I am happy to announce that the R2 facility second quarter sentinel results have come back negative for all excluded pathogens. This includes the results of the testing of all rodent racks in the R2 facility using the new PCR technique for parasites, which includes pinworm and fur mites.

I also wanted to update everyone on the pinworm positive in RC1. Over the last 8 weeks we have been treating the positive room with fenbendazole feed, teamed up with extensive environmental clean-up. This treatment process will conclude this week and then we will be performing extensive follow-up testing of this room for at least the next 6 months. As we receive results, we will keep everyone informed so that the community can be aware of any breaks. In addition, we will continue to send updates on our sentinel testing throughout the year.

Thanks to everyone for all your efforts to keep and maintain a “clean” vivarium.

Conflict of Interest Disclosure Period

The next Conflict of Interest (COI) disclosure period begins in Monday August 14, 2017 and runs through Tuesday, October 31, 2017. In order to prepare for the disclosure period, the InfoEd COI Module will be unavailable July 31-August 13, 2017.

As a reminder, a COI disclosure must be filed by faculty, officers, and others as further outlined in the University of Colorado Denver | Anschutz Medical Campus Conflict of Interest Policy. Don’t forget, persons involved in research are required to submit a COI disclosure as noted below:

- For applicable sponsors, the COI disclosure must be submitted before a grant proposal may be sent to the funding entity;
- For persons included on an IRB protocol, the disclosure must be submitted before the protocol will be reviewed.

Remember, disclose early, and often, as needed.
Questions? Visit the COI Website or contact the COI staff at COI@ucdenver.edu.
Material Transfer Agreements (MTAs)
Confidentiality (Non-Disclosure) Agreements (CDAs/NDAs)

Beginning July 1, 2017, all new MTA, CDA, and NDA requests will be routed through the Clinical Research Administration Office (CRAO) via a web-based portal.

Requirements for MTA and CDA Review:

1. Please go to the following web-based portal and complete the intake process:
 https://forms.ucdenver.edu/secure/rss_ra_oqc_ra.
2. In order to expedite processing, review, and negotiation of your agreement, please answer all questions.
3. If there is additional information that could expedite the review of your agreement, please utilize the comment boxes.
4. Please upload all pertinent documents. Your agreement will not be assigned for review until this step is complete.

Based on the answers in the web-based portal, the MTA or CDA/NDA will be routed and processed accordingly. Negotiations will be handled by the CRAO Contracts Team.

For amendments to existing MTAs or CDAs/NDAs or questions, please send the associated documents and information to the following email address: CRAO_Contracts@ucdenver.edu.

For fastest reply:
Jeremiah Peugh
Clinical Research Contracts Specialist
(303) 724-9182

Amanda Peng
Senior Clinical Research Contracts Manager
(303) 724-2865

RESEARCH CORNER

Longevity and Health

Improving health in all stages of human life is the central mission of biomedical scientists. This task gets harder as life progresses to the later stage as we age. Age alone is the greatest risk factor for a variety of ailments, such as cancer, diabetes, and several forms of dementia. The correlation of aging and disease susceptibility is so intimate that, I believe, understanding the aging process and devising a mean to slow it should help improving not just one, but many diseases affecting us, especially when we age. Genetics plays a major role in determining the length of life span to which environmental factors may modulate it via epigenetic. In lower organisms, such as C. elegans, a single gene ablation can increase life span drastically, illustrating the plasticity of life span. Towards higher organisms such as mammals, similar observations were made although not as pronounced. To investigate whether there are genes in mammals that are critical to increase life span (hopefully also health span), we took a forward genetic approach in mice, using mouse embryonic stem (ES) cells in a high-throughput platform. We generated more than 42,000 independent mutations in ES cells and screened for those that can survive toxic dose of stressors. The rationale behind this is based on previous observations that stress resistance predict longevity in several species. We isolated 19 mutations that impart cells with resistance to multiple stressors. One of those, causing a large truncation of Tiam1, caused cells to become more resistant to oxidation and DNA damage. Mice carrying Tiam1 mutation were previously shown to be resistant to chemically induced skin tumorigenesis. We found that the Tiam1 mutation reduces reactive oxygen species level from NADPH oxidase. This in turn modulates the Akt and Foxo3 pathway. Tiam1 mice have been generated from our ES cells and their life span and health span are currently under investigation.

Wallace S. Chick, PhD