the labs may be collected by University EHS and moved to a collection point in each building. To manage and collect radioactive materials efficiently, space must be available to consolidate wastes, store testing and spill response materials and package wastes for movement to the EHS processing facility.

2) Areas where hazardous materials are managed and stored must have surfaces that are durable, chemically resistant and easily decontaminated.

3) Safety showers and eyewashes are required in any areas where corrosive materials are handled.

4) Radioactive materials are heavily used in research and often must be obtained and used quickly. Space for processing radioactive packages in buildings where radioactive materials are used facilitates quick delivery.

5) Regulatory release limits for iodine is extremely low. If researchers plan to use iodine, a procedure room equipped with a pre-filter, charcoal and HEPA filters is recommended. Backup power and redundant ventilation is needed for the iodination suite.

b. Chemicals:

1) Buildings where chemicals are used (e.g., research buildings, academic buildings with laboratories, academic buildings or support buildings where industrial arts or industrial trades work will be performed, or facility support buildings such as heating plants) will have central chemical receiving areas and potentially centralized chemical waste consolidation areas.

2) Chemicals that are no longer needed by these operations (e.g., labs) must be disposed of according to federal and state guidelines. To collect hazardous chemicals efficiently, space may be required to consolidate loads for movement to the EHS waste processing facility.

3) Areas where chemicals are received or temporarily held prior to transportation, chemical waste processing areas, chemical storage or stock rooms, shipping and receiving/loading docks of buildings where research chemicals are delivered, etc. require the installation of emergency showers/eyewashes, adequate area for spill response materials, and must not contain indoor floor drains.

4) Buildings that generate significant quantities of flammable or combustible waste must have appropriate cabinets for storage of flammables within staging areas.

5) Areas where hazardous materials are processed and stored must have surfaces that are durable, chemically resistant and easily decontaminated. These areas must be designed to
maintain negative pressure and 100 percent exhaust air (no return air). A separate exhaust fan may be required if connection to laboratory hazardous exhaust ductwork is not feasible.

6) Safety showers and eyewashes are required in any areas where liquid chemicals are stored or handled (if this is in close proximity to a loading dock with similar requirement, one shower may serve both areas). A sink is in processing areas is desirable where feasible. If a sink is provided, a sink eyewash will be installed.

7) Areas where flammable liquids will be consolidated or bulked must have spark-free fixtures.

c. Biological Materials and Regulated Medical Waste

1) Biological materials that are no longer needed by the labs must be disposed of according to federal and state guidelines. Regulated and biomedical waste is collected from the laboratories, vivaria, clinical and patient care areas by University Environmental Health and Safety Department (EHS). Regulated medical waste is collected and disposed of under contract. The pickups will generally not be more than once per day, so the storage space for the waste must accommodate one-day’s waste with a comfortable buffer for days of greater waste generation. A hand-washing sink must be available to encourage hand washing after handling waste containers.

d. Flammable Materials and Specialized Storage:

1) The use of flammable liquids in buildings has important implications and limitations under fire codes that must be considered in design. This may include delineation of zones where limits on the amount of flammable liquids are controlled, depending on the construction type (i.e., non-H occupancy)

2) Buildings that generate significant quantities of flammable or combustible waste (the majority of the waste generated in research) must have appropriate cabinets for storage.

e. Emergency Response Room:

1) University benefits greatly from the ability of Environmental Health and Safety Department (EHS) to evaluate spills and respond to minor spills of hazardous materials. In buildings where significant quantities of hazardous materials are used, EHS needs space to accommodate spill control equipment and materials on site to facilitate quick and effective response.

f. Safety Showers/ Eyewashes

1) When located outside the building envelope, Safety Showers/ Eyewashes must be freeze protected. They must incorporate 2-
position solenoid valves inside the building, downstream of the tempering valve, with a button at the Safety Shower/Eyewash which opens the valve when needed.

8. Mailing Services:

1. Each individual building will have a mail station with mail stops for the occupants of that buildings, and receptacles for outbound internal and external mail. These mail stations will not be staffed and will be serviced for mail delivery and pickup once per day.

2. United States Postal Service (USPS) drop boxes for letter and Priority Express mail will be provided in individual buildings if the volume is sufficient to meet USPS requirements.
9. Materials Handling Matrix

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Lab Buildings</th>
<th>Administrative Office and Education Buildings</th>
<th>Special Use Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature:</td>
<td>48” height docks with levelers having an operating range of 12” (to 58” max height from ground); one per 100,000 sq. ft of building. One scissors lift with a lifting capacity of a minimum 10,000 lbs, if more than one dock door is built.</td>
<td>48” height docks with ground to dock scissors lift, lifting capacity of a minimum of 8000 lbs. *An alternate option of using a grade to 54” above grad scissor lift dock in lieu of a 48” dock. This alternate must be reviewed and approved by materials management prior to its use and will require adjustments to the dock door and dock circulation requirements below. Materials Management will need to work closely with the design team if the alternate is used.</td>
<td>Specialized buildings are building that serve one specific purpose, and have unique characteristics based on their use. Examples of such buildings are warehouse, hazardous materials handling facilities, motor pool, garages, and Central Utility Plant. These facilities should be handled on a case by case basis for materials handling.</td>
</tr>
<tr>
<td>Dock Doors</td>
<td>Minimum 20’ depth of clear area from dock edge into building. Minimum 10’ clearance on either side of dock door both internal and external of building.</td>
<td>Minimum 20’ depth of clear area from dock edge into building. Minimum 10’ clearance on either side of dock door both internal and external of building.</td>
<td></td>
</tr>
<tr>
<td>Dock Circulation Area/Clearance Space</td>
<td>Doors locked 24/7 with card-controlled access for building occupants/ vendors. Service Elevators must have card control access.</td>
<td>Door unlocked from 7AM-4:30 PM Monday-Friday for vendor access. Doors locked after these hours with card-controlled access for building occupants.</td>
<td></td>
</tr>
<tr>
<td>Dock Security and Access</td>
<td>Flexible arm for viewing into truck; adequate internal lighting; external security lighting</td>
<td>Flexible arm for viewing into truck; adequate internal lighting; external security lighting</td>
<td></td>
</tr>
</tbody>
</table>

*An alternate option of using a grade to 54” above grad scissor lift dock in lieu of a 48” dock. This alternate must be reviewed and approved by materials management prior to its use and will require adjustments to the dock door and dock circulation requirements below. Materials Management will need to work closely with the design team if the alternate is used.
<table>
<thead>
<tr>
<th>Building Type</th>
<th>Lab Buildings</th>
<th>Administrative Office and Education Buildings</th>
<th>Special Use Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery and Courier Parking</td>
<td>Minimum of two spaces, 14’ width, per building. For building over 100,000 sq. ft., add one additional parking space per 100,000 sq. ft.</td>
<td>Minimum of two spaces, 14’ width, per building. For building over 100,000 sq. ft., add one additional parking space per 100,000 sq. ft.</td>
<td></td>
</tr>
<tr>
<td>Parking for delivery vehicles</td>
<td>Deliveries will not be permitted in any locations other than the service docks or assigned delivery areas of the buildings. Signs will be installed that indicate where deliveries are permitted.</td>
<td>Deliveries will not be permitted in any locations other than the service docks or assigned delivery areas of the buildings. Signs will be installed that indicate where deliveries are permitted.</td>
<td>Deliveries will not be permitted in any locations other than the service docks or assigned delivery areas of the buildings. Signs will be installed that indicate where deliveries are permitted.</td>
</tr>
<tr>
<td>Ramps</td>
<td>Ramps to the dock area from an area adjacent to the delivery parking area. Width of 8’. Ramp should be ADA compliant.</td>
<td>Ramps to the dock area from an area adjacent to the delivery parking area. Width of 8’. Ramp should be ADA compliant.</td>
<td></td>
</tr>
<tr>
<td>Service Elevators</td>
<td>Minimum: Door Width: 6’ Door Height: 7’ Cab depth: 10’ Cab width: 6’9” Cab height: 10’ Load Capacity: 8000 lbs. (5000 lbs will be considered upon analysis of expected loads). Service elevators must have card control access.</td>
<td>Minimum: Door Width: 6’ Door Height: 7’ Cab depth: 10’ Cab width: 6’9” Cab height: 10’ Load Capacity: 8000 lbs. (5000 lbs will be considered upon analysis of expected loads). Service elevators must have card control access.</td>
<td></td>
</tr>
<tr>
<td>Turning Radius inside of Buildings</td>
<td>Adequate turning radius outside of service elevators to accommodate an 8 ft piece of equipment. Consideration must also be given to accessibility to rooms containing large scale equipment.</td>
<td>Adequate turning radius outside of service elevators to accommodate an 8 ft piece of equipment. Consideration must also be given to accessibility to rooms containing large scale equipment.</td>
<td></td>
</tr>
<tr>
<td>Internal Storage and Staging Area</td>
<td>Dock: Minimum of 250 sq. ft. per building for buildings under 100,000 gsf; 500 sq. ft. per 100,000 gsf of building space. Secured cage area to hold materials until delivery to room is accomplished. Secured area for dock equipment.</td>
<td>Dock: Minimum of 250 sq. ft. per building for buildings under 100,000 gsf; 500 sq. ft. per 100,000 gsf of building space. Secured cage area to hold materials until delivery to room is accomplished. Secured area for dock equipment.</td>
<td></td>
</tr>
<tr>
<td>Building Type</td>
<td>Lab Buildings</td>
<td>Administrative Office and Education Buildings</td>
<td>Special Use Buildings</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Feature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Cylinder Storage</td>
<td>Dock: Temporary secured (caged) storage for delivered tanks and holding empty tanks for vendor pickup. Internal to floors: Must meet NFPA standards for gas storage. Must have physically separated locations for incompatible gases and empty or full containers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialized Storage</td>
<td>Any specialized storage must be addressed in the design stage of the building.</td>
<td>Any specialized storage must be addressed in the design stage of the building.</td>
<td></td>
</tr>
<tr>
<td>Materials Handling Equipment used in Building</td>
<td>Manual pallet jack, flat bed cart, 2 wheel dollies, delivery carts, compressed gas dolly, drum dolly. Power pallet jack for buildings in which excessively heavy equipment is used (i.e., large ultracold freezers).</td>
<td>Manual pallet jack, 2 wheel dollies, delivery carts.</td>
<td></td>
</tr>
<tr>
<td>Floor Covering</td>
<td>No carpet or ceramic tile in major distribution paths.</td>
<td>No carpet or ceramic tile in major distribution paths</td>
<td></td>
</tr>
<tr>
<td>Door Width</td>
<td>Minimum door width of 36” in rooms and access corridors where large equipment is installed (i.e. ultra-cold freezers, ventilation hoods)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall Width</td>
<td>Minimum width of 8 feet along major corridors to accommodate pallet jacks for large equipment. Chemical showers need to be recessed so as to not interfere with materials flow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trash Removal</td>
<td>Storage for trash collection cart: 48”Lx30”Wx 40”H Recycle receptacle per material on each floor.</td>
<td>Storage for trash collection cart: 48”Lx30”Wx 40”H Recycle receptacle per material on each floor.</td>
<td></td>
</tr>
<tr>
<td>Biohazard Area</td>
<td>Adequate storage for infectious waste generated in bldg., 100 sq. ft. will usually be enough. Overhead coiling door, 80 foot candle lighting, door locked by combination key punch, walls epoxy painted, floor sheet vinyl with integral base, temperature control to room temp, Proximate hand washing sink.</td>
<td>For Education Buildings Only: Adequate storage for infectious waste generated in building. Proximate hand washing sink. 100 sq. ft. will usually be enough. Not needed if no infectious waste generated.</td>
<td>Adequate storage for infectious waste generated in HSD processing bldg., 100 sq. ft. Proximate hand washing sink.</td>
</tr>
<tr>
<td>Building Type</td>
<td>Lab Buildings</td>
<td>Administrative Office and Education Buildings</td>
<td>Special Use Buildings</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Flammable Materials and Specialized Storage</td>
<td>Adequate storage for hazardous materials used in building within locations where flammable materials are stored or used in large volumes. See comments under chemical storage and flammable materials. Flammable storage rooms must have adequate fire rating, and non-spark construction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous Waste Storage Area</td>
<td>Concrete or vinyl flooring, no floor drain, open shelves on one wall, accommodate 2-60 gallon flammable storage cabinets (30 gal.) stacked 2 high, space for 2 carts (3 ft.x4 ft.) staged in room. 3 ft.x2 ft. uneven leaf double door. Chemical resistant counter with large single basin sink 30”x18”x16” deep, back draft exhaust the length of the counter louvered to 12” above counter. Safety shower and eyewash within easy access (just outside of room, in loading dock, or in room (requires increase of total sq ft). Electrical outlets on counter and floor level, non sparking outlets and fixtures.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive materials processing room</td>
<td>Space to process radioactive packages (100 sq. ft.), 3’x3’ counter (48” high), open shelving on one wall, shelves must be at least 12” deep, smooth surface sheet vinyl with integral base, ID access proximity card readers. Proximate safety shower and eyewash.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Response Room</td>
<td>Approx. 200 sq. ft., lockers, bench, 2 response carts, metal cabinets with supplies, one under counter refrigerator, phone. At least one shower facility in building.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driving Routes</td>
<td>Delivery and circulation corridors will be established for new and existing building as they are occupied.</td>
<td>Delivery and circulation corridors will be established for new and existing building as they are occupied.</td>
<td></td>
</tr>
<tr>
<td>Building Type</td>
<td>Lab Buildings</td>
<td>Administrative Office and Education Buildings</td>
<td>Special Use Buildings</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Feature:</td>
<td>Delivery Routes must be planned into buildings in order to allow for minimal disruption of daily activities. Routes must be logical and include direct access to service elevators.</td>
<td>Delivery routes must be planned into buildings in order to allow for minimal disruption of daily activities. Routes must be logical and include direct access to service elevators.</td>
<td>Delivery routes must be planned into buildings in order to allow for minimal disruption of daily activities. Routes must be logical and include direct access to service elevators.</td>
</tr>
<tr>
<td>Delivery Vehicles (used by University)</td>
<td>Straight truck with 24’ box, 36’ overall, 48” floor height, lift gate; Package van 24’ overall, 36” floor height. Electric delivery van (Mail, Hazardous Materials, Facilities).</td>
<td>Straight truck with 24’ box, 36’ overall, 48” floor height, lift gate; Package van 24’ overall, 36” floor height. Electric delivery van (Mail, Hazardous Materials, Facilities).</td>
<td>Delivery vehicles must be accessible to provide for the delivery of mail, hazardous materials, and facilities items.</td>
</tr>
<tr>
<td>Access to buildings by over the road vehicles</td>
<td>Provide access to building by over the road carriers (55’ van plus 20’ cab, 75’ overall length); requires a minimum apron space of 155’, based on counterclockwise travel. If approach is clockwise increase apron length by 20’. Concrete landing strips must be provided to handle the weight of the trailers at the driving wheels and/or landing gear.</td>
<td>Provide access to building by straight trucks, 36’ overall length.</td>
<td>Provide access to building by over the road vehicles.</td>
</tr>
<tr>
<td>Snow removal/Drains</td>
<td>Need to be present.</td>
<td>Need to be present.</td>
<td>Need to be present.</td>
</tr>
<tr>
<td>Animal Related Issues</td>
<td>All issues related to animals will be under the direction of the Animal Resources Center.</td>
<td></td>
<td>Animal Related Issues</td>
</tr>
<tr>
<td>Mail Stations and Mail Handling</td>
<td>A Mail Station will be established in each building to provide a central location for the mail collection. The room will have adequate space for department mail stops, drop boxes for intercampus mail, a sorting table for staff use, and adequate circulation space for filling mail stations and picking up mail.</td>
<td>A Mail Station will be established in each building to provide a central location for the mail collection. The room will have adequate space for department mail stops, drop boxes for intercampus mail, a sorting table for staff use, and adequate circulation space for filling mail stations and picking up mail.</td>
<td>Mail Stations and Mail Handling</td>
</tr>
<tr>
<td>Carrier Pickup UPS/ FedEx/ USPS</td>
<td>Letter drop boxes to be provided for ease of use by department for FedEx, UPS; etc. Staffing in building is to receive packages for shipment that cannot be left at drop boxes.</td>
<td>Letter drop boxes to be provided for ease of use by department for FedEx, UPS; etc.</td>
<td>Carrier Pickup UPS/ FedEx/ USPS</td>
</tr>
</tbody>
</table>