According to Dr. Slobodan Todorovic, “pain-sensing sensory neurons of the dorsal root ganglion (DRG) can become sensitized or hyperexcitable in response to surgically-induced peripheral tissue injury. His laboratory investigated the potential role and molecular mechanisms of nociceptive ion channel dysregulation in acute pain conditions such as those resulting from skin and soft tissue incision. Here, they used selective pharmacology, electrophysiology and mouse genetics to link increased current densities arising from CaV3.2 isoform of T-type calcium channels (T-channels) to nociceptive sensitization using a clinically-relevant rodent model of skin and deep tissue incision. Furthermore, knockdown of the CaV3.2-targeting deubiquitinating enzyme USP5 or disruption of USP5 binding to CaV3.2 channels in peripheral nociceptors resulted in a robust antihyperalgesic effect in vivo and substantial T-current reduction in vitro. Their study provides mechanistic insight into the role of plasticity in CaV3.2 channel activity after surgical incision and identifies potential targets for perioperative pain that may greatly decrease the need for narcotics and potential for drug abuse.” (Todorovic, S Science, 2018)

Dr. Kimberly Jordan received her Ph.D. from the Immunology Program and post-doctoral training in the Medical Oncology and Surgery Departments, at the University of Colorado SOM. Now she is studying how the immune system responds to novel and experimental immunotherapeutics, a rapidly expanding field of interest in oncology and autoimmunity. As a recipient of the 2016 SOM Dean’s Transformational Funding, the Human Immunology and Immunotherapy Initiative has established the infrastructure required for advanced immune monitoring studies in the Human Immune Monitoring Shared Resource (HIMSR) where Dr. Jordan serves as the Assistant Director. The scientific goals of the HIMSR are to facilitate immunology-related projects that identify novel disease-specific biomarkers to monitor responses to immunotherapy, evaluate off target therapeutic effects on the system, generate rational hypotheses for future combinatorial treatments, and develop novel immune-monitoring assays. Dr. Jordan ensures the generation of high quality human translational research data, regularly performing highly technical immunologic assays including T cell and B cell functional assays, flow cytometry, cell sorting, mass cytometry, multi-parameter immunofluorescence microscopy, multiplex cytokine arrays, and human clinical sample preparation. The HIMSR, under Dr. Jordan’s guidance, also works with investigators collaboratively to develop and validate experimental assays and to assist in generating preliminary data required for outside funding support. With HIMSR funding, Dr. Jordan has brought many new cutting-edge instruments to the campus and continues to develop standardized assays for various platforms. The HIMSR integrates the expertise of basic science immunologists and bedside clinicians, aiming to place AMC at the forefront of future immune-related clinical trials that will transform medical research from the bedside to the bench, and back to patient care.
Easier Access to Library Resources From off Campus

Through October 12, 2018, the Health Sciences Library will be trialing Lean Library, a browser plugin that is smart enough to log you in to the library’s proxy server whenever needed. This means you do not have to start your research from the library’s homepage, nor do you have to use VPN, to access to content licensed through the Health Sciences Library. To test Lean Library, take a few seconds to do the one-time install and then start searching! For the purposes of this trial period, not all library resources are set up to work with Lean Library. The resources that will work during the trial are: Access Pharmacy, Annual Reviews, Clinical Key, Clinical Key Nursing, Cochrane, Dynamed, JAMA, Nature, NEJM, Pharmacy Library, ScienceDirect (Elsevier), Springer, Up to Date and Wiley. The library would like feedback on your experiences with Lean Library. Was it helpful? Did you experience any problems? Do you think the library should permanently offer this tool? Send your feedback and questions to library.web@ucdenver.edu.

NIH's Definition of a Clinical Trial

This page provides information, tools, and resources about the definition of a clinical trial. Correctly identifying whether a study is considered by NIH to be a clinical trial is crucial to how you will:

- Select the right NIH funding opportunity announcement for your research study
- Write the research strategy and human subjects sections of your grant application and contract proposal
- Comply with appropriate policies and regulations, including registration and reporting in ClinicalTrials.gov

Background:
In 2016, NIH launched a multi-faceted effort to enhance its stewardship over clinical trials. The goal of this effort is to encourage advances in the design, conduct, and oversight of clinical trials while elevating the entire biomedical research enterprise to a new level of transparency and accountability. The NIH definition of a clinical trial was revised in 2014 in anticipation of these stewardship reforms to ensure a clear and responsive definition of a clinical trial. Learn more about why NIH has made changes to improve clinical trial stewardship.

NIH Definition of a Clinical Trial:
A research study in which one or more human subjects are assigned prospectively assigned to one or more interventions (which may include placebo or other control) to evaluate the effects of those interventions on health-related biomedical or behavioral outcomes. Health-related biomedical or behavioral outcomes.

Answer a few simple questions below to help determine if your study is a clinical trial
Note that if the answers to the 4 questions are yes, your study meets the NIH definition of a clinical trial, even if…

- You are studying healthy participants
- Your study does not have a comparison group (e.g., placebo or control)
- Your study is only designed to assess the pharmacokinetics, safety, and/or maximum tolerated dose of an investigational drug
- Your study is utilizing a behavioral intervention

Studies intended solely to refine measures are not considered clinical trials.
Studies that involve secondary research with biological specimens or health information are not clinical trials.

Note for ancillary studies:
When answering the following questions, take into account only the work being proposed in the ancillary study, not the work being done in the parent project. Use the following four questions to determine the difference between a clinical study and a clinical trial:

1. Does the study involve human participants?
2. Are the participants prospectively assigned to an intervention?
3. Is the study designed to evaluate the effect of the intervention on the participants?
4. Is the effect being evaluated a health-related biomedical or behavioral outcome?